SI Table 4: Comparison of Rate Constants of folding at 0.54 M GuHCl monitored by intrinsic fluorescence and ANS fluorescence.

	·	
CTPRa <i>n</i>	^a k Intrinsic Fluorescence (s ⁻¹)	^b k ANS Fluorescence (s ⁻¹)
2	^c 450 ± 50	No observed binding to ANS
3	350 ± 40	No observed binding to ANS
4	220 ± 23	162 ± 44
5	180 ± 14	151 ± 13
6	180 ± 12	156 ± 24
8	170 ± 14	143 ± 34
10	140 ± 5	123 ± 14

All rate constants were determined from refolding traces that had a final concentration 0.54 M GuHCl except CTPRa2 (0.73 M). a Monitored by intrinsic fluorescence which were fitted to a single exponential equation. b Monitored by ANS fluorescence which were fitted to a double exponential equation. The k listed is the faster rate with larger amplitude. The second phase was due to photolysis as decreasing protein concentration decreased the first phase but not the second (data not shown). c Rate constant monitored at 0.73 M GuHCl as 0.54 M was too rapid for the stopped flow instrument. Errors reported are \pm 1 standard deviation of the experimental data.