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Two-phase random textures abound in a host of contexts, includ-
ing porous and composite media, ecological structures, biological
media, and astrophysical structures. Questions surrounding the
spatial structure of such textures continue to pose many theoret-
ical challenges. For example, can two-point correlation functions
be identified that can be manageably measured and yet reflect
nontrivial higher-order structural information about the textures?
We present a solution to this question by probing the information
content of the widest class of different types of two-point func-
tions examined to date using inverse “reconstruction” techniques.
This enables us to show that a superior descriptor is the two-point
cluster function C2(r), which is sensitive to topological connected-
ness information. We demonstrate the utility of C2(r) by accurately
reconstructing textures drawn from materials science, cosmology,
and granular media, among other examples. Our work suggests a
theoretical pathway to predict the bulk physical properties of ran-
dom textures and that also has important ramifications for atomic
and molecular systems.

two-point cluster function | reconstruction

T wo-phase random textures are ubiquitous in nature and syn-
thetic situations. Examples include heterogeneous materials

(e.g., composites, porous media and colloids) (1, 2), geologic
media (e.g., rock formations) (3), ecological structures (e.g., tree
patterns in forests) (4), cosmological structures (e.g., galaxy distri-
butions) (5, 6), and biological media (e.g., animal and plant tissue)
(7). Over a broad range of length scales, two-phase random tex-
tures exhibit a rich variety of structures with varying degrees of
disorder and complex bulk properties (8–10), and questions con-
cerning their quantitative characterizations continue to present
many fundamental and practical challenges.

It is well known that an infinite set of n-point correlation func-
tions is generally required to completely statistically character-
ize such textures and their physical properties in the infinite-
volume limit. A variety of different types of correlation functions
arise in rigorous theories of structure/property relations (1). One
such basic quantity is the standard n-point correlation function
Sn(x1, x2, . . . , xn), which gives the probability of finding n points
at positions x1, x2, . . . , xn all in one of the phases (1, 11). Because
the information contained in such an infinite set of functions is
generally unattainable in practice, a natural starting point is to
characterize the structure and bulk properties of random textures
by using lower-order versions. The two-point function S2, which
is experimentally accessible via scattering of radiation (12), pro-
vides information about the distribution of pair separations. The
three-point function S3 reveals information about how these pair
separations involved in S2 are linked into triangles. The four-point
function S4 controls the assembly of triangles into tetrahedra. A
natural question is how much additional useful information do S3
and S4 contain over and above S2? We will show that triangular
and tetrahedral statistics do not significantly increase information
content over and above pair statistics for textures possessing no
long-range order.

Therefore, an outstanding problem in condensed matter the-
ory is to identify other two-point correlation functions that can be

both manageably measured and yet reflect nontrivial higher-order
structural information about the textures. The aim of this article
is to provide a solution to this problem using inverse techniques;
specifically, “reconstruction” methods. The purpose of a recon-
struction (construction) technique is to reconstruct (construct)
realizations of two-phase random textures that match limited
structural information on the textures in the form of lower-order
correlation functions (1, 13), which are called the “target” func-
tions. An effective reconstruction procedure enables one to gener-
ate accurate renditions of random textures at will (14–20), and sub-
sequent analysis can be performed on the reconstruction to obtain
desired macroscopic properties of the texture nondestructively
(14, 18). Here, we use this inverse methodology to determine the
amount of structural information that is embodied in a set of tar-
geted correlation function by quantifying the extent to which the
original structure can be accurately reconstructed by using those
target functions. We quantify the accuracy of a reconstruction by
measuring unconstrained (untargeted) correlation functions and
comparing them with those of the original medium.

We adapt the inverse reconstruction method of Yeong and
Torquato (13, 14) to show that a superior two-point signature of
random textures is the two-point cluster function C2(r) (21), which
is sensitive to topological connectedness information. We demon-
strate that C2(r) contains not only appreciably more information
than S2, but more information than a variety of other “two-point”
quantities, including the surface–surface correlation function Fss,
the surface–void correlation function Fsv, the pore-size function
F, lineal-path function L, and the chord-length density function
p (1). (All the aforementioned correlation functions are defined
precisely below.) Such a comprehensive study that investigates
and compares all of the aforementioned statistical descriptors
via inverse techniques has heretofore not been undertaken. Our
results have practical implications for materials science, liquid-
and solid-state physics, biological systems, cosmology, hydrology,
and ecology.

Definitions of the Two-Point Correlation Functions
In the theory of random media, a variety of different types of two-
point correlation functions naturally arise (1). Here, we define
seven different ones that will be employed in this article. Consider
d-dimensional two-phase textures in which phase i has volume
fraction φi (i = 1, 2) and is characterized by the indicator function

I(i)(x) =
{

1, x ∈ Vi,
0, otherwise, [1]

where Vi is the region occupied by phase i (equal to 1 or 2). Note
that here “phase” is used in a general sense in that it can refer
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to a solid, liquid or even void. The standard two-point correlation
function is defined as

S(i)
2 (x1, x2) =

〈
I(i)(x1)I(i)(x2)

〉
, [2]

where angular brackets denote an ensemble average. This func-
tion is the probability of finding two points x1 and x2 both in phase
i. Henceforth, we will drop the superscript “i” and only consider
the correlation functions for the phase of interest. For statistically
homogeneous and isotropic microstructures, which is the focus
of the rest of the article, two-point correlation functions will only
depend on the distance r ≡ |x1 −x2| between the points and hence
S2(x1, x2) = S2(r).

The surface–void Fsv and surface–surface Fss correlation func-
tions are respectively defined as

Fsv(r) = 〈M(x1)I(x2)〉, Fss(r) = 〈M(x1)M(x2)〉, [3]

where M(x) = |∇I(x)| is the two-phase interface indicator func-
tion. By associating a finite thickness with the interface, Fsv and Fss
can be interpreted, respectively, as the the probability of finding
x1 in the “dilated” interface region and x2 in the void phase and
the probability of finding both x1 and x2 in the dilated interface
region but in the limit that the thickness tends to zero (1).

The lineal-path function L(r) is the probability that an entire
line of length r lies in the phase of interest, and thus contains
a coarse level of connectedness information, albeit only along a
lineal path (1, 22). The chord-length density function p(r) gives
the probability associated with finding a “chord” of length r in
the phase of interest and is directly proportional to the second
derivative of L(r) (23). (Chords are the line segments between the
intersections of an infinitely long line with the two-phase inter-
face.) The pore-size function F(δ) is related to the probability
that a sphere of radius r can lie entirely in the phase of interest (1)
and therefore is the three-dimensional “spherical” version of the
lineal measure L.

The two-point cluster function C2(r) gives the probability of
finding two points separated by a distance r in the same cluster of
the phase of interest (21). Note that a cluster of a phase is any topo-
logically connected subset of that phase. The two-point cluster
function can be measured experimentally using any appropriate
three-dimensional imaging technique (e.g., tomography, confo-
cal microscopy and MRI) (1). The fact that C2 contains intrinsic
three-dimensional topological information is to be contrasted with
S2, which can be obtained from a planar cross-section of the tex-
ture. In general, C2 is expected to embody a much greater level
of three-dimensional connectedness information than either L or
F, but the degree to which this is true has yet to be quantitatively
demonstrated, which is one of the aims of this article.

Inverse Reconstruction Technique
The stochastic optimization reconstruction algorithm for digitized
media formulated by Yeong and Torquato (13) is ideally suited to
carry out the aforementioned analysis because it can incorporate
different types of target statistical descriptors. This algorithm is
both robust and simple to implement (15–20). In this method,
one starts with an initial realization of a random medium and a
set of target correlation functions f̂ 1

n (R), f̂ 2
n (R), f̂ 3

n (R), . . ., which
are obtained (i.e., measured) from the medium of interest. Here,
f̂ α
n (R) is an n-point correlation function of type α, R ≡ r1, r2, . . . rn,

and ri denotes the position vector of the ith point. The method
proceeds to find a realization in which calculated correlation func-
tions f 1

n (R), f 2
n (R), f 3

n (R), . . . best match the corresponding target
functions. This is achieved by minimizing an “energy”

E =
∑

R

∑
α

[
f α
n (R) − f̂ α

n (R)
]2, [4]

which is defined to be the sum of squared differences between the
calculated and target functions, via a simulated annealing method
in which a sequence of trial realizations is generated and accepted
with the probability min{exp(−ΔE/T), 1}, where ΔE is the energy
difference between the new and old realizations and T is a fic-
titious temperature. The initially “high” temperature is lowered
according to a prescribed annealing schedule until the energy of
the system approaches its ground-state value within a very small
tolerance level.

Degeneracy of Ground States Using S2 Alone. It is instructive to con-
sider the energy defined by Eq. 4 when only the standard two-point
correlation function S2 is used. In this special instance, the energy
is given by

E =
∑

r

[
S2(r) − Ŝ2(r)

]2
, [5]

where Ŝ2 and S2 are the two-point correlation functions of the
target and reconstructed medium, respectively. We note that
most previous reconstruction studies have only tried to match
S2. However, it is now well established that S2(r) is not sufficient
information to generally get an accurate rendition of the origi-
nal microstructure (13–15, 19, 20). In other words, the ground
states when only S2 is incorporated in the energy (Eq. 5) are
highly degenerate due to the nonuniqueness of the information
content of this two-point function, which is clearly illustrated
by the subsequent examples in the paper. The reader is also
referred to supporting information (SI) Text, which provides a rig-
orous explanation for the degeneracy of the ground states for
digitized representations of textures.

Insufficiency of Conventional Three-Point Information. An obvious
additional set of correlation functions that could be incorporated
in the reconstruction is the higher-order versions of S2, namely, S3,
S4, etc. However, not only is the three-point correlation function
S3 more difficult to compute, it is not at all clear that its incorpo-
ration will result in appreciably better reconstructions because it
only introduces local information about triangles when there is no
long-range order, the most common occurrence. We can quantita-
tively verify the insufficiency of conventional triangular informa-
tion by reconstructing a one-dimensional equilibrium distribution
of equal-sized hard rods (24) using S3 (see SI Text for technical
details). Fig. 1 compares this reconstruction with those involving
S2 alone and a combination of S2 and C2. It is clear that the recon-
struction using S2 only results erroneously in a highly clustered
“rod” phase. Although incorporating S3 provides an improved
reconstruction, it still contains large clusters and isolated rods that
can be much smaller than actual rod size. On the other hand, the
S2–C2 hybrid reconstruction produces the most accurate rendition
of the target medium. Although this one-dimensional example is
suggestive that C2 contains nontrivial structural information in
excess to what is contained in S2, one must investigate this prob-
lem in higher dimensions, which presents algorithmic challenges,
as we will describe in the next section.

Efficient Algorithmic Implementation of the General Problem
Here, we present a general methodology that enables one to
efficiently incorporate a wide class of lower-order correlation
functions in the Yeong–Torquato reconstruction procedure. The
aforementioned probabilistic interpretations of the correlation
functions enable us to develop a general sampling method for
reconstruction of statistically homogeneous and isotropic digi-
tized textures based on the “lattice-gas” formalism, which was
introduced in ref. 20 and has been generalized here. In the gen-
eralized formalism, pixels with different values (occupying the
lattice sites) correspond to distinct local states and pixels with
the same value are considered to be “molecules” of the same
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Fig. 1. Equilibrium hard rods. (A) Target: an equilibrium hard-rod system in which the equal-sized rods cover 50% of the space. Each rod in the system is 10
pixels in length. (B) S2-alone reconstruction. (C) S3 reconstruction. (D) S2–C2 hybrid reconstruction. For visualization purposes, the one-dimensional rod systems
are artificially extended in the vertical direction.

“gas” species (20). The correlation functions of interest can be
obtained by binning the separation distances between the selected
pairs of molecules from particular species.

In the case of S2, all molecules are of the same species. We
denote the number of lattice-site separation distances of length r
by NS(r) and the number of molecule-pair separation distances of
length r by NP(r). Thus, the fraction of pair distances with both
ends occupied by the phase of interest, i.e., the two-point correla-
tion function, is given by S2(r) = NP(r)/NS(r). To obtain C2, one
needs to partition the molecules into different subsets �i (species)
such that any two molecules of the same species are connected by
a path composed of the same kind of molecules, i.e., molecules
that form a cluster, which is identified using the “burning” algo-
rithm (25). The number of pair distances of length r between the
molecules within the same subset �i is denoted by Ni

P(r). The two-
point cluster function is then given by C2(r) = ∑

i Ni
P(r)/NS(r).

The calculation of Fss and Fsv requires partitioning the molecules
into two subsets: the surface set κS containing only the molecules
on the surfaces of the clusters and the volume set κV contain-
ing the rest. In a digitized medium, the interface necessarily has
a small but finite thickness determined by the pixel size. Thus,
the surface–surface and surface–void correlation functions can be
regarded as probabilities that are given by Fss = N ss(r)/NS(r) and
Fsv = N sv(r)/NS(r), respectively; where N ss(r) gives the number
of distances between two surface molecules with length r and N sv

is the counterpart for pairs with one molecule on the surface and
the other inside the cluster.

The lineal path function L can be obtained by computing the
lengths of all digitized line segments (chords) composed of pix-
els of the phase of interest, and for each chord incrementing the
counters associated with the distances equal to and less than that
chord length (13, 14). The chord-length density function p can
then be easily obtained by binning the chord lengths that are used
to compute L (1). The pore-size function F can be computed
by finding the minimal separation distances of pixels within the
phase of interest to those at the two-phase interfaces. The minimal
distances are then binned to obtained a probability distribution
function, the complementary cumulative distribution function of
which is F (3).

We have also devised methods to track clusters and surfaces
that enable one to quickly compute the correlation functions of
the new realization based on the old ones (see SI Text for technical
details) and thus make the Yeong–Torquato reconstruction pro-
cedure much more efficient than methods that directly resample
the correlation functions for each trial realization.

We have used this general procedure here to reconstruct a wide
spectrum of random textures, including model microstructures,
such as the cherry-pit model, equilibrium hard spheres, Debye
random media and symmetric cell materials (1), as well as the
digitized representations of sandstones (3), metal-ceramic com-
posites (26), concrete microstructures (27), laser speckle patterns
(20) and galaxy distributions. Using the aforementioned largest set

of correlation functions utilized to date, our analysis reveals that
the best reconstructions always incorporate the two-point cluster
function C2(r). In what follows, we will present specific results for
only a subset of the correlation functions that we used, namely,
various combinations of S2, Fss, F and C2, for the nonpercolating
phases of a concrete microstructure (27), a distribution of galaxies,
and a three-dimensional hard-sphere packing.

Concrete Microstructure. The wide range of structural features in
concrete, from nanometer-sized pores to centimeter-sized aggre-
gates, makes it a wonderful example of a multi scale microstructure
(28). Fig. 2A shows a binarized digitized image of a concrete sam-
ple cross-section. We have thresholded the original image so that
the blue phase represents the stones and the lighter gray phase is
the cement paste. The “stone” phase is characterized by a dense
dispersion of “particles” of various sizes: a nontrivial situation to
reconstruct. Using S2 alone overestimates clustering in the system
and indeed incorrectly yields a percolating particle phase. Thus,
although S2 of the reconstruction matches the target one with very
small error (see Fig. S1), such information is insufficient to get a
good reconstruction. Incorporating both S2 and surface–surface
function Fss leads to a better rendition of the target system but the
reconstruction still overestimates the degree of clustering. On the
other hand, incorporating C2 yields an excellent reconstruction
in that the stone phase clearly appears as a particle dispersion
with a size distribution that closely matches that of the target
structure. As noted in the introduction, we can quantitatively test
the accuracy of the reconstructions by measuring unconstrained
correlation functions and comparing them with the correspond-
ing quantities of the target system. Here, we choose to compute
the unconstrained lineal-path function L. Fig. 2E reveals that the
lineal-path function of the reconstruction that incorporates C2
matches the target function L well and it clearly is appreciably
more accurate than the other reconstructions.

Galaxy Clusters. Correlation functions have been used to under-
stand the formation of galaxies and the large scale structures of
the Universe (4, 5). Such characterizations are becoming increas-
ingly important with the advent of high-quality surveys in cosmol-
ogy. We suggest that the reconstruction procedure can provide
an important tool in cosmological and astrophysical applications,
especially in helping to determine the lower-order correlation
functions that reflect a priori information about nontrivial struc-
tural features, such as multi scale clustering and filamentary struc-
tures in the Universe. Fig. 3A shows a binarized image of a portion
of the Abell 1689 galaxy cluster. We have chosen the binarizing
threshold such that the “galaxy” phase (bright spots in Fig. 3A)
exhibits different sized clusters. As one can see, the “primary”
(single largest) cluster in the target system has been reproduced
by all the reconstructions. This is because the volume fraction of
the “galaxy” phase is relatively small, whereas the target S2 has
a relatively long tail (see Fig. S2), which requires the clustering
of a majority of galaxy phase. However, the “secondary” (smaller
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Fig. 2. Concrete microstructure. (A) Target system: a binarized image of
a cross-section of concrete (27). The linear size of the digitized texture is
NL = 170 pixels. (B) S2-alone reconstruction. (C) S2–Fss hybrid reconstruction.
(D) S2–C2 hybrid reconstruction. All the reconstructions are associated with a
final energy (error) E ≈ 10−8. (E) The unconstrained lineal-path function L of
the reconstructions and the target image. Pixel size supplies the unit for the
distance r.

compact) clusters are significantly different for different recon-
structions. The reconstruction using S2 only produces large elon-
gated secondary clusters. Incorporating Fss enables one to obtain
a better rendition; however, it still contains a few elongated sec-
ondary clusters. The incorporation of C2 again provides the most
accurate reconstruction. This is visually verified by examination of
both the sizes and shapes of the primary and secondary clusters,
and is quantitatively confirmed by the comparison of the uncon-
strained L of the reconstructed and target systems, as shown in
Fig. 3E.

Sphere Packing. As an application of our methodology to three
dimensions, we have reconstructed a digitized realization of an
equilibrium distribution of equal-sized hard spheres, as shown in
Fig. 4A. This packing is generated using the standard Metropolis
Monte Carlo technique for a canonical ensemble of hard spheres
in a cubical box under periodic boundary conditions (1). A visual
comparison of the hybrid reconstruction involving the two-point
cluster function reveals that it accurately yields a dispersion of
well-defined spherical inclusions of the same size, in contrast to
the S2 reconstruction, which again grossly overestimates cluster-
ing of the “sphere” phase. In contrast to the previous examples,
here we incorporate the pore-size function F (not the surface cor-
relation functions) in one of the reconstructions. Although the
reconstruction incorporating F provides improvement over the

rendition of the S2-alone reconstruction, it is still inferior to the
S2–C2 reconstruction in reproducing both the size and shape of the
“sphere” phase. (The target and reconstructed correlation func-
tions are shown in Fig. S3 and the SI Text.) The accuracy of the
S2–C2 hybrid reconstruction can also be seen by comparing the
unconstrained lineal-path function L of the target system with
those of the reconstructed media (see Fig. 4E).

Discussion
In summary, although it was known that the information content
of the standard two-point function S2 of a random texture is far
from complete, we have demonstrated here that the next higher-
order version S3 generally does not contain appreciably greater
information. The fact that this natural extension to incorporate
higher-order Sn, which has been pursued in the last century in sta-
tistical mechanics, is not a fruitful path motivated us to inquire
whether there exist sensitive two-point statistical descriptors that
embody nontrivial structural information. We probed the informa-
tion content of seven different types of two-point functions using
inverse reconstruction methods. For all of the examples studied
here, reconstructions that include the two-point cluster function
C2 were always found to be significantly more accurate than those
involving any of the combinations of pairs of the other functions.

More precisely, the incorporation of C2 significantly reduces
the number of compatible microstructures as compared to the

Fig. 3. Galaxy clusters. (A) Target system: a portion of the Coma Cluster. The
linear size of the digitized texture is NL = 238 pixels. (B) S2-alone reconstruc-
tion. (C) S2–Fss hybrid reconstruction. (D) S2–C2 hybrid reconstruction. All the
reconstructions are associated with a final energy (error) E ≈ 10−8. (E) The
unconstrained lineal-path function L of the reconstructed and target systems.
Pixel size supplies the unit for the distance r.
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Fig. 4. Sphere packing. (A) Target system: a digitized realization of a hard-
sphere packing in which the spheres occupy 44.6% of space. The linear size
of the digitized texture is NL = 100 pixels. (B) S2-alone reconstruction. (C)
S2–F reconstruction. (D) S2–C2 hybrid reconstruction. All the reconstructions
are associated with a final energy (error) E ≈ 10−11. (E) The (unconstrained)
lineal-path function sampled from target and reconstructed realizations. Pixel
size supplies the unit for the distance r.

compatible microstructures consistent with the same three-point
function S3, which is schematically indicated in Fig. 5. The two-
point cluster function is an especially sensitive structural signature
when clustering and phase connectedness are present, the most
difficult situations to treat. This can be seen from the reconstruc-
tion of the hard-rod system that incorporated C2 (see Fig. 1).
More importantly, we showed the utility of C2(r) in higher dimen-
sions by accurately reconstructing galaxy distributions, concrete
microstructures and dense hard-sphere packings, among other
examples.

Why is C2(r) a superior two-point structural signature? To
answer this question, it is useful to first compare it to S2(r). The
latter, unlike C2(r), does not distinguish between events in which
the end points of the line segment of length r fall in the same
cluster of a particular phase and those that do not involve the

Fig. 5. The set of all microstructures associated with a particular S2 is
schematically shown as the region enclosed by the solid contour in A and
B. The shaded region in A shows the set of all microstructures associated with
the same S2 and S3. The shaded more restrictive region in B shows the set of
all microstructures associated with the same S2 and C2.

same cluster of that phase (21). More precisely, C2 is the “con-
nectedness” contribution to the standard two-point correlation
function, i.e.,

S2(r) = C2(r) + D2(r), [6]

where D2 measures the probability that the end points of a line seg-
ment of length r fall in different clusters of the phase of interest.
Therefore, whereas S2(r) is insensitive to clustering and perco-
lation, C2(r) becomes a progressively longer-ranged function as
clusters grow in size such that its volume integral diverges at the
percolation threshold (1, 21). By contrast, the quantities L, p, F,
Fss and Fsv are insensitive to crossing the percolation threshold.
Indeed, for particle systems, one can show that C2 is a functional
of the infinite set of n-particle “connectedness” functions (21).

Thus, although C2 is a “two-point” quantity, it actually embodies
higher-order structural information in a way that makes it a highly
sensitive statistical descriptor over and above S2. This ability to
“leapfrog” past the usual approach of incorporating additional
information via higher-order versions of S2 has important rami-
fications for new structure/property relation of random textures.
Specifically, our work suggests that theories should be developed
that relate the transport, mechanical, chemical and optical prop-
erties of random textures to functionals that incorporate C2. It
is clear that such theories would be highly predictive, because it
is well established that the presence of clusters in textures can
dramatically alter their macroscopic physical properties (1).

It should not go unnoticed that our work also has important
implications for atomic and molecular systems where the analo-
gous standard correlation functions that arise are the two-body
correlation function g2, three-body correlation function g3, etc.
(29–32) The three-body function g3, for example, has been the
focus of great attention, e.g., integral equations and approxima-
tions have been devised for g3 (30–32). The spatial structure of
disordered atomic or molecular systems may be regarded to be
special cases of random textures. For example, the particles that
comprise simple atomic systems are fully specified by their center-
of-mass coordinates. These point distributions can be decorated
in an infinite number of ways to produce random textures in the
sense that we have defined them in this article. For example, one
could circumscribe the points by spheres of size dictated by the
physics of the problem (e.g., electron hopping distance). For such
systems, our work suggests that the pair-connectedness function
P2 [i.e., the connectedness contribution to g2 (1)] should contain
far greater information than g3 beyond that contained in g2.
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SI Text

Degeneracy of Ground States Associated with the Two-Point Correla-
tion Function. In the main article, we have pointed out that a large
number of studies (most of which are numerical) have established
that S2 is not sufficient information to generally get an accurate
rendition of the original microstructure. Here, we provide a rig-
orous analysis that explains the reasons why the ground states of
reconstructions of digitized random textures using S2 alone are
degenerate (i.e., nonunique).

A d-dimensional digitized two-phase random medium (texture)
can be represented by a d-dimensional array Ii1···id , which is essen-
tially the discrete one-point indicator function of the medium (see
Eq. 1 in the main article). For example, in two dimensions for a
texture with N × N pixels, we have

I =

⎡
⎢⎢⎢⎣

I11 I12 . . . I1N
I21 I22 . . . I2N
...

. . .
...

IN1 IN2 . . . INN

⎤
⎥⎥⎥⎦ , [S1]

where the entries Iij (i, j = 1, . . . , N) can only take the value of 0
or 1, which correspond to one of the two phases, respectively.

Mathematically, the reconstruction of the digitized texture from
a prescribed set of correlation functions amounts to recovering the
discrete one-point indicator function of the phase of interest from
a set of algebraic equations involving Ii1···id and the specified cor-
relation functions. In particular, for the reconstruction using S2
alone, the discrete indicator function Ii1···id satisfies the following
equations for every value of r ≤ N/2 such that r2 is an integer:

∑
(j1,...,jd)∈Ω

⎡
⎣ N∑

i1=1

· · ·
N∑

id=1

Ii1···id I(i1+j1)···(id+jd)

⎤
⎦ − ωNdS2(r) = 0,

[S2]

where

Ω = {
( j1, . . . , jd)| j21 + · · · + j2d = r2, r ≤ N/2

}
, [S3]

and ω is the number of elements in Ω, N is the linear size of the
digitized texture. Since the number of equations (N/2) is signif-
icantly smaller than the number of unknowns (Nd), i.e., all the
entries Ii1···id , it is clear that Eq. S2 possesses a large number of
solutions, all of which are the degenerate ground states for the
“energy” defined by Eq. 5 in the main article.

Reconstructing One-Dimensional Random Textures Using S3. In the
main article, we have shown that S3, the three-point version of
S2, generally does not contain appreciably greater information
through the reconstruction of one-dimensional equilibrium hard-
rod system from S3. Here, we provide some technical details
concerning this reconstruction.

It is generally highly nontrivial to design and implement effi-
cient random texture reconstruction procedures that incorporate
higher-order correlation functions such as S3, which necessarily
involves tracking the changed triangular configurations of pixels
due to the trial move of a randomly selected pixel. However, in
one dimension, the system size (i.e., total number of pixels) is not
large, which makes the “brute force” method—resampling the
entire system to obtained the updated S3—applicable in practice.
We note that in higher dimensions, direct resampling always turns
out to be extremely time consuming.

In particular, the number of possible triangle configurations
formed by triplets of pixels is significantly reduced in one dimen-
sion. The three edges with length r, s, t of a “crashed” one-
dimensional triangle is linearly dependent, i.e., when r and s are
specified, t can only take the value |r + s| or |r − s|, depending on
the position of the third pixel. Thus, to obtain S3, one only needs
to move specified triangle configurations (completely determined
by r and s) through the whole system and compute the fraction
of times when all the vertex pixels are occupied by the phase of
interest.

The aforementioned procedure is repeated for each trial con-
figuration. The three-point function S3 obtained is then used to
compute the “energy,” which determines whether or not the trial
configuration is accepted.

Cluster and Surface Algorithms. In the main article, we employed
the Yeong–Torquato reconstruction procedure, which requires
generating and sampling a large number of realizations of the
textures because the system must evolve from an initial realiza-
tion guess to the realization that matches the targeted correlation
functions. Here, we provide the technical details of the algorithms
to handle clusters and surfaces in the texture in order to effi-
ciently recompute the desired correlation functions of the new
realization based on the old ones. This makes the incorporation
of those functions computationally feasible in a manageable time.
Direct resampling is computationally too expensive to implement
in practice.

A distance matrix D that stores the separation distances of all
“molecule” pairs is established when the system is initialized and
the molecules are partitioned into different “species” depending
on their positions, as discussed in the main article. The quanti-
ties NP , Ni

P , N ss and N sv (all defined in the main article) can be
obtained by binning the separation distances of selected pairs of
molecules from particular species. Recall that the molecules are
pixels associated with different values indicating the species, i.e.,
the clusters or the surface/volume set they belong to.

In the reconstruction procedure, a trial realization is generated
by moving a randomly selected pixel of the phase of interest to
an unoccupied site (1). This results in changes of the separation
distances between the moved the pixel and all of the other pixels,
and causes two kinds of possible species events. The first kind is a
“cluster” event, which involves breaking and combining clusters.
For example, if the selected pixel happens to be a “bridge” con-
necting several sub-clusters, removing the bridge will make the
original single cluster break into smaller pieces, i.e., new species
(clusters) are generated. Similarly, the reverse of the above process
can occur, i.e., a randomly selected pixel moved to a position where
it connects several small clusters to form a larger cluster, which
leads to combination of clusters and annihilation of species. The
other kind of species event is the transition of pixels between sur-
face and volume sets. If a pixel originally on the surface is removed,
certain volume pixels (i.e., those inside the phase of interest) will
now constitute the new surface and vice versa. The selected pixel
itself could also undergo such a transition, depending on its orig-
inal and new positions, e.g., a volume pixel originally inside the
phase of interest could be moved to the interface to become a
surface pixel.

The contributions of the number of pair distances to NP , Ni
P , N ss

and N sv from the pixels in old realization involved in the species
events are computed and subtracted accordingly. The new con-
tributions can be obtained by binning the separation distances of
pixel pairs in the new realization involved in the species event,
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which are then added to the corresponding quantities NP , Ni
P , N ss

and N sv. This method only requires operations on a small number
of pixels, including retrieving and binning their separation dis-
tances and updating the species sets (i.e., the clusters and sur-
face/volume set). The use of the distance matrix D speeds up
the operations involving distances. However, for very large sys-
tems (e.g., those including millions of pixels), storing D requires
very a large amount of computer memory. An alternative is to
re-compute the separation distances of the pixel pairs involved
in the species events for every trial realization, instead of explic-
itly storing all the distances in D. This may slightly slow down
the reconstruction process but make it easy to handle very large
systems. Correlation functions of the new realization can then be
obtained from the updated NP , Ni

P , N ss and N sv (i.e., dividing those
quantities by NS), as discussed in the main article. Importantly, the
complexity of the algorithm is linear in the total number of pixels
(molecules) within the system.

Correlation Functions of the Example Textures. In the main article,
we provided the images of the target and reconstructed textures,
i.e., the concrete microstructure, the galaxy clusters and hard
sphere packing. Moreover, we showed that the correlation func-
tions of the reconstructions match the target ones very well by giv-
ing the final “errors,” which are extremely small positive numbers.
Here, we provide plots of the various target and reconstructed

two-point correlation functions, which show that they match each
other almost identically. The significance of the shape of the
correlation functions is also briefly discussed.

Concrete Microstructure. Fig. S1 shows S2, Fss and C2 of the target
and reconstructed concrete microstructures. The two-point func-
tion S2 of the stone phase does not properly account for the size
distribution of the stones and thus leads to clustering of the stone
phase in the S2-alone reconstruction, as discussed in the main
article. Incorporation of other nontrivial two-point information
results in better renditions, but inclusion of C2 provides the best
reconstruction.

Galaxy Clusters. Fig. S2 shows S2, Fss and C2 of the target and
reconstructed galaxy clusters. Though the volume fraction of the
“galaxy” phase is small, S2 has a relatively long tail, which indicates
the existence of large compact clusters in the system. This is also
consistent with the rapid decay of C2.

Sphere Packing. Fig. S3 shows S2, F and C2 of the target and
reconstructed hard-sphere packings. The oscillation of S2 is a
manifestation of the short-range order in the system due to impen-
etrable nature of the spheres. C2 has a clear cutoff beyond the
diameter of the sphere, which indicates that there are no physi-
cally connected clusters of spheres. The pore size function F of
the disconnected sphere phase is also short-ranged.

1. Jiao Y, Stillinger FH, Torquato S (2007) Modeling heterrogeneous materials via
two-point correlation functions: basic principles. Phys Rev E 76:031110.
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Fig. S1. S2, Fss and C2 of the target and reconstructed concrete microstructures. It is clear that the target and reconstructed correlation functions match each
other almost identically. As indicated in the main paper, the final error is E ≈ 10−8 for all cases. Pixel size supplies the unit for the distance r.
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Fig. S2. S2, Fss and C2 of the target and reconstructed galaxy clusters. It is clear that the target and reconstructed correlation functions match each other
almost identically. As indicated in the main paper, the final error is E ≈ 10−8 for all cases. Pixel size supplies the unit for the distance r.
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Fig. S3. S2, C2 (Upper) and F (Lower) of the target and reconstructed hard-sphere packing. The diameter of the digitized sphere is 24 pixels. It is clear that
the target and reconstructed correlation functions match each other almost identically. As indicated in the main paper, the final error is E ≈ 10−11 for all cases.
Pixel size supplies the unit for the distance r.
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