Pattern-Based Recognition for the Rapid Determination of Identity, Concentration, and Enantiomeric Excess of Subtly Different Threo Diols

Shagufta H. Shabbir; Leo A. Joyce; Gabriella M. da Cruz; Vincent M. Lynch; Steven Sorey;

Eric V. Anslyn*

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712(USA)

Supporting Information

EXPERIMENTAL SECTION

Synthesis

<u>Host-2</u>: Boronic acid host-2 was synthesized by reductive amination according to a published procedure.¹

<u>Complex 7</u>: Host 2 (0.5 mmol, 178.6 mg) and (*S*,*S*)-hydrobenzoin (0.5 mmol, 107.1 mg) were dissolved in CHCl₃ (2.5 mL) and stirred with 1 g MgSO₄ suspension at room temperature for 30 min. MgSO₄ was removed by vacuum filtration and the filtrate was concentrated. The crude product was dissolved in CHCl₃ (5 mL) and concentrated again in order to azeotropically remove the condensed water. The product was purified by crystallization by diffusing methanol into the concentrated CHCl₃ solution. The crystals from the CH₃OH solution were submitted for x-ray crystallographic analysis. Host (*S*,*S*)-**2** [2-(((2*S*,5*S*)-2,5-diphenylpyrrolidin-1yl)methyl)phenylboronic acid]: mp 118 - 128 °C. ¹H NMR (600 MHz, CD₃OD) δ 7.29 (m, 10H), 7.13 (m, 3H), 6.81 (b, 1H), 4.39 (m, 1H), 3.57 (d, J = 13.6 Hz, 1H), 3.26 (d, J = 13.7 Hz, 1H),) 2.58 (m, 2H), 2.17 (m, 2H) ppm. ¹³C NMR (150 MHz, DMSO) δ 141.79, 133.72, 130.05, 129.24, 128.65, 127.40, 67.89, 55.66, 33.04, 30.65 ppm. HRMS (M+H) calc: 358.1934; found: 358.1973

Host (*R*,*R*)-**2** [2-(((2*R*,5*R*)-2,5-diphenylpyrrolidin-1yl)methyl)phenylboronic acid]: mp 98 - 117 °C. ¹H NMR (600 MHz, CD₃OD) δ 7.29 (m, 10H), 7.14 (m, 3H), 6.81 (b, 1H), 4.39 (m, 1H), 3.57 (d, J = 13.6 Hz, 1H), 3.29 (d, J = 13.7 Hz, 1H), 2.58 (m, 2H), 2.17 (m, 2H) ppm. ¹³C NMR (150 MHz, DMSO) δ 141.73, 133.45, 130.06, 129.24, 128.67, 127.41, 67.89, 55.46, 33.02, 30.65 ppm. HRMS (M+H) calc: 358.1934; found: 358.1973.

Complex 7: mp 162-169°C. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (m, 2H), δ 7.52 (m, 1H), δ 7.37 (m, 6H), δ 7.27 (m, 12H), δ 7.12 (m, 4H), δ 4.37 (m, 2H), δ 3.80 (d, J = 16.1 Hz, 1H), δ 3.74 (d, J = 16.2 Hz, 1H), δ 2.61 (m, 2H), δ 2.03 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 147.16, 143.83, 140.29, 135.87, 131.33, 128.61, 128.12, 128.09, 128.05, 128.01, 126.73, 125.80, 125.40, 86.52, 65.19, 50.55, 33.14 ppm. HRMS (M+H) calc: 536.2716; found: 536.2755.

UV-vis Titrations:

UV-vis titrations were performed on a Beckman DU-640 UV-vis spectrophotometer. Stock solutions of the hosts, indicators, and diols were made in 10 mM buffer solution pH 7.4 (Hunig's base and *para*-toluenesulfonic acid) in 100% spectral grade degassed methanol. All measurements were taken at 25°C. The ideal host and indicator combinations for enantiomeric discrimination were determined by generating 1:1 binding isotherms via UV-vis titration between the host and the indicator (**Figure S1-S6**). During the titration, the solution was allowed to equilibrate for 3 min after each addition, and the

absorbance spectra was recorded until the change in absorbance from one reading to the next was < 0.03. The binding constants ($K_{\rm HI}$) between the host and the indicators were determined from a 1:1 binding isotherm (**Table 1**).

The binding constant between the host and the guest K_{HG} was determined by measuring the change in absorbance of the host:indicator solution with the addition of the guest. ML was the selected indicator for this analysis. The optimum ratio of host-2 (440 μ M) to ML (75 μ M) (~ 90% saturation) was used as determined by the host:indicator binding isotherm.

Figure S1: A) UV-visible titration of host (*S*,*S*)-**2** with A (200 μ M), Host:Indicator complex (H:I), free indicator (I) **B**) 1:1 binding isotherm (plot of the difference in absorbance at 470 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10 mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: *K*_{HI}; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

Figure S2: A) UV-visible titration of host (*S*,*S*)-2 with AC (200 μ M), Host:Indicator complex (H:I), free indicator (I) **B**) 1:1 binding isotherm (plot of the difference in absorbance at 550 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10 mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: K_{HI} ; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

Figure S3: A) UV-visible titration of host (*S*,*S*)-2 with BPG (29.59 μ M), Host/Indicator complex (H:I), free indicator (I) **B**) 1:1 binding isotherm (plot of the difference in absorbance at 570 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10

mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: K_{HI} ; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

Figure S4: A) UV-visible titration of host (*S*,*S*)-2 with ML (75 μ M), Host:Indicator complex (H:I), free indicator (I) **B**) 1:1 binding isotherm (plot of the difference in absorbance at 380 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10 mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: K_{HI} ; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

Figure S5: A) UV-visible titration of host (*S*,*S*)-2 with PG (74 μ M), Host:Indicator complex (H:I), free indicator (I) B) 1:1 binding isotherm (plot of the difference in absorbance at 520 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10 mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: K_{HI} ; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

Figure S6: A) UV-visible titration of host (*S*,*S*)-**2** with PV (150 μ M), Host:Indicator complex (H:I), free indicator (I) **B**) 1:1 binding isotherm (plot of the difference in absorbance at 520 nm with the addition of the host). Stock solutions were prepared in 100% degassed spectral grade MeOH, using 10 mM *para*-toluenesulfonic acid and Hunig's base buffer, pH 7.4. Association constant: *K*_{HI}; difference in molar absorptivity between the H:I complex and free I: de; total indicator concentration: It. The solid line is the calculated curve resulting from iterative data fitting to a 1:1 binding isotherm. All measurements were taken at 25°C.²

NMR Analysis of the Enantiomeric Purity of 4:³

2-Formylphenylboronic acid (14.9 mg, 0.1 mole) and (*R*)- α methylbenzylamine (12.7 μ L, 0.1 mole) were dissolved in CDCl₃ (1 mL), in a dry glass vial equipped with a few 4 Å molecular sieves. (18.02 mg, 0.1 mole) of the diol (3,4 dihydroxy-4-phenyl-butane-2-one) obtained from the asymmetric dihydroxylation reactions was added to the solution. The mixture was allowed to stand with occasional shaking for 5 min. ¹H NMR of the resulting solution was recorded (**Figure S7**).

Figure S7: ¹H NMR 300 MHz on a Varian Mercury 300 spectrometer in CDCl₃ of the racemic mixture of **4** after derivatization.

96-well Plate Analysis:

Arrays were made by mixing host, indicator, and guest stock solutions within a Costar EIA/RIA polystyrene 96-well flat bottom plate. BioTek PrecisionTM microplate pipetting system was used to add stock solution to the 96-well plate. Each well contained a total solution volume of 300 μ L. After making the plate, it was sealed with a UC-500 sealing film to prevent solvent evaporation. The absorbance spectra of the 96-well plate were recorded on a BioTek SynergyTM 4 multi-detection microplate reader.

Indicator	Host (<i>S</i> , <i>S</i>)- 1	Host (<i>S</i> , <i>S</i>)- 2
Α (200 μΜ)	300 µM	400 µM
AC (200 µM)	446 µM	300 µM
BPG (60 µM)	180 μM	200 µM
ML (125 µM)	380 µM	340 µM
PG (150 µM)	546 µM	300 µM
PV (150 μM)	680 µM	300 µM

Table S1: Concentration of the hosts and the indicators used in the 96-well plate.

Table S2: The UV-vis data used for principal component analysis. **3a**: (R,R)-Hydrobenzoin, **3b**: (S,S)-Hydrobenzoin, **4a**: (3S,4R)-3,4-Dihydroxy-4-phenyl-butane-2-one, **4b**: (3R,4S)-3,4-Dihydroxy-4-phenyl-butane-2-one, **5a**: Methyl-(2S,3R)-2,3-dihydroxy-3-phenyl-propionate, **5b**: Methyl-(2R,3S)-2,3-dihydroxy-3-phenyl-propionate, **6a**: Diethyl-D-tartrate, **6b**: Diethyl-L-tartrate.

Diols	Absorba	nce of Hos and ML	t (<i>R</i> , <i>R</i>)- 2	Absorba	nce of Hos and PV	t (<i>S</i> , <i>S</i>)-1	Absorbance of Host (<i>S</i> , <i>S</i>)- 2 and PV			
	362 nm	366 nm	374 nm	496 nm	500 nm	516 nm	496 nm	500 nm	516 nm	
3 a	1.091	0.997	0.754	0.780	0.736	0.565	0.923	0.885	0.721	
3a	1.085	0.992	0.751	0.780	0.735	0.565	0.920	0.882	0.719	
3a	1.091	0.996	0.753	0.785	0.741	0.568	0.923	0.886	0.722	
3a	1.095	1.001	0.756	0.788	0.744	0.571	0.925	0.888	0.722	
3b	1.304	1.255	1.083	0.702	0.653	0.476	0.724	0.676	0.498	
3b	1.282	1.232	1.061	0.701	0.653	0.476	0.733	0.685	0.505	
3b	1.306	1.256	1.085	0.704	0.656	0.478	0.735	0.687	0.507	
3b	1.306	1.257	1.088	0.707	0.658	0.480	0.722	0.674	0.497	
6a	1.361	1.323	1.171	0.996	0.964	0.812	1.073	1.043	0.889	
6a	1.360	1.322	1.170	0.992	0.960	0.809	1.076	1.047	0.892	

6a	1.355	1.317	1.165	0.990	0.959	0.807	1.077	1.047	0.893
6a	1.357	1.32	1.168	0.995	0.963	0.811	1.082	1.053	0.898
6b	1.418	1.393	1.262	0.960	0.926	0.770	0.982	0.947	0.786
6b	1.426	1.401	1.269	0.953	0.919	0.765	0.983	0.949	0.788
6b	1.427	1.402	1.271	0.959	0.925	0.769	0.985	0.950	0.788
6b	1.432	1.407	1.276	0.960	0.926	0.770	0.991	0.955	0.793
4 a	1.365	1.329	1.18	0.845	0.803	0.633	0.87	0.828	0.653
4a	1.357	1.321	1.172	0.845	0.803	0.633	0.875	0.832	0.657
4 a	1.392	1.356	1.203	0.846	0.804	0.634	0.873	0.830	0.654
4 a	1.394	1.356	1.202	0.847	0.805	0.635	0.870	0.827	0.651
4b	1.260	1.191	0.985	0.910	0.871	0.707	1.015	0.981	0.817
4b	1.258	1.191	0.987	0.910	0.872	0.708	1.018	0.983	0.819
4b	1.258	1.191	0.986	0.912	0.873	0.709	1.012	0.977	0.814
4b	1.256	1.188	0.984	0.906	0.867	0.704	1.011	0.976	0.813
5a	1.202	1.124	0.902	0.882	0.843	0.679	1.009	0.974	0.812
5 a	1.193	1.113	0.892	0.881	0.842	0.678	1.005	0.970	0.811
5 a	1.196	1.118	0.896	0.882	0.843	0.678	1.013	0.979	0.816
5 a	1.197	1.118	0.897	0.883	0.843	0.679	1.008	0.973	0.812
5b	1.370	1.333	1.183	0.827	0.784	0.613	0.809	0.764	0.586
5b	1.388	1.350	1.198	0.828	0.785	0.614	0.809	0.764	0.586
5b	1.378	1.341	1.191	0.823	0.779	0.610	0.809	0.764	0.585
5b	1.394	1.357	1.204	0.824	0.781	0.611	0.804	0.758	0.581

Table S3: UV-vis data for Training Artificial Neural Network and Principal Component Analysis

Absorba	ance with	Host (S,S)	- 2 & PV	Ab	sorbance v	vith Host ((R,R)-2 &	ML	Ab	sorbance v	BPG	[G] _t mM	%5a		
512nm	514nm	516nm	518nm	376nm	378nm	380nm	382nm	384nm	570nm	572nm	574nm	576nm	578nm		
0.922	0.903	0.881	0.860	0.936	0.893	0.843	0.792	0.737	1.035	1.024	1.008	0.985	0.956	2.00	100
0.898	0.879	0.858	0.838	0.940	0.896	0.845	0.794	0.738	1.032	1.021	1.005	0.982	0.954	2.00	100
0.881	0.862	0.842	0.822	0.952	0.908	0.856	0.805	0.747	1.031	1.020	1.004	0.981	0.953	2.00	100
0.892	0.872	0.851	0.830	1.023	0.978	0.925	0.870	0.810	1.115	1.104	1.087	1.063	1.032	2.00	80

0.890	0.871	0.849	0.829	1.014	0.969	0.916	0.862	0.802	1.051	1.040	1.024	1.001	0.972	2.00	80
0.889	0.870	0.848	0.827	1.019	0.974	0.920	0.866	0.806	1.051	1.041	1.025	1.002	0.973	2.00	80
0.870	0.851	0.829	0.808	1.046	1.001	0.948	0.893	0.831	1.124	1.113	1.096	1.073	1.042	2.00	70
0.868	0.848	0.827	0.806	1.045	1.000	0.947	0.892	0.830	1.125	1.114	1.097	1.073	1.042	2.00	70
0.871	0.852	0.830	0.809	1.041	0.995	0.942	0.887	0.826	1.064	1.054	1.038	1.016	0.986	2.00	70
0.852	0.832	0.811	0.790	1.068	1.023	0.970	0.914	0.853	1.142	1.131	1.115	1.091	1.059	2.00	60
0.849	0.830	0.808	0.788	1.079	1.035	0.981	0.925	0.862	1.138	1.128	1.111	1.087	1.056	2.00	60
0.852	0.832	0.811	0.790	1.054	1.010	0.956	0.901	0.839	1.143	1.132	1.115	1.092	1.06	2.00	60
0.838	0.818	0.797	0.776	1.105	1.061	1.007	0.951	0.888	1.159	1.148	1.131	1.107	1.075	2.00	50
0.836	0.817	0.795	0.774	1.079	1.036	0.983	0.928	0.866	1.162	1.151	1.134	1.110	1.078	2.00	50
0.832	0.812	0.790	0.770	1.083	1.039	0.986	0.931	0.869	1.161	1.150	1.133	1.109	1.077	2.00	50
0.813	0.793	0.771	0.750	1.129	1.085	1.032	0.975	0.911	1.174	1.163	1.146	1.122	1.09	2.00	40
0.811	0.791	0.770	0.749	1.125	1.081	1.028	0.971	0.907	1.167	1.157	1.141	1.117	1.084	2.00	40
0.816	0.796	0.775	0.754	1.131	1.088	1.034	0.977	0.912	1.176	1.165	1.149	1.124	1.092	2.00	40
0.783	0.763	0.742	0.721	1.188	1.146	1.093	1.036	0.969	1.126	1.116	1.100	1.077	1.046	2.00	20
0.783	0.763	0.741	0.721	1.190	1.148	1.095	1.037	0.970	1.160	1.150	1.134	1.110	1.078	2.00	20
0.780	0.760	0.739	0.718	1.190	1.148	1.095	1.037	0.970	1.093	1.084	1.068	1.046	1.016	2.00	20
0.759	0.739	0.717	0.696	1.248	1.208	1.155	1.098	1.028	1.153	1.144	1.128	1.104	1.073	2.00	0
0.757	0.737	0.715	0.694	1.252	1.210	1.158	1.100	1.031	1.188	1.178	1.162	1.137	1.105	2.00	0
0.752	0.732	0.711	0.690	1.254	1.213	1.161	1.103	1.033	1.150	1.140	1.125	1.101	1.07	2.00	0
0.821	0.803	0.782	0.762	0.818	0.770	0.718	0.668	0.616	1.132	1.123	1.108	1.084	1.053	4.00	100
0.851	0.831	0.810	0.790	0.807	0.760	0.708	0.658	0.607	1.185	1.176	1.159	1.135	1.102	4.00	100
0.845	0.826	0.805	0.784	0.820	0.772	0.720	0.670	0.618	1.108	1.099	1.084	1.061	1.031	4.00	100
0.799	0.779	0.758	0.738	0.872	0.823	0.769	0.717	0.663	1.214	1.206	1.189	1.165	1.132	4.00	80
0.792	0.773	0.752	0.732	0.907	0.858	0.805	0.752	0.697	1.207	1.199	1.182	1.158	1.125	4.00	80
0.783	0.763	0.743	0.723	0.882	0.833	0.779	0.727	0.672	1.209	1.200	1.184	1.160	1.126	4.00	80
0.765	0.745	0.724	0.704	0.911	0.863	0.809	0.756	0.699	1.237	1.229	1.213	1.188	1.154	4.00	70
0.767	0.748	0.727	0.707	0.910	0.861	0.808	0.755	0.699	1.228	1.220	1.204	1.180	1.146	4.00	70
0.762	0.743	0.722	0.702	0.888	0.841	0.788	0.735	0.680	1.212	1.203	1.187	1.163	1.13	4.00	70
0.734	0.715	0.694	0.674	0.930	0.882	0.827	0.774	0.717	1.256	1.248	1.232	1.207	1.173	4.00	60
0.739	0.719	0.698	0.678	0.934	0.886	0.832	0.778	0.721	1.247	1.239	1.223	1.199	1.165	4.00	60
0.732	0.712	0.692	0.672	0.935	0.887	0.833	0.780	0.722	1.235	1.227	1.211	1.187	1.153	4.00	60
0.714	0.694	0.673	0.653	0.968	0.920	0.865	0.811	0.753	1.269	1.261	1.245	1.220	1.185	4.00	50
0.713	0.694	0.673	0.653	0.964	0.917	0.863	0.809	0.750	1.265	1.257	1.241	1.216	1.182	4.00	50
0.703	0.683	0.663	0.643	0.956	0.909	0.855	0.802	0.743	1.244	1.237	1.221	1.196	1.162	4.00	50
0.695	0.675	0.654	0.634	1.003	0.955	0.901	0.846	0.786	1.249	1.241	1.226	1.201	1.168	4.00	40
0.694	0.674	0.653	0.633	1.003	0.957	0.902	0.847	0.787	1.279	1.271	1.256	1.231	1.196	4.00	40
0.683	0.663	0.642	0.623	0.992	0.946	0.892	0.837	0.778	1.265	1.258	1.242	1.217	1.183	4.00	40
0.660	0.640	0.619	0.600	1.088	1.042	0.989	0.932	0.869	1.283	1.276	1.260	1.236	1.201	4.00	20
0.659	0.640	0.618	0.599	1.085	1.040	0.986	0.930	0.867	1.278	1.271	1.256	1.231	1.196	4.00	20
0.645	0.625	0.605	0.586	1.078	1.034	0.980	0.925	0.861	1.259	1.252	1.237	1.212	1.178	4.00	20
0.633	0.613	0.592	0.572	1.187	1.144	1.090	1.033	0.966	1.309	1.303	1.287	1.262	1.226	4.00	0
0.637	0.617	0.595	0.576	1.188	1.144	1.091	1.034	0.967	1.300	1.294	1.278	1.253	1.217	4.00	0

0.624	0.604	0.584	0.564	1.166	1.124	1.072	1.016	0.950	1.272	1.265	1.250	1.226	1.192	4.00	0
0.833	0.814	0.793	0.772	0.759	0.711	0.660	0.611	0.562	1.192	1.184	1.168	1.143	1.111	5.00	100
0.837	0.818	0.796	0.776	0.761	0.714	0.662	0.614	0.565	1.152	1.144	1.128	1.105	1.073	5.00	100
0.830	0.811	0.789	0.769	0.771	0.724	0.671	0.622	0.573	1.209	1.200	1.184	1.160	1.126	5.00	100
0.772	0.752	0.731	0.711	0.813	0.766	0.713	0.663	0.612	1.246	1.238	1.222	1.197	1.163	5.00	80
0.777	0.757	0.735	0.715	0.804	0.757	0.705	0.656	0.605	1.247	1.239	1.223	1.198	1.164	5.00	80
0.772	0.752	0.731	0.711	0.838	0.789	0.735	0.684	0.630	1.232	1.224	1.208	1.184	1.15	5.00	80
0.737	0.718	0.697	0.677	0.859	0.810	0.755	0.704	0.649	1.261	1.253	1.238	1.213	1.179	5.00	70
0.729	0.710	0.689	0.669	0.863	0.813	0.759	0.706	0.652	1.268	1.260	1.244	1.220	1.185	5.00	70
0.741	0.721	0.700	0.680	0.862	0.813	0.759	0.706	0.652	1.255	1.247	1.232	1.207	1.173	5.00	70
0.705	0.685	0.664	0.644	0.872	0.824	0.771	0.720	0.665	1.288	1.281	1.265	1.240	1.205	5.00	60
0.706	0.686	0.665	0.645	0.875	0.826	0.773	0.721	0.666	1.282	1.275	1.259	1.234	1.199	5.00	60
0.704	0.685	0.663	0.643	0.891	0.842	0.788	0.735	0.679	1.272	1.264	1.248	1.224	1.189	5.00	60
0.681	0.661	0.640	0.620	0.923	0.875	0.821	0.767	0.709	1.304	1.297	1.282	1.256	1.221	5.00	50
0.685	0.665	0.644	0.624	0.920	0.871	0.816	0.762	0.705	1.300	1.293	1.277	1.252	1.217	5.00	50
0.678	0.659	0.638	0.618	0.903	0.856	0.803	0.750	0.695	1.290	1.283	1.267	1.243	1.207	5.00	50
0.660	0.640	0.619	0.599	0.958	0.910	0.855	0.801	0.743	1.327	1.320	1.304	1.279	1.243	5.00	40
0.659	0.639	0.618	0.598	0.956	0.908	0.854	0.800	0.741	1.316	1.309	1.294	1.268	1.232	5.00	40
0.661	0.641	0.620	0.601	0.943	0.896	0.843	0.790	0.732	1.308	1.302	1.286	1.261	1.225	5.00	40
0.630	0.610	0.589	0.569	1.050	1.004	0.950	0.894	0.832	1.317	1.310	1.295	1.270	1.235	5.00	20
0.627	0.607	0.586	0.566	1.050	1.003	0.950	0.894	0.832	1.306	1.299	1.284	1.259	1.224	5.00	20
0.625	0.605	0.584	0.565	1.014	0.969	0.918	0.864	0.804	1.298	1.291	1.276	1.251	1.216	5.00	20
0.607	0.587	0.566	0.546	1.155	1.111	1.057	1.001	0.935	1.338	1.332	1.317	1.292	1.255	5.00	0
0.607	0.587	0.566	0.547	1.162	1.119	1.065	1.008	0.943	1.331	1.325	1.310	1.285	1.249	5.00	0
0.591	0.571	0.551	0.532	1.157	1.113	1.060	1.003	0.937	1.325	1.319	1.304	1.278	1.243	5.00	0

Table S4: UV-vis data of unknown solution for artificial neural network

Absorba	nce with H	Host (S,S)-	2 & PV	Abs	sorbance v	vith Host ((R,R)-2 &	ML	Abs	sorbance v	vith Host ((S,S)- 1 & B	PG	[G] _t mM	<i>%</i> 59
512nm	514nm	516nm	518nm	376nm	378nm	380nm	382nm	384nm	570nm	572nm	574nm	576nm	578nm		70 3 a
0.882	0.863	0.842	0.822	0.852	0.807	0.756	0.706	0.654	1.120	1.11	1.093	1.070	1.038	3.00	100
0.874	0.856	0.834	0.814	0.848	0.803	0.752	0.703	0.651	1.118	1.107	1.091	1.068	1.037	3.00	100
0.889	0.869	0.848	0.827	0.856	0.811	0.760	0.710	0.658	1.101	1.09	1.074	1.051	1.02	3.00	100
0.824	0.804	0.783	0.763	0.914	0.869	0.817	0.765	0.709	1.160	1.15	1.134	1.110	1.078	3.00	75
0.832	0.813	0.792	0.771	0.908	0.864	0.813	0.763	0.708	1.152	1.142	1.125	1.102	1.070	3.00	75
0.829	0.809	0.788	0.768	0.903	0.858	0.807	0.756	0.702	1.147	1.137	1.121	1.097	1.065	3.00	75
0.800	0.781	0.76	0.739	0.957	0.912	0.858	0.805	0.747	1.174	1.164	1.148	1.124	1.092	3.00	65
0.790	0.770	0.749	0.729	0.981	0.934	0.88	0.826	0.767	1.171	1.161	1.145	1.121	1.089	3.00	65
0.804	0.784	0.763	0.743	0.976	0.930	0.876	0.823	0.764	1.159	1.149	1.133	1.109	1.077	3.00	65
0.769	0.750	0.728	0.708	1.014	0.968	0.914	0.859	0.799	1.198	1.189	1.173	1.149	1.116	3.00	55
0.765	0.745	0.724	0.704	1.020	0.974	0.920	0.866	0.806	1.186	1.176	1.160	1.136	1.104	3.00	55
0.770	0.750	0.729	0.709	1.022	0.976	0.923	0.868	0.808	1.175	1.165	1.149	1.125	1.093	3.00	55
0.756	0.736	0.715	0.695	1.045	0.999	0.946	0.890	0.829	1.206	1.197	1.181	1.157	1.124	3.00	50
0.754	0.735	0.713	0.693	1.039	0.994	0.940	0.885	0.824	1.199	1.190	1.174	1.150	1.117	3.00	50
0.760	0.740	0.719	0.699	1.027	0.982	0.929	0.875	0.815	1.190	1.180	1.164	1.140	1.107	3.00	50

0.737	0.717	0.696	0.676	1.074	1.029	0.976	0.920	0.857	1.22	1.211	1.195	1.171	1.138	3.00	35
0.737	0.717	0.696	0.675	1.070	1.026	0.972	0.917	0.854	1.220	1.210	1.194	1.170	1.137	3.00	35
0.735	0.716	0.695	0.674	1.069	1.025	0.972	0.917	0.855	1.207	1.198	1.181	1.157	1.124	3.00	35
0.731	0.711	0.690	0.669	1.120	1.076	1.022	0.966	0.901	1.206	1.197	1.181	1.158	1.125	3.00	25
0.719	0.699	0.677	0.657	1.119	1.074	1.020	0.964	0.899	1.203	1.195	1.179	1.155	1.122	3.00	25
0.722	0.702	0.681	0.661	1.123	1.079	1.025	0.969	0.905	1.200	1.192	1.176	1.152	1.119	3.00	25
0.693	0.673	0.652	0.631	1.226	1.184	1.131	1.073	1.005	1.236	1.227	1.212	1.187	1.154	3.00	0
0.677	0.658	0.637	0.617	1.220	1.179	1.126	1.068	1.000	1.230	1.221	1.206	1.181	1.148	3.00	0

X-ray Crystal Structure Determination

X-ray Experimental for C37H34BNO2: Crystals grew as colorless prisms by diffusion of methanol into a DCM solution. The data crystal was cut from a larger crystal and had approximate dimensions: 0.33 x 0.25 x 0.17 mm. The data were collected on a Nonius Kappa CCD diffractometer using a graphite monochromator with MoK α radiation ($\lambda = 0.71073$ Å). A total of 166 frames of data were collected using ω -scans with a scan range of 2° and a counting time of 98 seconds per frame. The data were collected at 153 K using an Oxford Cryostream low temperature device. Data reduction were performed using DENZO-SMN.⁴ The structure was solved by direct methods using SIR97⁵ and refined by fullmatrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-97.6 The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms). The absolute configuration was determined from the known configuration of the amine portion of the molecule. The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where $w = 1/[(\sigma(F_0))^2 + (0.0439*P)^2 + (0.0439*P)^2)^2$ (0.2884*P)] and P = $(|F_0|^2 + 2|F_c|^2)/3$. R_w(F²) refined to 0.0910, with R(F) equal to 0.0424 and a goodness of fit, S, = 1.07. Definitions used for calculating R(F), $R_w(F^2)$ and the goodness of fit, S, are given in reference 42.⁷ The data were corrected for secondary extinction effects. The correction takes the form: $F_{corr} = kF_c/[1 + (2.5(7)x10^{-6})*F_c^2 \lambda^3/(sin2\theta)]^{0.25}$ where k is the overall scale factor. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).⁸ All figures were generated using SHELXTL/PC.9

(1) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126, 3676-3677.

(2) Piatek, A. M.; Bomble, Y. J.; Wiskur, S. L.; Anslyn, E. V. J. Am. Chem. Soc 2004, 126, 6072-6077.

(3) Kelly, A. M.; Perez-Fuertes, Y.; Arimori, S.; Bull, S. D.; James, T. D. *Org. Lett.* **2006**, *8*, 1971-1974.

(4) Otwinowski, Z.; Minor, W.; Charles W. Carter, Jr. In *Methods in Enzymology*; Academic Press: 1997; Vol. Volume 276, p 307-326.

(5) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidorib, G.; Spagnac, R. *J. Appl. Cryst* **1999**, *32*, 115-119.

(6) Sheldrick, G. M. University of Gottingen, Germany, 1994.

(7) $R_W(F^2) = \{\Sigma w(|F_0|^2 - |F_c|^2)^2 / \Sigma w(|F_0|)^4\}^{1/2}$ where w is the weight given each reflection. $R(F) = \Sigma (|F_0| - |F_c|) / \Sigma |F_0|$ for reflections with $F_0 > 4(\sigma(F_0))$. $S = [\Sigma w(|F_0|^2 - \Sigma w)))]$

 $|F_c|^2$ /(n - p)]^{1/2}, where n is the number of reflections and p is the number of refined parameter.

(8) *International Tables for X-ray Crystallography*; Wilson, A. J. C., Ed.; Kluwer Academic Press: Boston, 1992.

(9) Sheldrick, G. M.; Siemens Analytical X-ray Instruments, Inc.: Madison, Wisconsin, USA, 1994.