Supporting Information

Novel 2- and 4-Substituted 1*H*-Imidazo[4,5-*c*]quinolin-4-amine Derivatives as Allosteric Modulators of the A₃ Adenosine Receptor

Yoonkyung Kim,^{†+¥} Sonia de Castro,^{†+} Zhan-Guo Gao,[†] Adriaan P. IJzerman,^{Σ} Kenneth A. Jacobson^{*†}

[†]Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

^ΣDivision of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.

Notes on Tautomeric Resolution by NOESY	p. S2
Figure S1. ¹ H NMR spectra of compounds 5, 6, 7, and 8 in 4:1 CDCl ₃ /CD ₃ OD.	p. S3
Figure S2. ¹ H NMR spectra of compounds 12 and 13 in 4:1 CDCl ₃ /CD ₃ OD.	p. S4
Figure S3. ¹ H NMR spectra of compounds 9, 10, 11, and 14 in DMSO- d_6 .	p. S5
Figure S4. NOESY spectrum of 10 in DMSO- d_6 .	p. S6
Figure S5. NOESY spectrum of 11 in DMSO- d_6 .	p. S7
Figure S6. COSY spectrum of 14 in DMSO- d_6 .	p. S8
Figure S7. NOESY spectrum of 14 in DMSO- d_6 .	p. S9
Figures S8–S17. ¹ H NMR spectra of compounds 31b , 31d , 33b , 33c , 17 , 18 , 20 , 21 , 23 , and 26 in CD ₃ OD/CDCl ₃ .	pp. S10–S19
-, , -,	

Table of Contents

NOTES ON TAUTOMERIC RESOLUTION BY NOESY

Since the synthesized heterocyclic ligands were insoluble in water, the equilibrium structures of selected compounds were roughly estimated in dimethyl sulfoxide- d_6 by 2D NOESY experiments (see Figures S4, S5, and S7). For compounds **10** and **11**, somewhat intense NOE cross-peaks were observed between the imidazole NH proton (ca. 13.3 ppm) and the aniline (i.e., aryl) NH proton (ca. 10.1 ppm), but no NOE was found between the imidazole NH and H₉ (see proton labeling in Table 1 of the main text), suggesting the 3*H*-tautomer as an exclusive form. Structural analysis of **14** by NMR was atypical from the outset. Despite the numerous purification attempts to isolate the major compound under different chromatographic conditions, a minor isomer consistently appeared in the 1D proton NMR spectrum (major/minor \approx 88:12 by NMR integration in DMSO- d_6). In fact these two isomers were found correlated by NOE cross-peaks–i.e., 1*H*- and 3*H*-tautomers through proton exchange. Here, the imidazole NH of the major tautomer at 13.16 ppm showed weak NOE cross-peaks with H₉, suggesting 1*H* as a major form.

Figure S1. ¹H NMR spectra of compounds 5, 6, 7, and 8 in 4:1 CDCl₃/CD₃OD.

Figure S2. ¹H NMR spectra of compounds 12 and 13 in 4:1 CDCl₃/CD₃OD.

Figure S8. ¹H NMR spectra of compound 31b in CD₃OD/CDCl₃.

Figure S9. ¹H NMR spectra of compound 31d in CD₃OD/CDCl₃.

Figure S11. ¹H NMR spectra of compound **33c** in CD₃OD/CDCl₃.

Figure S12. ¹H NMR spectra of compound 17 in CD₃OD/CDCl₃.

Figure S13. ¹H NMR spectra of compound 18 in CD₃OD/CDCl₃.

Figure S14. ¹H NMR spectra of compound 20 in CD₃OD/CDCl₃.

Figure S16. ¹H NMR spectra of compound 23 in CD₃OD/CDCl₃.

