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SI Text
Recording, Transcription, and Annotation of Data. All recordings
were made in the children’s own homes. The mothers of both
children spent most of their week alone with the children and
were typically the only adult speakers present during recording.
They were employed as research assistants for the duration of the
study, making 1-h tapes of themselves and their children in
typical interactions in their home for 5 days per week over the
6 weeks. Illness prevented recording on 2 days for Annie at 2
years, so there are 30 h of recordings for Brian and 28 h for
Annie. At 3 years there are 30 h of recordings for both children.
All recordings were transcribed in the CHAT format (1).

After transcription we made the following decisions in using
the data. We discarded all utterances containing speech that was
marked as unintelligible or where the transcriber indicated
uncertainty. We also removed all imitated and interrupted
utterances. Where there were repetitions or retraces, the initial
or aborted part of the utterance was excluded. Phonological
fragments and pauses were not treated as part of utterances and
all special form information was stripped. Finally, the CHAT
conventions distinguish between different kinds of ‘‘s’’ affixes/
clitics, marking them as e.g., ’has or ’is to indicate the abbreviated
form. Because such information is not recoverable directly from
the speech signal, but requires interpretation from the context by
the transcriber, and we cannot be sure that the child is aware of
the relationship of the realized form to the assumed-to-be
underlying form, we remove this distinction, marking them all as
simply ’s.

Extraction of Candidate Grammars. An example set of alignments
and extracted elements is shown in Fig. 3. At the top of Fig. 3 is
the target phrase Mummy have this one. At the bottom of Fig. 3
are a sample of other utterances with which this utterance aligns.
So, for example, the target is aligned with I have that one. Going
through the utterance we can see that the word Mummy has been
substituted for the word I, and the word have has been matched.
Next, the word this mismatches with the word that, and then the
word one aligns. It is important to note that the production of
tokens for alignment or substitution is greedy, so that in such
cases we subsume all available lexical material under as long a
unit as possible, as for the subphrase a red in the utterance I have
a red one. We can then use this alignment (and indeed all of the
others shown at the bottom of Fig. 3) to extract the three circled
signs shown in the middle of Fig. 3: the schema X have X one, and
the two concrete elements Mummy and this. The Xs correspond
to possible slots. At the point of extraction these slots are general
but during the inferential process we will discover the constraints
on what can be inserted into them. One thing that should be
noted here is that while schemas can at this point only be
extracted from an analysis of a whole utterances, the analysis can
be licensed by alignments with part utterances. So in this case
Mummy have this one has been aligned with Mummy have that one
story, with the material after the end of the aligned word one
being ignored.

Once we complete this initial process we generate multiple
possible flat analyses for each utterance in the corpus (this is only
one of the alignment sets that we will find for Mummy have this
one). We then take each of the concrete elements extracted and
repeat the whole process for these. We treat them as targets,
identify those subsequences in the corpus that share lexical
material with them (the candidate matches), and then align our
target with these to produce an analysis of the subphrase into

schemas and concrete signs in exactly the same way as for the
whole utterances. And again we then take each of the concrete
subphrases of these analyses and produce an analysis of these.
We perform this process recursively until it halts. Each time we
recurse over a new subphrase we generate a whole new candidate
analysis, meaning that for the utterance walk the dog, we would
include both the analysis (walk (the dog)), yielding the elements
walk X and the dog and the analysis (walk (the (dog))), yielding
the elements walk X, the X and dog as separate possible analyses
for future consideration. The only constraint on what available
schemas can be identified by using this process is that for an
alignment to be generated, the basic pattern must occur twice
(once in the target and at least once in the match). For
consistency, then, we further apply the rule that for any whole
utterance to be considered as a candidate concrete sign it must
have occurred at least twice.

Model Details. �, �, and � are component distributions in our
mixture model, over which we will integrate during inference.
This being a Bayesian model the probability of a set of model
parameters is the product of two elements, the probability of the
data given that model and the prior probability of the model.
Both � and � are probability distributions over a set of discrete
values (signs and categories, respectively). The natural choice of
prior for such a multinomial distribution is the dirichlet distri-
bution. The dirichlet is conjugate to the multinomial, meaning
that samples from a multinomial distribution using a dirichlet
prior will themselves have a dirichlet distribution. The dirichlet
fits well the kind of skewed distributions seen for words and
categories in natural languages (2). Using such a distribution
requires us to define concentration hyperparameters for cate-
gories (�c) and signs (�s), which essentially control the sparcity
of the distributions, with values of 1 making signs/categories
equiprobable and values � 1 preferring models that explain the
data with fewer signs/categories. For all models we assign �c �
0.1 and �s � 0.1. These small values build in a strong preference
for sparse models.

� is the distribution over categories. One crucial additional
aspect of our model is the number of categories to be allowed.
We follow recent work on latent variable modeling (3) in leaving
the number of categories unspecified (potentially infinite) and to
be discovered as part of the inference procedure by using a
stick-breaking procedure to assign exponentially decaying
weights (�) to the prior probabilities of the categories. This works
as follows. Our weight space can be considered as a stick � with
a unit length. The weight for each category used in our model is
decided by snapping the stick. The length of one part of the stick
is the weight of the current category, while the other part of the
stick is the amount of the unit-length stick left to generate the
weights for all of the subsequent classes assigned. A new break
is made each time a new category is assigned. There is always
some remaining stick so weights can be assigned to an infinite
number of categories, but with weights that decay exponentially.
This means that the prior probability of an analysis will reduce
exponentially with each new category that it introduces. The
break applied to the stick is drawn from a � distribution � (1,�p).
We assign a value of �p � 1, producing an equivalent of the
uniform distribution, meaning that any breakpoint is equally
likely. The use of this stick-breaking prior means that our models
can use a theoretically infinite number of categories but that
there is a cost associated with each one added.

Probabilities in our model are calculated as follows. The
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probability of a tree t is calculated as in Eq. 1. Each x represents
a sign, and each z represents a category node, with the subscripts
representing the order in which they are generated.

P�t� � P�xk�zk� �
ci�Ck

P�zci
�zk�P�t��. [1]

The probability of a node z � i producing a child node zci � k
is calculated as in Eq. 2, where nik is the count for the joint
occurrence of i and k and ni� is the count for occurrence of i with
all descendants. Conditioning on previous descendants is added
straightforwardly as shown in Eq. 3. Finally, the probability of an
observation or sign x � a given z � i is calculated as in Eq. 4, with
N being the total number of signs included in the model.

p�zci
� k�z � i� �

nik � �c�j

ni� � �c [2]

p�zci
� k�zci�1

� j, z � i� �
nijk � �c�j

nij� � �c [3]

p�x � a�z � i� �
nia � �s

ni� � N�s
. [4]

Our MCMC Procedure. We use a MCMC technique known as Gibbs
sampling to approximate the posterior distribution p(t,��D),
where t is the set of trees, � is the vector of rule probabilities, and
D is our data, from which we then sample our grammars. The
space of possible grammars (all possible ways of combining signs
and labeling nodes/slots with categories to account for the
children’s speech) represents a large space of possible states.
MCMC techniques involve taking a chain of samples from this
possible state space in which each sample is conditional on only
the previous sample (this is what is meant by a Markov chain).
The chain is initialized by taking a completely random sample
from the state space (a random set of sample parses). There are
then many thousands of iterations in which repeated samples are
drawn until the chain converges on a stationary distribution. By
sampling from a chain that has converged we can approximate
the posterior distribution.

There are many MCMC algorithms of which Gibbs sampling
is one of the simplest. Events in the initial random sample are
counted to produce an initial set of probabilities for the distri-
butions that make up our model. At the next iteration a sample
analysis of the data is drawn conditional upon these counts and
the prior. At each subsequent iteration a new set of counts are
taken and the process is repeated. Upon reaching convergence
the initial burn-in iterations are discarded and samples are drawn
from the chain at intervals (as adjacent samples are not inde-
pendent).

We apply this algorithm to our data and model as follows. We
begin by randomly assigning analyses to our utterances and
extracting counts from this set to give us initial model parameters
(our distributions �, �, and �). Each random analysis is built by
starting at the utterance node and randomly deciding at each
decision point whether to choose a concrete filler or a further
schematic sign and if the latter then randomly picking a sign.
Categories are assigned to nodes by first selecting a randomly
chosen number of categories between 1 and 50, and then
randomly assigning these to signs with uniform probability. We
then sample our stick � and produce a new set of analyses by
random sampling of analyses conditioned on our starting distri-
butions. We generate trees by sampling at each step of the
function defined in Eq. 1. Having drawn a new sample we then
extract counts and update the model. We repeatedly perform
these three steps (sampling �, sampling analyses, and updating
counts) for many thousand iterations.

For each child at 2 years we ran 10 separate chains with

different randomly selected starting analyses. At 3 years we ran
five chains for each child (because of the greater computational
requirements imposed by the greater complexity of the utter-
ances). The models for the 2-year-olds converged within 5,000
iterations, and the models for the 3-year-olds converged within
10,000. We ran all chains for 20,000 samples and sampled
grammars at 100 iteration intervals over the last 10,000 itera-
tions. This process gave us 1,000 grammars for the 2-year-old
data and 500 grammars for the 3-year-old data. We report the
mean performance achieved when parsing with all of these
grammars.

Induction of Fully Abstract PCFGs. For the induction of the fully
abstract PCFGs used in Exp. 1, we use the Bayesian method of
ref. 4. This is a Bayesian parameter estimation technique for
PCFGs. Given a particular grammar G, it assigns a vector of
probabilities � to the rules. � is a product of dirichlet distribu-
tions, one for each nonterminal (this results from putting a
dirichlet prior on the multinomial distribution over the right side
of the rules given the left side). By using a concentration
parameter � 1, we are able to prefer grammars in which most
rules have a probability very close to zero. This allows one to
estimate very effective PCFGs over a set of rules that is massively
ambiguous (contains many possible rewrite rules for each cat-
egory). We refer readers to ref. 4 for full details.

Our requirement in inducing a PCFG from our data was that
it be able to parse any utterance that our usage-based PCFG
could parse, to allow useful comparison. We wanted grammars
that would model the data well while still being able to assign a
nonzero probability to any tree structure over words that are in
its lexicon. The fact that the technique of ref. 4 can estimate good
models over hugely ambiguous grammars means we can expect
to infer excellent models while also having guarantees concern-
ing coverage. We accomplish this as follows. We estimate a
vector of probabilities � for grammars in which every category
can rewrite to every word in the corpus and every category or
every binary or ternary combination of every category in every
possible order. The categories were (as in our induction of
UB-PCFGs) simply arbitrary labels for classes (here of distri-
butionally similar rules or words) to be discovered during
inference. The inference procedure, similar to our method for
inferring UB-PCFGs, uses Gibbs sampling to approximate the
posterior distribution. We assigned a concentration hyperpa-
rameter of 0.1, thereby preferring models that assign most of the
probability mass to a small subset of the rules and give the
majority a vanishingly small probability. We chose the number
of categories to include in the model via the standard model
selection technique of first inferring models that include two
categories for each dataset and then inferring models in which
additional categories were added in a stepwise fashion until the
addition of new categories stopped improving the fit of the
model. The resulting grammars for both Brian and Annie at 2;0
were provided by grammars with seven categories. The best
grammars at 3;0 were provided by grammars with 10 categories
for Brian and 9 categories for Annie.

As with our concrete grammars, inference of these grammars
involves taking multiple samples from the posterior distribution
but for ease of comparison with our multiple sampled concrete
grammars (to avoid intractable sets of many-to-many compari-
sons) we use the approach taken by Johnson et al. (4) and
average our rule probabilities over the samples to produce a
single model.

Parsing. We use the CYK algorithm (5) for parsing with our
grammars. This algorithm requires grammars to be in Greibach
normal form and thus we binarize the rules. However, this step
is purely for processing convenience (any CFG can be repre-
sented in this way) and has no bearing on the results we report.
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The Perplexity of Our Grammars When Parsing the Main Corpus. We
have reported the perplexity of our grammars on the test data,
a different sample from that which had been used to acquire the
grammars. The ability to predict new datasets is the correct
measure of the explanatory value of our grammars. However, it
is also interesting to observe the fit of the models to the data
from which they were inferred (the ‘‘main’’ sessions). In fitting
statistical models to data there is always a tradeoff between
fitting the sample at hand well and allowing generalization to
other samples. Because they directly predict whole sequences of

words in the corpus from which they are inferred, our UB-
PCFGs can be expected to have a better fit to that corpus (and
thus lower perplexity) than a fully abstract PCFG, and indeed
they do, as shown in Fig. S1. In Fig. S1 the empty bars represent
the mean perplexity of our UB-PCFGs for each child at each age,
and the error bars represent the interval around this mean within
which results for 95% of the sampled grammars fall. The filled
bars in Fig. S1 represent the abstract PCFGs. The perplexity of
the UB-PCFG is smaller than that of the traditional PCFG in all
cases.
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Fig. S1. Perplexity of the different grammars when parsing the main session data.
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