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A Large Sample Theory

Let
WZ?I?’LU(O) = I(Z:Z7X:‘/L‘7A: 1)R:17Y:y)
CL)Z,CE,y = P[Z:Z,X:vazl,R:]_’Y:y]
sz’x’a(O) = I(Z:Z,X::L',A:a)
Vz,x,a(o) = P[Z = Z,X = :L"A = a]
and

W(O) = (Wo0,0(0),Wo,0,1(0), Wi,00(0), W1,0,1(0), Wo1,0(0), Wo,1,1(0), W1,10(0), W1.1.1(0),
Wo.20(0), Wo.2.1(0), W1 20(0), W1 21(0))
V(O) = (Vo,0,0(0),V0,01(0),Vi0,0(0),V101(0), Vo,10(0),Vp,1,1(0),V1,1,0(0), V1,1,1(0),



V0.20(0), Vo21(0), V1 20(0), V121(0))

U = (w(),v())
w = (w0007w001,w100,w101,w010,w011,w110,w111,w020,w021,w120,w121)
v = (Vo,oo,Voo1,V1007V1017V0,1707V011,V1,1,0,V1117V0,2,0,1/021,V1,2,0,1/121)
no= (w/7 )

By the multivariate central limit theorem, we know that

=200 = 1} = Vil =) 2 Nas(0. )
=1

where ¥ = E[(U(O) — u)(U(O) — p)'] and i has components
Gray = PlZ=2X=2A=1R=1Y =y

Vema = P[Z:z,X:x,A:a]

The asymptotic variance can be estimated > = E[(U(0;) — a)(U(0;) — fi)'], where E[] is the

empirical expectation operator.

For fixed (3. ;’s, we see that

VEs, = 1—exp(fuz(p))
VEs, = 1—exp(fz(i1))
VEs = 1—exp(g(n))
VEs = 1-—exp(g(ii))

where

fo(p) = log(wizi)+ lOg(Vl 21) —log(v1 2,1 + V1 2.0) — log(B1 w1 e0 + Wie1) —
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By the multivariate delta method, we can now derive the asymptotic distribution of f (/) and

log(wo,z,1) — log(vo,4,1) + log(vo.2,1 + 10,20

=0

g(ft), which we then use to construct confidence intervals for V Eg, and V Eg using the 1 —exp(-)
function. In particular, we know that f,(ft) — fz(1) = N(O, O'fz) and g(i1) — g(u) = N(0,67),



where
.2 1
Or, = EVfﬂc( )Zfo( )
~92 1 ~\ & ~
6 = V9=V g(h)
and v/ f; () and 7g(p) are the partial derivative matrices (with respect to u) of the functions
f=(+) and g(-), respectively.
So, 95% confidence intervals for V Eg, and Vg are given by

[1 —exp (fz(it) +1.966¢,),1 —exp (fz(fr) — 1.9667¢, )]
[1 —exp(g(fr) +1.9664),1 —exp (g(i) — 1.965,)],

respectively.

B Sampling from the posterior distribution

We consider the complete data as F = {F; = (Z;, X;, A, R;,)Y; : Ay = 1) : i =1,...,n}.
In the full data, there is no missing data on true influenza for those who have MAARI. Let
F — O denote the missing data. In the sampling from the posterior distribution, we use data
augmentation (Tanner and Wong, 1987). Specifically, we will augment the posterior by F — O
and a vector of positive latent variables u with independent components u,, (Damien et al.

1999). We will seek to compute the posterior,

m(u,8,n,p,$, F — O|O) = 7(u, B,n,p, p|F)n(F — O|O),

where

m(u, B,n,p, §|F) o< L(u, B,m; F)L(p; F)L(¢; F)m(B)m(n|B)m(p)m(d)

Ai(1-Ry)Y;
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and S, = {i : Z; = 2,X; = x}. We will obtain the posterior 7(3,n,p, ¢|O) by integrating
out F — O and u (via Monte Carlo integration within the sampling algorithm).

To sample from 7(u, 3,n,p, ¢, F — O|0), we sequentially sample from all of the full condi-

tionals as follows:

1. n(plu,B,n, ¢, F) = m(p|F)

The distribution of p given F can be shown to have indepdendent components where

pealF ~Beta | > AY;+1, > A(l1-Y)+1
iESz,z iesz,z
2. W(f - O‘Uﬂ /6) n,p, ¢)7 O)
For the set of individuals in stratum S, , with R; = 0 and A; = 1, we draw S;x ={Y;:
R;=0,A;,=1,Z; = z, X; = z} from a binomial distribution with success probability

Pz
Dzx + (1 - pz,x)(l - nz,x)

truncated from above by the condition u, , < u;x(ﬁz’m, Nz (O, Slx))

3' W(U’ﬁ,?’],p, ¢7~7:) = Hi:[) Hi:o 7r(uz,m /67777;-)

For each z, x stratum, m(u, |3, n, F) is uniform on the interval (0,u} . (8.2, Mz, F))-

4. m(n,Blu,p, d,F) = n(n, Blu, F)

We will use slice sampling (Neal, 2003) to sample from the full conditional distribution
of (3,7m). Given the form of (1), we will sample from a truncated form of n(8) and a
truncated Beta(Y;cg, , AiRi(1 — Y5) + 1,25, , 4i(1 — R;)(1 — Y;) + 1) for n.,. The
truncation bounds cannot be entirely expressed in closed form. We now describe how to

obtain them sequentially.

We want to sample the (8, z,7.) in pairs, but 7(3) # Hi:o ngo 7(Bz,2). To deal with
this, we factor 7(8) as [[L_o [12_o 7 (B...) Where

T (Bew) = T(Bezl{B 2+ : 2" = 2z,2" <z and 2* < z})

and 7 (8o,0) = m(B0,0). Then, in that order, we sample the pairs (.4, 7:2). To sample
.z, we note that 7*(f,.) is truncated by the condition I(u.. < u} ,(Vz2;F)), where
U0 (Vos F) = 0" (Beyey N0 F) With 720 = B247z 5. Let

N Ziesz,z AiR;Y;

Y2,z Ziesz,z ALY,



denote the maximum likelihood estimate of u*(7y, z; F). Note that u, , < u*(Y;..;F).

Since we sample (3, ; before 7. ;, we need to make sure we sample (3, , such that there are

values of 7, , which will satisfy this condition. If 0 < 4., < 1, then 3., can lie in the

interval (8 ,,00), where 3}, is equal to the unique 7%, satisfying u*(v2,; F) = u., and
q/ZL”,C < Az Since u* (7.3 F) is monotone in 7, for 0 < 7., < 4.4, 87, can be found
by performing a bi-section search for the equality condition on the interval (0,4, ,]. If

Y22 = 0, then (3, ; can lie in (0, c0).

For 7., given .., we sample from a truncated Beta distribution with parameters as

specified above. For 0 <4, , < 1, define ’ygz to be the unique quantity satisfying u*(”ygz :

L U
F) =1u,, and ’ygz > Ay p 0 <A, <1, 7, , must lie in the interval gzz , min(gji, ).

U
Vz,

If 4., = 0, ., must lie in the interval [O,min(ﬂzz,l)} If 4.2 = 1, 7, must lie in the

’VL
interval {min(ﬁz’z , 1), 1} :

5' 7T(¢‘U,,6,,8,p,f): i’:()ﬂ-(¢z’f)
Given F, sample ¢, from a Dirichlet distribution with parameters ((1+n,1,1+n.9,...,1+

nyK)).

6. Compute VEg, and V Eg using Equations (11) and (12) from the main manuscript, re-

spectively.

Repeat steps 1-6 K times, discarding an appropriate number of samples from the burn-in
period. Obtain the posterior mean, median, mode, and 1 — o HPD credible set or 1 — « equal
tail credible set of VEg, and V Eg from the Monte Carlo samples.

To perform Bayesian analysis with fix 3, we sample 7, , as described in Step 4. given the
fixed value of 3.



