
SI Appendix

Overview of the Multi-scale Approach.

Our multi-scale methodology is based on the fundamental assumption that the tissue

mechanical behavior is too complex to be modeled with a continuum level constitutive equation.

Thus, in order to relate the macroscopic deformation of the tissue to the macroscopic stress, we

introduce a microscopic scale, which consists of location-matched collagen networks, also called

representative volume elements (RVEs), that provides a statistical representation of the local

tissue microstructure. The RVE represents the collagen microstructure as a three-dimensional

network of interconnected fibers. The connections between fibers (fiber-fiber interactions) are

represented as rigid, freely rotating cross-links, and the mechanical response of the individual

fiber is governed by a fiber constitutive equation.  At the same time, we model the macroscopic

scale with a Galerkin finite element method.

The RVEs are constructed around each integration point of the finite element model, and the

boundary displacements are interpolated through the element basis functions from the

macroscopic deformation field. Boundary-connected fibers develop forces that are then

transmitted into the network. A force balance among the fibers determines the equilibrium

network state, and the volume-averaged Cauchy stress is calculated for use on the macroscopic

scale. The averaged stress balance is solved at the macroscopic level to determine the

macroscopic displacement field, and this process continues to iterate until the solution converges.

Thus, by solving a set of microstructural problems simultaneously, the tissue-level behavior of

the collagen can be related directly to the fiber mechanics and the network structure (Fig. S1).

Below we present the details of our multi-scale model.



3-D Microscopic Collagen Network (RVE) Formation

3-D fiber networks are created with a custom MATLAB routine based on specification of

fiber number, PFAI strength of alignment (eigenvalues of the orientation tensor), and PFAI

preferred direction (eigenvectors of the orientation tensor). First, a number of seed points are

generated and distributed randomly (from a uniform distribution) inside a box. Next, a seed point

is selected randomly and grown a segment length along its direction vector in either the positive

or negative direction. If growth extends the fiber beyond the boundary of the box, that end of the

fiber is repositioned at the boundary and removed from the pool of growing fiber ends.

Alternatively, if the fiber contacts another fiber, the fibers are joined via a cross-link, and growth

of that fiber end is terminated. This process continued until there are no more growing fibers.

After the network is formed, a smaller network is extracted from the center of the box. Fibers in

the network are defined as segments between two nodes, where a node either forms a termination

point on the boundary or a cross-link between fibers. Cross-links are modeled as pin joints – free

to rotate but unable to slip. As detailed in the Methods section of the paper, networks are created

for each element so that their projected 3-D structure match within a tolerance the average

direction and strength of alignment (assessed by PFAI) in the corresponding location of the

cruciform.

Volume-averaged Cauchy Stress Tensor

The macroscopic, volume-averaged Cauchy stress tensor, ijS  is given by:

Sij =
1
V

sijdV
V
∫ , (S-1)



where V is the volume of the RVE and ijs  is the microscopic stress tensor of the RVE. Note that

throughout this derivation we use index notation. The gradient of the directional vector x can be

written as

ijjix δ=, , (S-2)

where ijδ  is the Kronecker delta. Thus, the microscopic stress tensor can be written as

,ij kj ik kj i ks s s xδ= = , (S-3)

and (S-1) can be rewritten as

Sij =
1
V

skj xi( ),k dV −
V
∫ 1

V
skj ,k xidV

V
∫ . (S-4)

Application of the divergence theorem and microscopic equilibrium, skj,k = 0, gives

Sij =
1
V

nkskj xidA
∂V
∫ =

1
V

xit jdA
∂V
∫ (S-5)

where the dot product k kjn s  is the traction, tj, exerted on the boundaries of the RVE. For a

network of thin fibers, each boundary cross-link may be treated as a point with the integral of the

traction being the force on the cross-link, so Eq. (S-5) can be written as [1]:

            Sij =
1
V

xi f j
boundary nodes
∑                                   (S-6)

where x is the position of the boundary cross-link and f is the force, defined by the fiber

constitutive equation.

 Because the RVE is dimensionless, the dimensionless RVE volume V and position xi in Eq.

(S-6) must be converted to dimensional quantities that represent a specific space in the tissue.

The RVE represents a cube in the tissue of edge length α, the collagen fiber volume fraction is θ,

and the fiber cross-sectional area is Af. If in the dimensionless RVE scale the total fiber length is

L (dimensionless quantity), then the total fiber length in the tissue-level is αL, and the fiber

volume is LfA α . Therefore the fiber volume fraction and the value of α are given by



θ
α

αα

α
θ fLAfLALfA

=⇒== 23 (S-7)

and Eq. (S-6) is rewritten as [2]:

 

1 1
i j

boundary crosslinks
S x f S x fij i j ijV LA Vf

θ′= ⇒ =∑ ∑
′

, (S-8)

where the prime denotes dimensional quantity, and we have to consider that 3α⋅=′ VV and

α⋅=′ ixix .

Governing Equations

The formulation described above requires a fiber-level constitutive equation for collagen and

the appropriate form of the Cauchy stress balance. The mechanical behavior of individual fibers

is governed by a phenomenological equation [2, 3]:

2exp( 0.5 ( 1) 1
E Af ff B fB

λ⎡ ⎤= ⋅ ⋅ − −⎢ ⎥⎣ ⎦
, (S-9)

where f  is the force generated, Εf is the small-strain fiber modulus, Af is the fiber cross-sectional

area, λf is the fiber longitudinal stretch ratio, and the constant β captures the non-linearity of the

response; in the limit 1→fλ , Eq. (S-9) reduces to a linear elastic fiber with modulus Ef.

A detailed derivation of the macroscopic force balance can be found in [4]. Microscopic

equilibrium is assumed, i.e., the divergence of the microscopic stress tensor is zero ( 0,sij i = ),

and using Leibnitz theorem, the following expression for the divergence of the macroscopic

stress tensor is derived:

Sij,i =
1
V

sij − Sij( )uk,inkdA
∂V
∫ , (S-10)



where uk is the displacement of the RVE boundary, and nk is the unit normal vector. The right

hand side of Eq. (S-10) is due to coupling between the non-uniform stress and the non-uniform

deformation of the RVE boundary.
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