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Fig. S1. Generation of the brain tumor model. Neurosphere cells derived from p16'"k4a~/=/p19Ar*~/~ heonates were infected with retrovirus carrying the
mutant K-ras (K-ras®'2) and huKO genes. These cells were then inoculated into the brains of WT recipient mice. Neurosphere cells (Upper, bright field; Lower,
huKO fluorescence) are shown. (Scale bars: 200 pm.)
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Fig.S2. NSC/NPCsin E14.5 NS-GFP-Tg mice. Coronal sections of the forebrains of E14.5 NS-GFP-Tg mice were subjected to immunofluorescence analysis with
anti-GFP (green) and anti-musashi-1 (14H-1, red) [Kaneko, Y., et.al. (2000) Dev Neurosci 22:139-153]. VZ, ventricular zone. (Bottom) Higher magnification views
of the images in Upper. (Scale bars: Upper, 100 um; Lower, 10 pm). For immunostaining with the biotinylated anti-musashi-1 antibody, the tyramide signal
amplification (TSA) system was used according to the manufacturer’s protocol (Perkin Elmer).
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Fig. S3. NSC/NPCs in postnatal NS-GFP-Tg mice.  Coronal sections of forebrains of P3 NS-GFP-Tg mice were subjected to immunofluorescence analysis with
anti-GFP (green), anti-Ki67 (red) and DAPI (nuclear staining, blue). SVZ, subventricular zone; Str, striatum; LV. Lateral ventricle. (Scale bars: 50 um.)
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Fig. S4. Endogenous NS expression by GFPhigh or GFP!oW tumor cells.  Cytospin smears of sorted GFPMigh or GFP'°W cells were fixed and stained with (i and iii)
anti-NS antibody (red) or (ii and iv) DAPI (blue, nuclear staining). (Scale bars: 20 pm.)
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Fig. S5. Prominin 1 expression in GFPhigh or GFP'*" tumor cells.  (A) Flow cytometry analysis of brain tumor cells with anti-prominin 1 antibody. Dissociated
brain tumor cells were stained with biotin-conjugated anti-prominin 1 antibody (13A4, eBioscience), followed by staining with streptavidin (SA)- allophycocyanin
(APC) (Right). Simultaneously, tumor cells were incubated with only SA-APC as control (Left). (B) SVZ cells from P3 C57BL/6 mice were stained with anti-prominin
1 antibody as shown in A. Expression of prominin protein was not detected in tumor cells, despite the fact that the antibody recognized prominin protein in
normal brain tissue. Note: We assume that the epitope for recognition by antibody in brain tumors may differ or be masked compared with normal tissue.
Alternatively, prominin 1 protein expression may be extremely low in tumors. (C) Expression of prominin 1 mRNA in brain tumor cells. Total RNA was purified
from GFPhigh and GFP!oW cells isolated from three independent original tumors and prominin 1 mRNA levels were evaluated by RT-PCR.B-actin, control. Prominin
1 mRNA levels in GFPMigh tumor cells were higher than that seen in GFP'°W cells in tumors 1, 2, 5, and 6, but a similar correlation was not observed in tumors 3
and 4.
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Fig. 6. Localization of T-ICs in the original brain tumor. Serial sections of one of the original tumors were subjected to: (A and C) H&E staining and (B and
D) anti-GFP staining. Magnified views of the areas indicated by the squares in A and B are shown in C and D, respectively. (Scale bars: A and B, 1 mm; Cand D,

200 um).
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Fig. S7. Cell cycle status of GFPhigh and GFP!°W tumor cells.  Cytospin smears of sorted GFP"9h and GFP'°Y cells were fixed and immunostained to detect Ki67
(red). Blue, nuclear marker DAPI. Representative data of 3 independent experiments are shown. (Scale bars: 20 um.) Arrows, Ki67" cells.
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The NS-GFP construct was introduced into the C6 glioma cell line and single clone-derived lines were established by

limiting dilution. (A) Fractionation of GFP-expressing cells from NS-GFP C6 cells. Cells were fractionated by flow cytometry into 4 subpopulations, GFP~/*, GFP*+,
GFP™** and GFP*** 7, based on GFP fluorescence intensity as indicated. Black peak, control C6; red peak, NS-GFP C6. Two representative clones are shown. (B)
Colony forming capacity of fractionated NS-GFP C6 cells. Fractionated cell subpopulations from (A) were cultured. Data shown are the mean number + SD. of

colonies generated per 200 cells (n = 3).
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