Supplementary Table 1

BAC Clone List

<u>Human Clones</u>

			Size	
Clone #	Genes	Chr. Location	(Kb)	Notes
RP11-373J1	NDN, MAGEL2	15q11.2	199	
RP11-125E1	SNRPN (ICR, upstream)	15q11.2	175	SNRPN-UBE3A probe
RP11-186C7	SNRPN, IPW & HBII-85 cluster	15q11.2	170	SNRPN-UBE3A probe
RP11-171C8	HBII-52 cluster	15q11.2	161	SNRPN-UBE3A probe
RP11-1081A4	UBE3A (entire gene & downstream)	15q11.2 - 15q12	171	SNRPN-UBE3A probe
RP11-339C21	ATP10A (downstream)	15q12	168	

Mouse Clones

NOUSE CICILES				
			Size	
Clone #	Genes	Chr. Location	(Kb)	Notes
RP24-232N8	Ndn, Mage12, Mkrn3 & Peg12	7qC	169	
RP23-351F6	Upstream of Snrpn	7qC	207	flanking probe
RP23-380J10	Snrpn (tg380a BAC)	7qC	161	
RP24-275J20	Snrpn	7qC	140	Snrpn-Ube3a probe
RP23-358G20	lpw	7qC	127	Snrpn-Ube3a probe
RP23-410L2	snoRNAs	7qC	181	Snrpn-Ube3a probe
RP24-147020	Ube3a	7qC	168	Snrpn-Ube3a probe
RP23-141P24	Between Ube3a & Atp10a	7qC	191	Snrpn-Ube3a probe
RP23-318C6	Atp10a	7qC	206	flanking probe
RP23-50N22	lgf2/H19	7qF5	244	
RP23-60E10	Gtl2	12qF1	244	
RP24-241115	Dlk1, upstream Gtl2	12qF1	165	
RP23-218J8	downstream of Gtl2	12qF1	214	
RP23-386G18	DIx 5/6	6qA1	203	
RP23-443I23	Htr2c	XqF2	190	
RP23-422O20	lgf2r	17qA1	204	
RP23-309B17	Tsix	XqD	224	
RP23-39F15	Dmd	XqB - XqC1	245	
RP23-3D16	Stmn4	14qD1	202	

gDNA Copy Number

qPCR performed on gDNA from adult mouse brain and liver tissue for *Snrpn*, MBII-85, MBII-52 and *Igf2* (control) to test for DNA duplication in the *Snrpn-Ube3a* region in adult neurons reveals no evidence for DNA duplication in brain versus liver. Results represent the mean ± SEM of triplicate reactions.

a. RNase A treatment pre- and post-hybridization does not decrease the length of the paternal *Snrpn-Ube3a* signals. Shown is a representative image of neuronal nuclei treated with 250 µg/mL of RNase A pre-hybridization showing an extended paternal signal (white arrow). **b-c.** DNase I treatment of adult mouse brain sections reveals a greater level of digestion of paternal *Snrpn-Ube3a* signals (white arrows) then maternal *Snrpn-Ube3a* signals (yellow arrows) indicating a decreased level of nucleosome coverage on the paternal allele compared to the maternal allele.

Large neuronal nuclei in the cortex, hindbrain and Purkinje neurons exhibited the largest paternal *Snrpn-Ube3a* signals in adult wildtype mouse brain sections. Results represent the mean ± SEM of number (N) of nuclei indicated below each set of bars.

a. Changes in nucleolar number (right axis) and diameter (left axis) during normal neurodevelopment with the number of nucleoli decreased with age while the diameter of largest nucleolus increased. **b.** Neuronal nuclear diameter increased with

neurodevelopment and in correlation with chromatin decondensation of the paternal *Snrpn-Ube3a* signals.

a. Measurements fromin*Snrpn*-MBII-85 DNA FISH signals to closest heterochromatic foci (DAPI) reveal that the paternal allele was significantly further from heterochromatin then the maternal allele throughout neurodevelopment. **b.** *Snrpn*-MBII-85 maternal and

paternal signals follow a similar trend as *Snrpn-Ube3a* signals (Figure 3a) throughout neurodevelopment. Results represent the mean \pm SEM for 100 nuclei per timepoint.

Analysis of a transgenic mouse line for chromatin decondensation and transcriptional activity. **a.** Adult brain sections of the tg380a transgene mouse line containing a tandem genomic BAC insertion (140 kb spanning PWS-IC through MBII-85) were hybridized with a DNA FISH probe from the inserted BAC (RP23-380J10, red) and a probe for *Ube3a* (RP23-147O20, green) to identify the endogenous paternal and maternal signals. Representative image of a +/tg380a neuron showing all three signals for *Snrpn-MBII-85* (red) with the tg380a allele identified by the lack of adjacent *Ube3a* (green). **b.** *Snrpn-MBII-85* lengths were measured for all three signals: maternal, paternal and transgene. While transgenic signals were significantly larger than the endogenous

maternal signals (19% larger than the maternal signals, **P<0.005), they were highly significantly smaller than the endogenous paternal signals (69% smaller than paternal signals, ***P<0.0001). Results represent the mean (black bars) \pm S.D. for 200 nuclei from three transgenic adult mice. **c-e.** Analysis of quantitative RT-PCR for *Snrpn*, *MBII-85* and *MBII-52* expression in +/PWS-IC^{del35kb} whole brain compared to wt littermate, and +/tg380a whole brain compared to wt littermates. Error bars represent the S.E.M. for triplicate experiments, * p <0.05, ** p < 0.02, *** p < 0.0001.

a. Chromatin packing ratios for *Snrpn-Ube3a* maternal and paternal alleles throughout murine neurodevelopment; the paternal allele decondenses almost to the level of a 30 nm fiber (indicated by the dotted line) while the maternal allele remains highly compact (~10x or more compact then a 30nm fiber). **b.** The paternal *Snrpn-Ube3a* allele decondenses, extending to over four times its original length and becoming over 8x longer then the maternal allele, represented by fold change. Results represent calculations of chromatin packing and fold changes using the mean values of 100 cortical neuronal nuclei per timepoint originally displayed in Fig 2A.