On Estimation of Vaccine Efficacy Using Validation Samples with Selection Bias: Supplementary Material

DANIEL O. SCHARFSTEIN 1 , M. ELIZABETH HALLORAN 2 , HAITAO CHU 3 , MICHAEL J. DANIELS 4

¹ Department of Biostatistics,

Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21205 USA dscharf@jhsph.edu, phone: 410-955-2420, fax: 410-955-0958

² Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center Seattle, WA 98109 USA

> ² Department of Biostatistics, University of Washington. Seattle, WA 98195 USA

> > ³ Department of Epidemiology,

Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21205 USA

⁴ Department of Statistics,
University of Florida. Gainesville, FL 32611 USA

rsity of Pioriaa, Gainesville, PL 52011 (

February 28, 2006

A Large Sample Theory

Let

$$W_{z,x,y}(O) = I(Z = z, X = x, A = 1, R = 1, Y = y)$$

$$\omega_{z,x,y} = P[Z = z, X = x, A = 1, R = 1, Y = y]$$

$$V_{z,x,a}(O) = I(Z = z, X = x, A = a)$$

$$\nu_{z,x,a}(O) = P[Z = z, X = x, A = a]$$

and

$$W(O) = (W_{0,0,0}(O), W_{0,0,1}(O), W_{1,0,0}(O), W_{1,0,1}(O), W_{0,1,0}(O), W_{0,1,1}(O), W_{1,1,0}(O), W_{1,1,1}(O), W_{0,2,0}(O), W_{0,2,1}(O), W_{1,2,0}(O), W_{1,2,1}(O))'$$

$$V(O) \ = \ (V_{0,0,0}(O), V_{0,0,1}(O), V_{1,0,0}(O), V_{1,0,1}(O), \ V_{0,1,0}(O), V_{0,1,1}(O), V_{1,1,0}(O), V_{1,1,1}(O), \\$$

$$V_{0,2,0}(O), V_{0,2,1}(O), V_{1,2,0}(O), V_{1,2,1}(O))'$$

$$U(0) = (W(0)', V(0)')'$$

$$\omega = (\omega_{0,0,0}, \omega_{0,0,1}, \omega_{1,0,0}, \omega_{1,0,1}, \omega_{0,1,0}, \omega_{0,1,1}, \omega_{1,1,0}, \omega_{1,1,1}, \omega_{0,2,0}, \omega_{0,2,1}, \omega_{1,2,0}, \omega_{1,2,1})'$$

$$\nu = (\nu_{0,0,0}, \nu_{0,0,1}, \nu_{1,0,0}, \nu_{1,0,1}, \nu_{0,1,0}, \nu_{0,1,1}, \nu_{1,1,0}, \nu_{1,1,1}, \nu_{0,2,0}, \nu_{0,2,1}, \nu_{1,2,0}, \nu_{1,2,1})'$$

$$\mu = (\omega', \nu')'$$

By the multivariate central limit theorem, we know that

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \{ U(O_i) - \mu \} = \sqrt{n} (\tilde{\mu} - \mu) \xrightarrow{D} N_{24}(0, \Sigma)$$

where $\Sigma = E[(U(O) - \mu)(U(O) - \mu)']$ and $\tilde{\mu}$ has components

$$\begin{array}{lcl} \tilde{\omega}_{z,x,y} & = & \tilde{P}[Z=z,X=x,A=1,R=1,Y=y] \\ \\ \tilde{\nu}_{z,x,a} & = & \tilde{P}[Z=z,X=x,A=a] \end{array}$$

The asymptotic variance can be estimated $\hat{\Sigma} = \tilde{E}[(U(O_i) - \tilde{\mu})(U(O_i) - \tilde{\mu})']$, where $\tilde{E}[\cdot]$ is the empirical expectation operator.

For fixed $\beta_{z,x}$'s, we see that

$$VE_{S,x} = 1 - \exp(f_x(\mu))$$

$$\hat{V}E_{S,x} = 1 - \exp(f_x(\tilde{\mu}))$$

$$VE_S = 1 - \exp(g(\mu))$$

$$\hat{V}E_S = 1 - \exp(g(\tilde{\mu}))$$

where

$$f_{x}(\mu) = \log(\omega_{1,x,1}) + \log(\nu_{1,x,1}) - \log(\nu_{1,x,1} + \nu_{1,x,0}) - \log(\beta_{1,x}\omega_{1,x,0} + \omega_{1,x,1}) - \log(\omega_{0,x,1}) - \log(\nu_{0,x,1}) + \log(\nu_{0,x,1} + \nu_{0,x,0}) + \log(\beta_{0,x}\omega_{0,x,0} + \omega_{0,x,1})$$

$$g(\mu) = \log\left(\sum_{x=0}^{2} \left\{ \frac{\omega_{1,x,1} \frac{\nu_{1,x,1}}{\nu_{1,x,1} + \nu_{1,x,0}}}{\beta_{1,x}\omega_{1,x,0} + \omega_{1,x,1}} \left(\sum_{z=0}^{1} \sum_{a=0}^{1} \nu_{z,x,a}\right) \right\} \right) - \log\left(\sum_{x=0}^{2} \left\{ \frac{\omega_{0,x,1} \frac{\nu_{0,x,1}}{\nu_{0,x,1} + \nu_{0,x,0}}}{\beta_{0,x}\omega_{0,x,0} + \omega_{0,x,1}} \left(\sum_{z=0}^{1} \sum_{a=0}^{1} \nu_{z,x,a}\right) \right\} \right)$$

By the multivariate delta method, we can now derive the asymptotic distribution of $f_x(\tilde{\mu})$ and $g(\tilde{\mu})$, which we then use to construct confidence intervals for $VE_{S,x}$ and VE_S using the $1-\exp(\cdot)$ function. In particular, we know that $f_x(\tilde{\mu}) - f_x(\mu) \approx N(0, \hat{\sigma}_{f_x}^2)$ and $g(\tilde{\mu}) - g(\mu) \approx N(0, \hat{\sigma}_g^2)$,

where

$$\hat{\sigma}_{f_x}^2 = \frac{1}{n} \nabla f_x(\tilde{\mu})' \hat{\Sigma} \nabla f_x(\tilde{\mu})$$

$$\hat{\sigma}_g^2 = \frac{1}{n} \nabla g(\tilde{\mu})' \hat{\Sigma} \nabla g(\tilde{\mu})$$

and $\nabla f_x(\mu)$ and $\nabla g(\mu)$ are the partial derivative matrices (with respect to μ) of the functions $f_x(\cdot)$ and $g(\cdot)$, respectively.

So, 95% confidence intervals for $VE_{S,x}$ and V_S are given by

$$[1 - \exp(f_x(\tilde{\mu}) + 1.96\hat{\sigma}_{f_x}), 1 - \exp(f_x(\tilde{\mu}) - 1.96\hat{\sigma}_{f_x})]$$
$$[1 - \exp(g(\tilde{\mu}) + 1.96\hat{\sigma}_q), 1 - \exp(g(\tilde{\mu}) - 1.96\hat{\sigma}_q)],$$

respectively.

B Sampling from the posterior distribution

We consider the complete data as $\mathcal{F} = \{F_i = (Z_i, X_i, A_i, R_i, Y_i : A_i = 1) : i = 1, ..., n\}$. In the full data, there is no missing data on true influenza for those who have MAARI. Let $\mathcal{F} - \mathcal{O}$ denote the missing data. In the sampling from the posterior distribution, we use data augmentation (Tanner and Wong, 1987). Specifically, we will augment the posterior by $\mathcal{F} - \mathcal{O}$ and a vector of positive latent variables \mathbf{u} with independent components $u_{z,x}$ (Damien $et\ al.$ 1999). We will seek to compute the posterior,

$$\pi(u, \beta, \eta, p, \phi, \mathcal{F} - \mathcal{O}|\mathcal{O}) = \pi(u, \beta, \eta, p, \phi|\mathcal{F})\pi(\mathcal{F} - \mathcal{O}|\mathcal{O}),$$

where

$$\pi(\boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{p}, \boldsymbol{\phi} | \mathcal{F}) \propto \mathcal{L}(\boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{\eta}; \mathcal{F}) \mathcal{L}(\boldsymbol{p}; \mathcal{F}) \mathcal{L}(\boldsymbol{\phi}; \mathcal{F}) \pi(\boldsymbol{\beta}) \pi(\boldsymbol{\eta} | \boldsymbol{\beta}) \pi(\boldsymbol{p}) \pi(\boldsymbol{\phi})$$

$$u_{z,x}^{*}(\beta_{z,x}, \eta_{z,x}; \mathcal{F}) = \left\{ \{\beta_{z,x}\eta_{z,z}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}R_{i}Y_{i}} \{1 - \beta_{z,x}\eta_{z,x}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}(1 - R_{i})Y_{i}} I(0 \leq \beta_{z,x}\eta_{z,x} \leq 1) \right\}$$

$$\mathcal{L}(\boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{\eta}; \mathcal{F}) = \prod_{z=0}^{1} \prod_{x=0}^{2} \left\{ I(u_{z,x} \leq u_{z,x}^{*}(\beta_{z,x}, \eta_{z,x}; \mathcal{F})) \{\eta_{z,x}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}R_{i}(1 - Y_{i})} \{1 - \eta_{z,x}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}(1 - R_{i})(1 - Y_{i})} \right\}$$

$$I(0 \leq \eta_{z,x} \leq \min\{1/\beta_{z,x}, 1\}) \}$$

$$\mathcal{L}(\boldsymbol{p}; \mathcal{F}) = \prod_{z=0}^{1} \prod_{x=0}^{2} \left\{ \{p_{z,x}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}Y_{i}} \{1 - p_{z,x}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}(1 - Y_{i})} I(0 \leq p_{z,x} \leq 1) \right\}$$

$$\mathcal{L}(\boldsymbol{\phi}; \mathcal{F}) = \prod_{z=0}^{1} \left\{ \left\{ \prod_{x=0}^{2} \{\phi_{z,x,1}\}^{\sum_{i \in \mathcal{S}_{z,x}} A_{i}} \{\phi_{z,x,0}\}^{\sum_{i \in \mathcal{S}_{z,x}} (1 - A_{i})} I(0 \leq \phi_{z,x,1}, \phi_{z,x,0} \leq 1) \right\}$$

$$I\left(\sum_{x=0}^{2} \sum_{q=0}^{1} \phi_{z,x,a} = 1\right) \right\}$$

and $S_{z,x} = \{i : Z_i = z, X_i = x\}$. We will obtain the posterior $\pi(\beta, \eta, p, \phi | \mathcal{O})$ by integrating out $\mathcal{F} - \mathcal{O}$ and u (via Monte Carlo integration within the sampling algorithm).

To sample from $\pi(u, \beta, \eta, p, \phi, \mathcal{F} - \mathcal{O}|\mathcal{O})$, we sequentially sample from all of the full conditionals as follows:

1. $\pi(\boldsymbol{p}|\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{\eta},\boldsymbol{\phi},\boldsymbol{\mathcal{F}}) = \pi(\boldsymbol{p}|\boldsymbol{\mathcal{F}})$

The distribution of p given \mathcal{F} can be shown to have independent components where

$$p_{z,x}|\mathcal{F} \sim \text{Beta}\left(\sum_{i \in S_{z,x}} A_i Y_i + 1, \sum_{i \in S_{z,x}} A_i (1 - Y_i) + 1\right)$$

2. $\pi(\mathcal{F} - \mathcal{O}|\mathbf{u}, \boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{p}, \boldsymbol{\phi}, \boldsymbol{\mathcal{O}})$

For the set of individuals in stratum $S_{z,x}$ with $R_i=0$ and $A_i=1$, we draw $S_{z,x}^{\dagger}=\{Y_i:R_i=0,A_i=1,Z_i=z,X_i=x\}$ from a binomial distribution with success probability

$$\frac{p_{z,x}}{p_{z,x} + (1 - p_{z,x})(1 - \eta_{z,x})}$$

truncated from above by the condition $u_{z,x} < u_{z,x}^*(\beta_{z,x}, \eta_{z,x}; (\mathcal{O}, S_{z,x}^{\dagger}))$.

3. $\pi(\boldsymbol{u}|\boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{p}, \boldsymbol{\phi}, \boldsymbol{\mathcal{F}}) = \prod_{z=0}^{1} \prod_{x=0}^{2} \pi(u_{z,x}|\boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{\mathcal{F}})$

For each z, x stratum, $\pi(u_{z,x}|\boldsymbol{\beta}, \boldsymbol{\eta}, \boldsymbol{\mathcal{F}})$ is uniform on the interval $(0, u_{z,x}^*(\beta_{z,x}, \eta_{z,x}, \boldsymbol{\mathcal{F}}))$.

4. $\pi(\boldsymbol{\eta}, \boldsymbol{\beta}|\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{\phi}, \boldsymbol{\mathcal{F}}) \equiv \pi(\boldsymbol{\eta}, \boldsymbol{\beta}|\boldsymbol{u}, \boldsymbol{\mathcal{F}})$

We will use slice sampling (Neal, 2003) to sample from the full conditional distribution of (β, η) . Given the form of (1), we will sample from a truncated form of $\pi(\beta)$ and a truncated Beta($\sum_{i \in S_{z,x}} A_i R_i (1 - Y_i) + 1, \sum_{i \in S_{z,x}} A_i (1 - R_i) (1 - Y_i) + 1$) for $\eta_{z,x}$. The truncation bounds cannot be entirely expressed in closed form. We now describe how to obtain them sequentially.

We want to sample the $(\beta_{z,x}, \eta_{z,x})$ in pairs, but $\pi(\beta) \neq \prod_{z=0}^1 \prod_{x=0}^2 \pi(\beta_{z,x})$. To deal with this, we factor $\pi(\beta)$ as $\prod_{z=0}^1 \prod_{x=0}^2 \pi^*(\beta_{z,x})$ where

$$\pi^{\star}(\beta_{z,x}) = \pi(\beta_{z,x} | \{\beta_{z^{\star},x^{\star}} : z^{\star} = z, x^{\star} < x \text{ and } z^{\star} < z\})$$

and $\pi^*(\beta_{0,0}) = \pi(\beta_{0,0})$. Then, in that order, we sample the pairs $(\beta_{z,x}, \eta_{z,x})$. To sample $\beta_{z,x}$, we note that $\pi^*(\beta_{z,x})$ is truncated by the condition $I(u_{z,x} < u_{z,x}^*(\gamma_{z,x}; \mathcal{F}))$, where $u_{z,x}^*(\gamma_{z,x}; \mathcal{F}) = u^*(\beta_{z,x}, \eta_{z,x}; \mathcal{F})$ with $\gamma_{z,x} = \beta_{z,x}\eta_{z,x}$. Let

$$\hat{\gamma}_{z,x} = \frac{\sum_{i \in \mathcal{S}_{z,x}} A_i R_i Y_i}{\sum_{i \in \mathcal{S}_{z,x}} A_i Y_i}$$

denote the maximum likelihood estimate of $u^*(\gamma_{z,x}; \mathcal{F})$. Note that $u_{z,x} \leq u^*(\hat{\gamma}_{z,x}; \mathcal{F})$.

Since we sample $\beta_{z,x}$ before $\eta_{z,x}$, we need to make sure we sample $\beta_{z,x}$ such that there are values of $\eta_{z,x}$ which will satisfy this condition. If $0 < \hat{\gamma}_{z,x} \le 1$, then $\beta_{z,x}$ can lie in the interval $(\beta_{z,x}^*, \infty)$, where $\beta_{z,x}^*$ is equal to the unique $\gamma_{z,x}^L$ satisfying $u^*(\gamma_{z,x}^L; \mathcal{F}) = u_{z,x}$ and $\gamma_{z,x}^L \le \hat{\gamma}_{z,x}$. Since $u^*(\gamma_{z,x}; \mathcal{F})$ is monotone in $\gamma_{z,x}$ for $0 < \gamma_{z,x} \le \hat{\gamma}_{z,x}$, $\beta_{z,x}^*$ can be found by performing a bi-section search for the equality condition on the interval $(0, \hat{\gamma}_{z,x}]$. If $\hat{\gamma}_{z,x} = 0$, then $\beta_{z,x}$ can lie in $(0,\infty)$.

For $\eta_{z,x}$ given $\beta_{z,x}$, we sample from a truncated Beta distribution with parameters as specified above. For $0 \le \hat{\gamma}_{z,x} < 1$, define $\gamma^U_{z,x}$ to be the unique quantity satisfying $u^*(\gamma^U_{z,x}:\mathcal{F}) = u_{z,x}$ and $\gamma^U_{z,x} > \hat{\gamma}_{z,x}$. If $0 < \hat{\gamma}_{z,x} < 1$, $\eta_{z,x}$ must lie in the interval $\left[\frac{\gamma^L_{z,x}}{\beta_{z,x}}, \min(\frac{\gamma^U_{z,x}}{\beta_{z,x}}, 1)\right]$. If $\hat{\gamma}_{z,x} = 0$, $\eta_{z,x}$ must lie in the interval $\left[0, \min(\frac{\gamma^U_{z,x}}{\beta_{z,x}}, 1)\right]$. If $\hat{\gamma}_{z,x} = 1$, $\eta_{z,x}$ must lie in the interval $\left[\min(\frac{\gamma^L_{z,x}}{\beta_{z,x}}, 1), 1\right]$.

- 5. $\pi(\boldsymbol{\phi}|\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{\beta},\boldsymbol{p},\boldsymbol{\mathcal{F}}) = \prod_{z=0}^{1} \pi(\boldsymbol{\phi}_{z}|\boldsymbol{\mathcal{F}})$ Given $\boldsymbol{\mathcal{F}}$, sample $\boldsymbol{\phi}_{z}$ from a Dirichlet distribution with parameters $((1+n_{z1},1+n_{z2},\ldots,1+n_{zK}))$.
- 6. Compute $VE_{S,x}$ and VE_S using Equations (11) and (12) from the main manuscript, respectively.

Repeat steps 1-6 K times, discarding an appropriate number of samples from the burn-in period. Obtain the posterior mean, median, mode, and $1 - \alpha$ HPD credible set or $1 - \alpha$ equal tail credible set of $VE_{S,x}$ and VE_S from the Monte Carlo samples.

To perform Bayesian analysis with fix β , we sample $\eta_{z,x}$ as described in Step 4. given the fixed value of β .