Methane Utilization by a Strain of Rhodopseudomonas gelatinosa

DAVID WERTLIEB1 AND WOLF VISHNIAC

Department of Biology, University of Rochester, Rochester, New York 14627

Received for publication 11 January 1967

Two roles of methane in bacterial metabolism have been studied: (i) as an end product of fermentation; (ii) as an electron donor and carbon source in respiration. Anaerobic photosynthetic assimilation of methane is a third possibility, and may contribute to an anaerobic microbial ecology (W. Vishniac, Aerospace Med. **31**:678, 1960). This communication describes results demonstrating methane utilization by a photosynthetic bacterium.

An enrichment culture containing: $(NH_4)_2SO_4$, 0.05%; K₂HPO₄, 0.05%; MgSO₄·7H₂O, 0.1%; trace metals(W. Vishniac and M. Santer, Bacteriol. Rev. 21:195, 1957), 0.1 ml per 100 ml of medium; NaHCO₃, 0.5%; and adjusted to pH 7.0 to 7.2, was inoculated with about 50 g of mud from a river bank per 100 ml of medium. A glassstoppered bottle was half filled with medium and inoculum. Methane was bubbled through the mixture for 15 min, and the bottle was then quickly stoppered and inverted. After incubation at 30 C under incandescent light, serial transfers were made in the same medium (25 ml per 125-ml Erlenmeyer flask) and incubated (30 C, light) under an atmosphere of 5% CO₂ + 95% CH₄. NaHCO₃ was added aseptically to make a final concentration of 6.6 \times 10⁻³ M. After several serial transfers, it was necessary to supplement the medium with 0.01% yeast extract to support growth.

Plates of the above medium solidified with 1.5% agar were streaked from a liquid culture and incubated under $CO_2 + CH_4$ in the light. Only one colony type grew on these plates. A clonal culture was established by serial streaking from isolated colonies. The isolated organism was maintained in liquid medium and identified as *Rhodopseudomonas gelatinosa* by comparison with an authentic strain of *R. gelatinosa* (ATCC 11169). This identification is based on: (i) morphology of cells and colonies; (ii) ability to hydrolyze gelatin; (iii) ability to use citrate as a substrate for growth; and (iv) bacteriochlorophyll

¹ Predoctoral Fellow of the U.S. Public Health Service.

and carotenoid content observed on thin-layer sucrose chromatograms (B. Colman and W. Vishniac, Biochim. Biophys. Acta **82:**616, 1964) developed with 10% benzene in hexane.

The defined medium of J. Siegel and M. Kamen (J. Bacteriol. **59:**693, 1950) in distilled water supplemented with trace metals (0.4 ml per 100 ml of medium) supported growth with the substrates listed in Table 1. Utilization of propionate distinguishes this strain of *R. gelatinosa* from the strains described by van Niel (Bacteriol. Rev. **8:**1, 1944). A check of the vitamins required for growth in the defined medium confirmed identification of the bacterium. Thiamine HCl (0.4 mg/100 ml) and biotin (0.5 μ g/100 ml) were both needed for growth (S. Hutner, J. Gen. Microbiol. **4:**286, 1950).

In the absence of any additional organic carbon source, growth under 5% CO₂ + 95% CH₄ was poor (about 10% of the yield obtained when malate was included in the medium). An atmosphere of CO₂ + H₂ supported growth of this bacterium with yields ranging from 20 to 50% of the yield obtained with malate (Table 2). No stimulation of growth under CO₂ + CH₄ was observed by changing the *p*H or varying the concentration of trace metals, vitamins, nitrogen source, CO₂, or CH₄.

Table 3 summarizes the results of a series of experiments which attempt to demonstrate CH4 fixation directly. Cells harvested from mass culture were resuspended in 140 ml of the defined medium supplemented with 6.6 \times 10⁻³ M HCO₃⁻⁻ in a double-neck, round-bottom, 300-ml boiling flask. The flask was fitted with a three-way stopcock and a break-seal vial containing 100 µc of ¹⁴CH₄ (specific activity, 5.00 mc/mmole). The ¹⁴CH₄ was added to an anaerobic atmosphere of $5\% \text{ CO}_2 + 95\% \text{ CH}_4$ in the flask. At the end of the incubation, the flask was evacuated and flushed four times with N_2 . The effluent gases were passed through a combustion train (700 C), a trap cooled to -40 C to remove water vapor, and a series of six traps (each containing 10 ml of the trapping medium) to collect CO₂. Carbon dioxide was trapped and radioactivity was deter-

Growtha Substrate, 0.2% Without added HCO₂-With 6.6 × 10⁻³ м HCO₃-Na-malate..... 1.15 1.14 Na-lactate..... 1.20 1.24 Na₂-succinate·6H₂O..... 0.68 0.68 Na-propionate..... 0.29 1.22 Na-acetate·3H₂O..... 0.80 0.74 Na-formate..... 0.10 0.38 Ethyl alcohol..... 0.14 1.15 *n*-Propanol..... 0.12 1.32 *n*-Butanol..... 0.16 1.17

 TABLE 1. Substrate utilization by a strain of Rhodopseudomonas gelatinosa

^a Expressed as optical density at 680 m μ after 5 days in the light in filled screw-cap test tubes.

 TABLE 2. Growth of Rhodopseudomonas gelatinosa under different atmospheres

Conditions of incubation ^a	Growth ^b		
Under 5% CO_2 + 95% CH_4	0.12		
Under $5\% CO_2 + 95\% H_2$	0.45		
Under $5\% CO_2 + 95\% N_2 \dots \dots$	0.05		

^a Cells were grown in 25 ml of the maintenance medium supplemented with 6.6×10^{-3} M HCO₃⁻.

^b Expressed as optical density at 680 m μ after 6 days of growth in the light in 125-ml Erlenmeyer flasks.

mined by the methods of H. Jeffry and J. Alvarez (Anal. Chem. 33:612, 1961). After the cells were collected and washed once, they were extracted and separated (D. Hoare, Biochem. J. 87:284, 1963) into three fractions: (i) water-soluble; (ii) acetone-soluble, water-insoluble; (iii) cell residue. Samples of each fraction were degraded to CO_2 which was trapped and counted as above.

Low but significant levels of incorporation were detected. Experiments 1 and 2 show that the labeling is dependent on live cells, and experiments 3 and 4 show incorporation to be lightdependent. An attempt to increase the specific activity of the labeled fractions by incubation under ¹⁴CH₄ in the absence of carrier CH₄ was not successful.

The medium used in the above incubation experiments, after removal of the cells, contained significant levels of radioactivity. To determine how much of this labeling was due to retention of ¹⁴CH₄, samples of the media were treated as follows: (i) *p*H was adjusted to >8.3; (ii) 15% BaCl₂·2H₂O was added in excess; (iii) samples containing barium precipitate were heated to boiling and cooled for 15 min, in a continuous stream of N₂; the effluent gas was passed through toluene to trap any CH₄; (iv) barium precipitate was collected, washed with hot water and ethyl alcohol, and dried; (v) barium precipitate was suspended in water, the *p*H was adjusted to <3.8, and the suspension was treated as in step iit

Expt	Conditions of incubation	Cell material in incu- bation (mg, dry wt)	CH4 incorporated (µmoles/ mmole of CH4 added)	Total dpm in cell fractions			Total dpm in cell-free medium	
				Water-soluble	Acetone- soluble, water- insoluble	Cell residue	As ¹⁴ CH ₄	As ¹⁴ CO ₂
16	Light; under CO₂ + CH₄ +							
	¹⁴ CH ₄ ; 24 hr	327	$1.4 imes 10^{-1}$	$2.87 imes 10^3$	$1.37 imes 10^{3}$	$27.5 imes 10^{3}$	ND	ND
2 ^b	Repeat of 1 with							
	killed cells	335		NS	NS	NS	ND	ND
3°	Light; under $CO_2 + CH_4 +$							
	¹⁴ CH ₄ ; 24 hr	56.1	$9.6 imes 10^{-2}$	NS	4.44×10^{3}	$16.9 imes 10^3$	15.2×10^{3}	18.3×10^{3}
4°	Dark, under $CO_2 + CH_4 +$							
	¹⁴ CH ₄ ; 24 hr	135	4.2×10^{-3}	NS	NS	$0.94 imes10^{3}$	$15.2 imes 10^3$	$27.9 imes 10^3$

TABLE 3. ¹⁴CH₄ fixation by a Rhodopseudomonas gelatinosa strain^a

^a NS = not significantly > background; ND = not determined.

^b Cells for these experiments were grown in the defined medium supplemented with 6.6×10^{-3} M $HCO_3^- + 0.3\%$ L-malic acid under 5% $CO_2 + 95\%$ N₂.

 c Cells for these experiments were grown in the maintenance medium supplemented with 6.6 \times 10⁻³ M HCO_3⁻ under 5% CO₂ + 95% CH₄.

except that the effluent gas was passed through the CO_2 -trapping medium used for degradations; (vi) samples of the toluene (containing ${}^{14}CH_4$) and the trapping medium (containing ${}^{14}CO_2$) were counted.

As seen in the last two columns of Table 3, most of the radioactivity found in the cell-free medium occurs as CO_2 . These results suggest that

some ${}^{14}CH_4$ has been oxidized to ${}^{14}CO_2$, and that the reaction is not stimulated by the presence of light

Ability of the bacterium described here to grow with CH_4 as the sole electron donor has not been demonstrated unequivocally. This organism can, however, (i) incorporate CH_4 carbon into cellular components, and (ii) oxidize CH_4 to CO_2 .