Yamashita et al.

Supplemental Figure Legends

Supplemental Fig. 1

The distribution of the average number of probes that covered (A) a single CGI or (B) a single promoter. 95% (74%) of CGIs (promoters) were covered by multiple probes.

Supplemental Fig. 2

Correlation between the fraction of DNA molecules immunoprecipitated by an anti-5-methylcitidine antibody and individual output values in MeDIP-CGI microarray analysis. The fraction of DNA molecules immunoprecipitated by the anti-5-methylcitidine antibody was calculated from copy numbers obtained by real-time PCR. The signal log ratio did not show linear correlation, and normalization using the Median normalization and the Lowess normalization was not effective. The P[Xbar] value showed a relatively high correlation coefficient. The Me value showed the highest correlation coefficient.

Supplemental Fig. 3

Determination of an appropriate cutoff Me value for methylated (unmethylated) CGIs. Methylation statuses of 113 CGIs were analyzed by qualitative MSP in four cell lines. Sensitivity and specificity for methylated (unmethylated) CGIs were calculated as [# of CGIs assessed as HM (UM) by MeDIP-CGI microarray among CGIs determined as methylated (unmethylated) by MSP] and [# of CGIs assessed as MM and UM (HM and MM) by MeDIP-CGI microarray among CGIs determined as partially methylated and unmethylated (partially methylated and methylated) by MSP], respectively. Arrowheads indicate selected cutoff. (A) Determination of the cutoff Me value for unmethylated CGIs. Cutoff values between 0.2 and 0.7 were tested, and a value of 0.4 was selected as a value of reasonable

Yamashita et al.

sensitivity and specificity. (B) Determination of the cutoff Me value for highly methylated CGIs. Cutoff values between 0.3 and 0.8 were tested, and a value of 0.6 was selected.

Supplemental Fig. 4

Genome-wide methylation analysis of CGIs in four gastric cancer cell lines and normal gastric tissue. (A) Fraction of methylated CGIs according to their relative positions against genes. Promoters were resistant to methylation. (B) Methylation levels in the CGIs spanning both a promoter region and gene body. The average of site Me values was plotted. Promoter was most resistant to methylation. (C, D) Methylation levels according to distances from repetitive sequences, LINE (C) and SINE (D). CGIs closer to repetitive sequences had lower Me values.

Supplemental Fig. 5

Distribution of methylated CGIs (overall) and promoters on individual chromosomes. AGS and KATOIII had larger numbers of methylated CGIs than HSC39 and HSC57, and this relationship was consistently observed for overall CGIs on all chromosomes. However, when limited to promoters, distorted patterns were observed on some chromosomes, such as chromosome 15, 18, 21 and 22 (with an arrow).

Supplemental Fig. 6

Relationship between expression in normal gastric tissue and methylation in cancer cells. Methylation levels (site Me values) according to gene expression in normal gastric tissues (high or low) at various positions against the TSSs. Solid lines (blue), genes with low expression in normal gastric tissue; and dotted lines (red), genes with high expression in normal gastric tissue. The genes with low expression in normal gastric tissue showed higher CpG island microarray analysis

Yamashita et al.

methylation levels in cancer cells.

Number of probes that cover a single CGI

Number of probes that cover a single promoter

Supplemental Fig. 1 Yamashita et al.

Supplemental Fig. 2 Yamashita et al.

Cutoff of Me value for unmethylated loci

Supplemental Fig. 3 Yamashita et al.

Supplemental Fig. 4 Yamashita et al.

Supplemental Fig. 5 Yamashita et al.

Distance from TSS to probe (kbp)

Supplemental Fig. 6 Yamashita et al.

Supplemental Table 1 List of primers

gene symbol	CpG island chromosome	TSS (NCBI)	position	forward primer sequence	position	reverse primer sequence	reference
Primers for MSP (prim	ers for methylated DNA)						
ABHD9	strict 19	15204231	-195	CGTGAGTTATCGTATTCGGTTC	-115	TCCTATACGAAACTTAAAACCG	(1)
ACAA2	strict 18	45593900	-199	GCGCGTTGTGGTTTATTC	-14	ACGCTAAACGACCGCTCG	this study
AC555 (FLJ21905)	strict 12	/9995940	-232	CGIIIIGGAGIIIGAGCGC	-113	ACAAAAAIAICACAACGCCG	(2)
ADFP	strict 9	1911/5/3	-169		-30		(1) this study
ADM ALDHIA3	strict 15	00237584	-105	TCGGTTTCGTAGTTAATGCGC	-09	GACTEGACCEGAACACTACGCA	(1)
ANGPTL4 (PGAR)	strict 19	8335011	-108	TTTAGGTTGGAGCGTAATGGC	-18	CAATAACGAAAAAAAAACGCACG	(1)
4NX45	strict 4	122837626	-164	TATTTAGGTTCGCGAGATTAGC	-290	CCAAAACCCCCAACCGCAAACCG	(1)
AREG	strict 4	75529717	-173	TTTTTAGCGAATTTTTACGTAC	-22	ATAAAACGACGCGCACCTACCG	(1)
BBS10 (FLJ23560)	strict 12	75266338	-276	ATTTGGGGGTAGCGGAC	-139	AAACTAACCCGTTATACGCG	(2)
BDNF	strict 11	27699872	-401	TACGTAAATAGCGAGGTTAGTC	-214	AACTCCGACGAAACTAAATTCG	(1)
BMP7	strict 20	55274708	-227	GTTTTTTCGTTGTTTTTTCGGC	-82	ATACTAACCCCGAACCCCTCG	(1)
BNIP3	strict 10	133645425	-155	TCGTAGGATTCGTTTCGC	-50	AATCTACGACCGCGTCG	(2)
BNIP3	strict 10	133645425	-688	GTTTTTTTTGCGGGCGGAC	-520	CGCTACGACTCCGAAACG	this study
Clorf115 (FLJ14146)	strict 1	218930285	-168	TTTATTGTGTAGTGCGCGTC	-28	GAAAAATTAAAAAAACCGCAACG	this study
CAVI	relaxed 7	115952075	-80	TTTCGGGACGTTTTTTCGGTGGT	-6	TAAAAACGTTTCTCCCGCGCTA	(1)
CDH2	strict 18	24011189	-217	TTTATCGGTTAAGGTTTTCGTC	-128	CGTCTACGAATATATAAAAACG	(1)
CDKN2D	strict 19	10540655	-122	GCGGTGTCGTTATATAGTAGC	-15	ACTCTAAACCTACGCCGCCG	(1)
CLDN3	strict 7	72822512	-111	AGGTTTTGGAGAGCGCGGTTTC	-47	ACCCTAAACTAAAACCGATACG	(1)
COL4A1	strict 13	109757459	-117	GCGTCGTTCGCGTATCGTC	2	TTCCAACGCTACGCACCG	(2)
CTSLI	strict 9	89530800	-182	GAITITAITITGCGTCGTITC	-40	ACGCTACGATTAACTATACCG	(1)
CXCR4	relaxed 2	136592195	-290	GAGAGACGCGTTTTTAGTTC	-14	AAAATTTCTAACCGCGACCG	this study
CYP26CI	relaxed 10	94811011	-619		-544	CCGALICACACACGIAACG	(5)
CYR61	strict I	85819048	-155	GGCGTTTGGTAGTAGTTCGC	-10		this study
DAZL	relaxed 5	74161102	-103	TATTTTTACCCTTTACAAAATC	-29	AAAAACIACGAAAAAACGACG	(2) this study
DUA45	strict 0	52607660	-91	TTCCCCATATATTCCCACTC	-10		(2)
DMAICI5 (DNAIDI)	strict 13	42495362	-09	GTTGGTGTGATTTATTCGTTTC	-1/0		(2)
FIDL (CRII)	strict 15	46957582	-130	GGAAACGTAGTTTAAAAGGCGAC	-145	CCGCCTCCTACTTAACGCG	(2)
ERBR2IP	strict 5	65258140	-248	TCGAGGTTCGTCGAGCGTTC	-43	GAAAAACCAACTCCGCGCG	(2)
F2R	strict 5	76047542	-187	TTAGGAGGGTCGAGACGGTCGC	-96	TCCTCTAAACACCGTTAATTCG	(1)
FADSI	strict 11	61340886	-234	GTTCGTTTGACGTTAGGAAGTC	-34	GCCCAAAACCAACCGCCTACG	(1)
FAM115A (KIAA0738)	strict 7	143230105	-85	TTAAGTTTTGTAGTTTCGAGTTC	96	AACCCAAACCTCGATCACCG	this study
FBLN2	strict 3	13565625	-82	TTGGGTTTTTGTTCGCGTGC	164	ACGAACACTCCACGCCCG	(2)
FBN2	strict 5	127901634	-412	GGGAATTCGTCGAGTTTTGC	-245	AACCGACAACCCCGAACG	(2)
FERMT2 (PLEKHC1)	strict 14	52487460	-182	AGGGTAGTTTTGCGGGCGGC	-29	GTCCGATTCCTCGACTAACG	this study
FLNC	strict 7	128257719	10	GAGAGAGAGTTAGAGAGCGGTCGAGC	107	GACCACGAAACTCGCTACGCTACG	(3)
FOXO1A	strict 13	40138734	-123	CGTATGTTTATTGGTCGCGC	-33	GACTTACGAAATCTACCGCCG	(2)
FSD1	strict 19	4255691	-159	AGGGTTTTGGGCGAGGTTAGC	-25	AAACTACCTTTACCGCGACCG	(1)
FST	strict 5	52812352	-172	TTTAGATTTAAAGCGCGGTTGC	-47	ACGAATAACTCGAACGAACG	(1)
FSTL1	strict 3	121652515	-226	TCGAAGGGGCGTCGGAC	-102	CTACTACAACGACCCCCGCG	(2)
FYN	strict 6	112301320	-228	TCGTACGTATTTTGGGATGTTC	-141	CTACGAACCGCAACCATTAACG	(1)
GREMI	strict 15	30797497	-37	CGTCGGTATTTAAACGGGAGAC	63	GAAACTCGACGCGAAATCAACG	(1)
GRHLI (IFCP2L2)	strict 2	10009273	-205	CGTAATTTCGCGGAACGC	-88	GAAACTAAAAAACCGATCGCG	(2)
HANDI	strict 5	153838017	-259	AATAGTTTAGGGCGTTGGTC	-93	AATTTTACGCTCAACCCG	(3)
HAND2	strict 4	174687953	-93	GICGAGAGIICGAGGCGIC	-21	ACTACATCTTTAAAACCGCTCG	this study
HDGFLI	strict 6	226//65/	-158	TIALIAAGIAIAAICGIIAIIC	-89	ACCCGITAAACCCACCCICG	this study
ILOVBI	sulfice 1	923333	-65	CTTATCCATTCCACTTTTACC	-0	CCTCAAAACCCCCAAAACCCCG	this study
HRASIS	strict 3	43903271	-94	GGGTGTATTTATGATGGGTGTATTC	-1/	CAACGCCTACGATCAAAAACG	(3)
HS3ST2	strict 16	22733361	-190	CGGTTGTTCGGAGTTTTATC	-38	GTAACGCTACCACGACCACG	(4)
HSPALA	strict 6	31891316	-153	TGGGGGGTAGGACGGGAGGC	-27	ACTAACCGTTATCCGAACCG	(4) this study
IGFBP3	strict 7	45927396	-40	TTTCGGTTTTTTATATAGCGGTC	23	AAAAAACGACTAATCCTCAACG	(1)
IGFBP7	strict 4	57671296	-195	GGGTCGGTTACGTCGGGTGTTC	-18	GACAAAAACGCGAATAAACCG	(1)
IL6R	strict 1	152644293	-117	TTTTTATAGCGTAATTTCGTTTAC	78	AACCGAAACGAATAACGCAACA	(1)
INSL6	strict 9	5175618	-122	AGTTTTGGCGACGTTTTTAC	-59	ACTCCCTATCTACGCCTACG	this study
IRS2	strict 13	109236915	-127	GCGGCGTTAATGCGAGGTAGC	-29	TAAATAACACATCGCGCACCG	(1)
KCNA1	strict 12	4889334	-75	TACGTTCGGGTGGGTTAATC	-7	GCTCGATCCATTTCTAAACG	this study
KCTD12	strict 13	76358526	-225	GCGGGTGGGAGTTCGGGC	-19	CGCTCCAAACGAATACCG	this study
KHDC1 (C6orf148)	relaxed 6	74029640	-122	GTTGGGTTTTTTGCGCGTC	1	ATAACGACGACCCCGCCG	(2)
KISS1R (GPR54)	strict 19	868358	-55	TTATAAACGTTCGGTCGTAGC	92	CAAAATTACGCCCTAACACCG	(1)
LAMA1	strict 18	7107813	-333	GGATTGTAGGGTCGCGGC	-139	TAAATCCCGACGCACGCG	(2)
LAYN (LOC143903)	strict 11	110916443	-315	TTTTGGATGTTATTCGCGC	-198	CCAACACGAAAAAACGACG	(2)
LOX	strict 5	121441853	-94	GAATAAATAGTTGAGGGGGGGGTC	11	GCGACAATCCCGAAAAACG	(3)
MGC42367 (C2orf55)	strict 2	98919110	-193	AICGITTTTTCGTTTTTCGC	-46	GCCGCTCAACTCCCCTCG	this study
MLFT	strict 3	1597/1678	-118	GGGIAGCGGCGIAITGITTTTC	-16	CICACICGCCGCGACGCAAACG	(1) this at 1
MLHI	strict 3	3/009983	-1/5	IIIIAGGIAGCGGGIAGIAGIC	-/0	GUAICUAACUCACUTICAACG	this study
MSH4 MSV1	relaxed I	/6035218	-10/	GIIGAGIIIGIIIGCGIIIGC	-39		this study
M3A1 MTSS1	strict 4	4912300	-1/1	TATTTATTCTACCATACCTTTTC	-11		(1) this study.
MISSI	strict 8	125809840	-398	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	-484		this study
MTSS1	strict 8	125809840	-130	GAGAGCGCGTTTTCGTTTGGC	-240	CGCCTCCTTTTCACTCCTACG	(1)
MXI	strict 21	41720024	-178	GGGTTCGGGTTCGAGAATTTGC	-21	TTCGCCTCTTTCACCCCG	(1)
NAPILI	strict 12	74764717	-238	AGAGGAGTTTAAGCGCGGC	-94	TTATAATCTCCCAACAACGCG	(2)
NEFL	strict 8	24870043	-112	GTTTTGGTTGTAGTAGCGC	-37	ACCCCTATTTATACGCCG	(5)
NMES1 (C15orf48)	relaxed 15	43510055	-191	CGGTAGGTAAGGAAGATCGC	-22	CCGAATAAACCGAACCAACG	this study
NPY	strict 7	24290334	-159	TTTTAAGTCGATATTCGTGC	-45	ATAAAACTTCCTCGCCG	(5)
NT5E	strict 6	86216528	-183	AGTCGATAGTCGCGTTAGGGTC	-36	GAACAACTAAAACCGAAACTCG	(1)
OXT	strict 20	3000266	-171	TAACGCGGTGATTTTGATTTC	-13	TAACTAATAACGATCTCTCCG	this study
PAX6	strict 11	31789455	-74	AGGGAGTATTTAATCGGTTGGC	68	CTCCTACGCCTAAACCAAAACG	(1)
PCDHGC4	relaxed 5	140844925	-161	TTATTAGTAAAAACGGCGC	-12	AAACATTACTACCGCCCG	(5)
PLAGL1	strict 6	144371246	-195	GTTCGGGTTTATTTGCGTTAGC	-47	AACCCCTAACGAAAACGTCACG	(1)
PLAU	strict 10	75340941	-177	TTTGTGAGCGTTGCGGAAGTAC	-51	ACGATCTCCGCACTATACTACG	(1)
PPIC	strict 5	122400324	-162	GTITTITCGTATTCGTTTAAGGC	-33	AAAATAAAAATCGAACAATCCG	(1)
PPIKI4A PRI HR	strict 19 relaxed 10	43439012	-352	GUGGIGAGICGAGAICGC	-169 10		(2) this study
1 ALIIN	10 IU	120343130	-121	JULICOAUTAIOUTAUAULUL	48	CICGAIAAICCICIACCACU	uns study

Supplemental Table 1 List of primers (continued)

gene symbol	CpG island	chromosome	TSS (NCBI)	position	forward primer sequence	position	reverse primer sequence	reference					
Primers for MSP (primers for methylated DNA)													
PYCARD	strict	16	31121752	-186 (CGGGGAATCGCGGAGGTTTC	-36	AATAAAACCCGAAAAAAAACCG	(1)					
RAB34	strict	17	24069013	-85	TGGCGAGGGCGGGTAGC	40	AAACCTCGAATCCCACTCCG	(2)					
RBP4	strict	10	95350983	-136	TTCGGGTTTCGGTGAGTTAGGGC	-36	CCGCTACTTTATAACGCCG	(1)					
RGC32 (Cl3orf15)	strict	13	40929712	-217	ATCGGGGTTTCGGCGATTTTTC	-33	CCGCGCCCGCCCTACCACCG	this study					
RGS2	strict	1	191044794	-184	ACGTTAGTAGCGTTTCGGTTTC	-37	GTCGCAACATTTATAAAACCTCG	(1)					
RIFI	strict	2	151974674	-202	ATTTCGGAAGACGTTCGATC	-40	CAACTCTCCAAACTCCGCCG	(2)					
RORA	strict	15	59308794	-213 (GGTTGGAGAAGTTTTCGTTAGC	-111	GACGAACGAACAAACAAAAACG	(1)					
SCRN1	strict	7	29995902	-106 (GAGGGTGGGTTCGCGGTTAC	-14	CTACAATAACGAAAACGACCG	(1)					
SLC25A4	strict	4	186301392	-225	IACGGTGTTTTTTGGGTTCGGC	-79	CGCCGCGCATTAACTAAACAAATACG	this study					
SNAII	strict	20	48032934	-299	AGAGGTTTCGTTTCGTTC	-201	CGTAACGATAAAAACCCG	this study					
SFRP2	strict	4	154929678	-213	AAATTTTAGGGCGGGCGAGC	4	CCGAAAAAACAAAATAAACCG	this study					
SNAII	strict	20	48032934	-155	ATTTGTTCGGGGAGTGGTTTTC	-91	AAAACGAAACCTTATCTACCACG	(1)					
SPAG6	strict	10	22674405	-198 (GGTAGTGTAGGGATATTCGAC	-62	ACGTAACGTCACGACCG	(5)					
TBX3	strict	12	113606352	-98	TTGGTTCGAAAGCGTTAAAGAG	-22	ACCGAACGTCTACTCGACGACT	(i)					
TFAP2C	strict	20	54637765	-146 (GCGTTGCGTTAGGTTCGGGTGC	40	CGCGAATATCAAAACCGCTCCG	ú					
TGFBR2	strict	3	30622998	-87 (GTAGTTGAAAGTCGGTTAAAGTTTTC	-26	CGACGTCCAACCCCTAACTCTCTCG	6					
TGFBR2	strict	3	30622998	135 (GTATTCGTTCGGGATAGGAGTC	255	GAACCGACAACGCAAATATACG	(6)					
THBD	strict	20	22978301	-849 (CGTTCGTTTTTATTCGGCGTC	-750	GCCAAACCCCATCTCATCG	(3)					
TNFSF9	strict	19	6482037	-212 (GTCGAGTTTGGAAGGTCGGAAAC	-65	AAAAAACCACGCCCCTCCG	(1)					
TPM2	strict	9	35680053	-262 (GTACGTCGGTTTTTGCGTTC	-97	CGACTAAAAAAAACCCCGACG	(2)					
TSPYL6	relaxed	2	54336848	-92 (CGAGATTGAGGAGTGAGTGTCGC	-14	CCTCGCCCATTTACGCCG	(2)					
TUBALA (TUBA3)	strict	12	47869128	-234 (CGGTCGATTGTTTTTGTAC	-20	CGACACATAAACGAATACG	this study					
TURR6	strict	12	12298257	-14	TAATTGCGGGTCGGTTGC	-142	CTACTACAAACCGAACCGCG	(2)					
TUSC3	strict	8	15442101	-75	AGTTTCGGGCGGGGAGCGTAC	85	TACGAAAAACCCCGAACCGCG	(2)					
III RP2	relayed	6	150304820	-213	IGAGTTTGTCGTGGAAGGAATC	-80	GTCA A ACGA ATCATA ACGTCACG	(1)					
UNC5C	strigt	0	06690195	107 1	TAGATTTCCCCCTCCCCC	-3)		(1)					
WIEI	strict	12	62201256	-19/	CGTTCGCGTTTTATTTTTTCC	-/1	A C C C C C C C C C C C C C C C C C C C	(2)					
WIFI WNTA	strict	12	22242106	-151 (COTTCATACTTCCCTCCC	-27	CTCTACCTCCCTATACCTACCG	(1) this study					
WN14 7ME177	strict	10	0224606	-/9	CTACCACTATTTCCCATCTTTC	-20		(1)					
ZNF1//	strict	19	9334090	-119 (COTTOCOCANTECCACCTETC	-12		(1)					
ZNFJJY	relaxed	19	9293928	-14/ 0	GOTTCOODAATTCGAOOTTTC	-43	IACCICAAACOCCAACOAAAACO	(1)					
Classfor Disume se	quencing	12	42945079	15 1	COMMCCCTTTTTTCACATCACA	146		this stude.					
CISOTJ21 (SERF2)	strict	13	438459/8	-45 (146		this study					
FLNC	strict	10	128257719	-1 (308		this study					
FSDI	relaxed	19	4255691	-543 (-168		this study					
HANDI	strict	5	153838017	-651		-442		this study					
IGF2	strict	11	212/409	-5928 /	AGAIGGGIAGGAAGIGGGGAGII	-6318	ΑΑΑΑΟΟΙΑΑΑΑΟΙΑΑΑΑΙΟΟΑΑΑΟ	this study					
SIX5	strict	11	62356136	-240 1	AGAAAIIIIAIIIIIIGGAGGIIG	-507		this study					
NKX2-8	strict	14	36121537	-154/	IGGAAGIAIIIGIIIIAGIIAAGA	-1//1	CAACCAAAICAIIICAAIIIAAIC	this study					
Primers for copy numb	per analysis of	DNA				101							
DMRIBI	strict	1	53697660	126 /	AGGGACACGCGGGCAAAI	186	AIGAICIICIGGCGCICGGAG	this study					
CYP26C1	relaxed	10	94811011	-190 (CIGCAGICITICACCGICCGIC	-96	GCAGIGCICACCIGIICCGIC	this study					
HOXBI	relaxed	17	43963271	-182 (CATIGGCCIGGGAGAGAGAICACAI	-56	CCCICIIGCCCIACAACCIII	this study					
DNAJCIS (DNAJDI)	strict	13	42495362	-137 (GGGGTGGAGTAAGCAAAT	-57	GCCTTTCTTCCCACTCTCAACT	this study					
COL4A1	strict	13	109757459	321 (GTCCCTGTAGGCTACGATCGC	386	CCGGAGGAATTCCTTAACTC	this study					
FSTL1	strict	3	121652515	-58 (GGGGAAGGAGAGGTCTTAAGG	17	CGAGCTGTAAGCGGAGGT	this study					
NPY	strict	7	24290334	-100 0	GGGAAGTGGCGGGTGGGAGTCA	5	GAGGGGTGAGAGCCAGCGGATG	this study					
HANDI	strict	5	153838017	-584	TCCAGAAAGGGCCGATGACTA	-517	AAGACAGGATAGGCCGCTAAC	this study					
FSD1	strict	19	4255691	-448	ITCAGTTGTGACATAGGGACA	-341	CAGGTTATCCGTTGCTACT	this study					
ANXA5	strict	4	122837626	-874 (GGCCACGCTTCTGTCTACCACA	-794	CAAACGCGAAGGAGTCAAGA	this study					
MTSS1	strict	8	125809840	-614	ACTTTATCGAACTCGGCATCC	-507	TTCTGAGAAGACGCCCATTC	this study					
BNIP3	strict	10	133645425	805 (CCGTGCAGCACTCAGTCGT	869	GATGGTCTTGCGAATCTAGC	this study					
PAX6	strict	11	31789455	239 (CCCTCACCCACACTCTTTATC	350	TTTTCTCCACGGATGTTG	this study					
TBX3	strict	12	113606352	-196 (GGCGCTGCGACGTTACAGTT	-122	TGTTGCTGCATAGGCGTGGTT	this study					
TFAP2C	strict	20	54637765	-361 (CGTCTTTTGGAGGAACGAGTGAA	-281	GTAAACACACCTGAGATTGGC	this study					
HRASLS	strict	3	194441612	-223	IGGGCTCAACAAAACCGATTA	-165	CCGCAGCCAACGTTTAGG	this study					
TUBB6	strict	18	12298257	-20 0	CGCAGTTGCCGCTGTCGTC	98	GCCCACCTTGGTGCCGATCTG	this study					
ZNF559	relaxed	19	9295928	-452 (CAATGGGAAAATTCTAGGA	-361	TTTGTTGAAAACGAAAGCATA	this study					
TGFBR2	strict	3	30622998	-76	TCGGCCAAAGCTCTCGGAG	-21	TCGACGTCCAGCCCCTAGCTC	this study					
MLH1	strict	3	37009983	-177 (CCTTCTAGGTAGCGGGCAGTA	-88	GCGGCAGCTATTGATTGGACA	this study					
SNAII	strict	20	48032934	76 (GCGCTCTTTCCTCGTCAG	124	AGTCCTGCAGCTCGCTGTAG	this study					

Yamashita, S. *et al.* (2006) Cancer Sci, 97, 64-71.
Moriguchi, K. *et al.* (2007) Cancer Lett, 249, 178-187.
Kaneda, A. *et al.* (2002) Cancer Res, 62, 6645-6650.
Abe, M. *et al.* (2008) Oncology, 74, 50-60.
Miyamoto, K *et al.* (2003) Oncogene, 22, 274-280.
Yamashita, S. *et al.* (2008) Cancer Res, 68, 2112-2121.