Biophysical Journal, Volume 97

Supporting Material

Anastral Spindle Assembly: A Mathematical Model

Mark A. Hallen and Sharyn A. Endow

Anastral Spindle Assembly: A Mathematical Model

Mark A. Hallen and Sharyn A. Endow

Supporting Material

Table S1 Variables and constants Diffusion and aster aggregation with the karyosome				
r_{gv}	Radius of germinal vesicle			
ρ	Distance of a given point from the karyosome (i.e., radial coordinate in the spherical coordinate system)			
S	Distance between the center of the germinal vesicle and the karyosome			
θ	Colatitude in the spherical coordinate system (i.e., angle defined by the given point, the karyosome, and the center of the germinal vesicle)			

Capture of asters by the karyosome

k* _{on}	Pseudo-first order association rate constant for asters binding cytoskeletal filaments
$k_{o\!f\!f}$	Dissociation rate constant for asters from cytoskeletal filaments
C_{eq}	Fraction of bound asters at equilibrium
F_{eq}	Fraction of free asters at equilibrium, $F_{eq} + C_{eq} = 1$
K_b	Strength of binding constant
f	A function of space and time representing the number of asters per unit volume
D	Diffusion coefficient

ν	Transport velocity
C_1	1 st constant of integration from solving Eq. 5 at steady state
C_2	2 nd constant of integration from solving Eq. 5 at steady state
Q	v/DK_b (quantifies importance of transport relative to diffusion)
R	Distance of a given point from the center of a capturing object (here the karyosome)
J_{in}	Flux of asters toward the karyosome
Jout	Flux of asters outward from the karyosome
$J_{ ho}$	Flux of asters along the radial dimension
Ei	Exponential integral function
C _{init}	Fraction of asters initially bound

Aster capture by the karyosome in live cells

M_r	Relative molecular mass		
Spindle elongation and the onset of bipolarity			
X	Spindle axis coordinate, distance to chromosomes		
$ ho_l$	Density of unaligned spindle microtubules		
$ ho_2$	Density of spindle axis-aligned microtubules		
$ ho_3$	Density of cross-linking spindle microtubules		
k_a	Rate constant of aligning microtubules		
k _d	Rate constant of losing microtubule alignment		
k_c	Rate constant of cross-linking microtubules attached to different chromosomes		
k _{dc}	Rate constant of breaking cross-links between microtubules attached to different chromosomes		
k _e	Rate constant quantifying elongation for spindle axis-aligned microtubules (defined by Eq. 13)		

k _r	Rate constant quantifying elongation for other microtubules (defined by Eq. 16)
L	Spindle length

Capture of asters by the karyosome An expanded form of Eq. 11 is shown below:

$$\begin{split} P_{not} &= \frac{3}{4\pi (r_{gv}^{-3} - r_{k}^{-3})} \begin{pmatrix} \sum_{j=1}^{2\pi} \int_{0}^{r_{gv} - S} \int_{0}^{S} P(\rho) \rho^{2} \sin\theta d\theta d\rho d\phi \\ &+ \sum_{j=2\pi}^{r_{gv} + S} \cos\left[\frac{(S^{2} + \rho^{2} - r_{gv}^{-2})}{2S\rho} \right] P(\rho) \rho^{2} \sin\theta d\theta d\rho d\phi \\ &+ \sum_{j=2\pi}^{2\pi} \left[e^{-Q/r_{w}} (-2r_{w}^{-3} + Qr_{w}^{-2} - Q^{-2}r_{w}) + 2r_{w}^{-3} - Q^{-3}Ei(-Q/r_{w}) \right] \\ &- \frac{1}{3} \left[e^{-Q/r_{w}} (-2r_{k}^{-3} + Qr_{k}^{-2} - Q^{-2}r_{k}) + 2r_{k}^{-3} - Q^{-3}Ei(-Q/r_{w}) \right] \\ &- \frac{1}{3} \left[e^{-Q/r_{w}} (-2r_{k}^{-3} + Qr_{k}^{-2} - Q^{-2}r_{k}) + 2r_{k}^{-3} - Q^{-3}Ei(-Q/r_{w}) \right] \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{p}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{p}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &- \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{-3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{4}}{2S} - 4Q^{-3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \left(-\frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \right) Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-3} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-2} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-2} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-2} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-2} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} - 4Q^{-2} + 6WQ^{-2} \end{bmatrix} Ei(-Q/r_{w}) + \\ &+ \frac{1}{24} \begin{bmatrix} \frac{Q^{2}}{2S} -$$

$$W = \frac{r_{gv}^2 - S^2}{S}$$

where Ei is an exponential integral function. Note that the total captured fraction does not depend on v, K_b , or D explicitly, but only on Q.

Eq. 12 can be expanded as shown:

$$C_{init} = \frac{3}{4\pi (r_{gv}^{3} - r_{k}^{3})} \begin{pmatrix} 2\pi r_{gv}^{2} \int_{0}^{S} \int_{0}^{\pi} \frac{1}{1 + K_{b}\rho^{2}} \rho^{2} \sin\theta d\theta d\rho d\phi \\ + \int_{0}^{2\pi r_{gv}^{2} - r_{k}^{2}} \int_{0}^{2\pi r_{gv}^{2} + S} \int_{0}^{\cos^{-1} \left(\frac{S^{2} + \rho^{2} - r_{gv}^{2}}{2S\rho}\right)} \frac{1}{1 + K_{b}\rho^{2}} \rho^{2} \sin\theta d\theta d\rho d\phi \end{pmatrix} = \\ \frac{3}{2(r_{gv}^{3} - r_{k}^{3})} \begin{pmatrix} 2\left(\frac{r_{m}}{K_{b}} - \frac{\tan^{-1}(r_{m}\sqrt{K_{b}})}{K_{b}^{3/2}} - \frac{r_{k}}{K_{b}} + \frac{\tan^{-1}(r_{k}\sqrt{K_{b}})}{K_{b}^{3/2}}\right) \\ + \frac{1}{4K_{b}^{2}S} \begin{pmatrix} K_{b}r_{p}(4S - r_{p}) - K_{b}r_{m}(4S - r_{m}) \\ + 4\sqrt{K_{b}}S\left(\tan^{-1}(\sqrt{K_{b}}r_{m}) - \tan^{-1}(\sqrt{K_{b}}r_{p})\right) \\ + (K_{b}SW + 1)\ln\left(\frac{K_{b}r_{p}^{2} + 1}{K_{b}r_{m}^{2} + 1}\right) \end{pmatrix} \end{pmatrix}$$