## SUPPORTING INFORMATION FOR: Inhibitor Binding of Group IVA Phospholipase A<sub>2</sub> Probed by Molecular Dynamics and Deuterium Exchange Mass Spectrometry

John E. Burke,<sup>†</sup> Arneh Babakhani,<sup>†</sup> Alemayehu A. Gorfe,<sup>†</sup> George Kokotos,<sup> $\gamma$ </sup> Sheng Li,<sup>‡</sup> Virgil L. Woods,<sup>§</sup> J. Andrew McCammon,<sup>†</sup>||<sup>⊥</sup> and Edward A. Dennis<sup>\*†</sup>||

<sup>†</sup>Department of Chemistry and Biochemistry, <sup>‡</sup>Biomedical Sciences Graduate Program, <sup>§</sup>School of Medicine, <sup>II</sup>Department of Pharmacology, <sup>⊥</sup>Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601

<sup>γ</sup>Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece \*Corresponding author. EAD: Phone, 858-534-3055; FAX, 858-534-7390; E-mail, <u>edennis@ucsd.edu</u>



Supplemental Figure 1 Deuterium exchange upon binding of 10  $\mu$ M pyrrophenone or AX007. The number of incorporated deuterons at seven time points are displayed in peptides that overlap peptides displayed in Figures 3 and 5. Peptides 240-253, and 379-393 are given as examples of peptides with no change in exchange upon inhibitor binding.



Supplemental Figure 2 Modeling uncrystalized residues in  $PLA_2$ . The residues without defined electron density in the crystallographic structure were modeled and are shown in purple.

## GIVA PLA<sub>2</sub> Protein Digest Map

| 1        | 10                | 20                | 30           | 40          | 50                | 60          | 70          | 80         | 90                                      | 100         |
|----------|-------------------|-------------------|--------------|-------------|-------------------|-------------|-------------|------------|-----------------------------------------|-------------|
| MSFIDP   | <u>(OHIIVEHQY</u> | SHKFTVVVLR        | ATKVTKGAFO   | DMLDTPDPYV  | ELFISTTPDS        | RKRTRHFN N  | DINPVWNETFE | FILDPNOENV | LEITLMDANY                              | VMDE        |
|          |                   |                   |              |             |                   |             |             | ▝▕▌▋▌▌▌▌   | II.                                     |             |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
| 101      | 110               | 120               | 130          | 140         | 150               | 160         | 170         | 180        | 190                                     | 200         |
| TLGTATI  | TVSSMKVGE         | KKEVPFIFNÇ        | VTEMVLEMSI   | EVCSCPDLRF  | SMALCDQEKI        | FRQQRKEH I  | RESMKKLLGPK | NSEGLHSARD | VPVVAILGSG                              | GGFR        |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
| 201      | 210               | 220               | 230          | 240         | 250               | 260         | 270         | 280        | 290                                     | 300         |
| AMVGFS0  | GVMKALYESG        | ILDCATYVAG        | LSGSTWYMSI   | LYSHPDFPEK  | GPEEINEELM        | IKNVSHNPL L | LLTPQKVKRYV | ESLWKKKSSC | <u>OPVTFTDIFG</u>                       | MLIG        |
|          |                   |                   |              |             |                   |             |             | 11111      |                                         |             |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
| 301      | 310               | 320               | 330          | 340         | 350               | 360         | 370         | 380        | 390                                     | 400         |
| ETLIHN   | RMNTTLSSLK        | EKVNTAQCPL        | PLFTCLHVKF   | DVSELMFADW  | VEFSPYEIGM        | IAKYGTEMA P | DLFGSKFFMGT | VVKKYEENPL | HF LMG VWG SA                           | FSIL        |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
|          |                   |                   |              |             |                   |             |             |            |                                         | =           |
| 401      | 410               | 420               | 430          | 440         | 450               | 460         | 470         | 480        | 490                                     | 500         |
| FNRVLG   | /SGSQSRGSI        | MEEELENIII        | KHIV SND SSL | JSDDESHEPKG | TENEDAGSDI        | QSDNQASW I  | HRMIMALVSDS | ALFNIREGRA | GK VHNFMLGL                             | N LN I      |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
| 5.01     | 510               | 500               | 500          | E 40        |                   | 5.60        | 570         | 500        | 500                                     | 600         |
| SYPLSPI  | SDFATODSF         | JZU<br>DDDELDAAVA | DPDEFERTYF   | DVKSKKTH    | 550<br>VVDSGLTENI | .PYPLTLRP O | BGVDLTTSFDF | SARPSDSSPF | FKELLLAEKW                              | A KMN       |
| o ir bor |                   |                   |              |             |                   |             |             |            |                                         |             |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |
| 601      | 610               | 620               | 630          | 640         | 650               | 660         | 670         | 680        | 690                                     | 700         |
| KLPFPK   | LDPYVFDREG        | LKECYVFKPK        | NPDMEKDCP1   | TIHFVLANIN  | FRKYKAPGVE        | RETEEEKE I  | ADFDIFDDPES | PFSTFNFQYF | NQAFKRLHDL                              | MHFN        |
|          |                   |                   | <u></u>      | <u></u>     |                   |             |             | <u></u>    | <u></u>                                 | ¥           |
|          |                   |                   |              |             |                   |             |             |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <b>IIII</b> |
| 701      | 710               | 720               | 730          | 740         | 749               |             |             |            |                                         |             |
| TLNNID   | /IKEAMVESI        | EYRRQNPSRC        | SVSLSNVEAF   | REFNKEFLSK  | РКА               |             |             |            |                                         |             |
|          |                   |                   | - <u></u>    |             |                   |             |             |            |                                         |             |
|          |                   |                   |              |             |                   |             |             |            |                                         |             |

**Supplemental Figure 3 Peptide digest map of GIVA PLA<sub>2</sub>.** Identified and analyzed peptides resulting from pepsin-digestion are shown below the primary sequence of GIVA PLA<sub>2</sub>. All peptides were analyzed, but to prevent redundancy only the peptides shown as solid lines were used in this study.



Supplemental Figure 4 Root mean square distance of protein and inhibitor. For all  $C_{\alpha}$  RMSD measurements the red represents the RMSD of all residues, with crystallized residues RMSD shown in blue (excluding 407-414, 431-462, 498-538, and 626-632). a) The RMSD of the  $C_{\alpha}$  in the apoenzyme over the simulation time course (50 ns). b) The RMSD of the  $C_{\alpha}$  in the pyrrophenone bound enzyme. c) The RMSD of the  $C_{\alpha}$  in the oxoamide bound enzyme. d) The RMSD values of both the oxoamide (green) and pyrrophenone (red) over the simulation time course is plotted.



**Supplemental Figure 5 Regions in contact with inhibitors with extremely fast or slow rates of exchange.** Region 403-417 (A) and 294-298 (B) are plotted showing extremely fast rates of exchange (region 403-417), or extremely slow rates (region 294-298), with or without pyrrophenone or oxoamide present.