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Supplementary Table 1. Twin studies with heritability estimates for sleep phenotypes (% of 
variance explained by genetic effects)

Ref Study type Major Findings

By questionnaire

Partinen et al.,
Sleep 6:179, 19831

Finnish twin pairs (2238MZ, 4545DZ): heritability of both duration of sleep and sleep quality ~ 44%, sleep 
apnea ≥50% 

Heath et al., 
Sleep 13:318, 19902

Australian twin pairs (1800MZ, 2010DZ) heritability of sleep quality 32%, sleep time ~42%, sleep duration 
40%, insomnia complains 32-36%, sleepiness 39% 

McCarren et al.,
Sleep 17 :456, 19943

Vietnam era veteran twins heritability of sleep-onset insomnia 28%, sleep-maintenance 
insomnia 42%

Carmelli et al., 
J Sleep Res 10:53, 20014

World War II male veteran twin pairs (818MZ,
742DZ)

heritability of subjective sleepiness (Epworth Sleepiness scale, ESS) 
38% (most likely due to genetic susceptibility to sleep apnea)

Vink et al.
Chronobiol Int 18:809, 20015

Dutch twin family study heritability of morningness/eveningness 44-47%

Carmelli et al.,
Sleep 27:917, 20046

World War II male veteran twin pairs (68MZ, 
54DZ)

heritability of sleep disordered breathing ~36% 

Watson et al.,
Sleep 29:645, 20067

Washington State twin pairs (1042MZ, 828DZ; 
32-year old): 

heritability of insomnia 57%, sleepiness 38%, obesity 73%; additive 
genetic effects found for insomnia/obesity and insomnia/sleepiness

Luciano et al., 
Sleep 30: 1378, 20078

Australian twin pairs (1799MZ, 2009DZ): heritability of coffee-attributed sleep disturbance ~ 40%; main source 
of genetic variance unrelated to a general sleep-disturbance factor

Koskenvuo et al., 
J Sleep Res 16;156, 20079

Finnish twin pairs (2836MZ, 5917DZ): heritability of morningness/eveningness 50% (12% additive, 38% 
due to dominance)

By EEG analysis

Linkowski et al.,
J Sleep Res 8 (Suppl.1):11, 199910

Belgian twin pairs (45MZ, 46DZ) heritability of SWS duration 50%

Ambrosius et al.
Biol Psych 64:344-8, 200811

German twin pairs (35MZ, 14DZ) Significant genetic influence for SWS duration, REM sleep duration, 
NREM spectral power within the alpha (8-12Hz) and low sigma (13-
14Hz) range, and in the 2-13Hz range (using 1hz frequency bins) 

De Gennaro et al.,
Ann of Neurol 2008, in press12

Italian twin pairs (10MZ, 10DZ) heritability of EEG power spectrum in NREM sleep (8-16Hz) 96%
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Supplementary Table 2. Studies in flies and mice using reverse and forward genetics to 
show effects of single candidate genes on sleep. Fly studies are indicated in blue, forward 
genetic studies in bold.  

Gene Major findings Ref

Circadian regulation

Clock mutant mice (partial deletion of 
the Clock protein)

~ 18% less total sleep/24h (due to less NREM sleep)
Same % of total sleep recovered after sleep deprivation; normal increase in delta 
activity after sleep deprivation; ~50% smaller increase in REM sleep after sleep 
deprivation 

13

Dbp (albumin D-binding protein) KO 
mice

More sleep during the night (trend, ns), ~25% less REM sleep during the light 
period; no change in total sleep duration and sleep homeostasis

14

Cry 1, 2 (cryptochrome 1 and 2) double
KO mice

Cry 1  KO mice
Cry 2 KO mice

~20% increase in NREM sleep/24h  (due to more sleep at night); higher NREM 
delta activity in baseline; smaller increases relative to wild-type mice in sleep 
duration (5 vs 33%) and delta activity (134 vs 170%) after sleep deprivation  

Normal sleep amount and sleep regulation
Normal sleep amount and sleep regulation

15

16

16

mPer1, mPer2, mPer3 (Period 1,2,3) 
KO mice
mPer1/ mPer2 double KO mice

Altered 24h distribution of sleep; no change in total sleep duration or sleep 
homeostasis 

17

18

Bmal1 (brain and muscle ARNT-like 
protein 1) KO mice

<15% increase in NREM sleep/24h; sleep fragmentation; slightly smaller 
homeostatic response after sleep deprivation

19

Npas2 (neuronal PAS domain protein 
2) KO mice

Less NREM sleep only in the second half of the dark period; smaller increase in 
NREM duration (males only) and in delta activity after sleep deprivation  

20

21

Prok2 (prokineticin 2) KO mice ~20% less total sleep/24h (due to less NREM sleep in the light phase, but REM 
sleep is increased); smaller increase in delta activity and REM sleep after sleep 
deprivation 

22

Related to 
neurotransmitters/neuropeptides

Adora1 (adenosine A1 receptor) KO 
mice

Normal 24h sleep/waking amounts; normal response to sleep deprivation
Normal increase in waking after caffeine

23

24

Adora2a (adenosine A2A receptor) KO 
mice

Daily sleep/waking amounts not reported; no increase in sleep after infusion of 
adenosine A2A receptor agonist 
Preliminary evidence of no increase in NREM sleep after sleep deprivation
No increase in waking after caffeine

25

26

24

nAchR-a4 (nicotinic acetylcholine 
receptor alpha 4 subunit) knock in mice

Increased brief awakenings 27

nAchR-b2 (nicotinic acetylcholine 
receptor beta 2 subunit) KO mice

Normal sleep/waking amounts; longer duration of REM sleep episodes; fewer 
microarousals in baseline and after sleep deprivation
Decreased arousal from sleep after episodic hypoxia

28

29

Chrm3, Chrm2/4 (muscarinic 
acetylcholine receptor M3, M2/M4) KO 
mice

22% less REM sleep in M3 KO mice 30

Dat (dopamine transporter) KO mice ~18% more waking/24h,  ~ 25% less NREM/24h 
No increase in waking after modafinil or amphetamines 

31

Maoa (monoamine oxidase A) 
transgenic Tg8 mice (MAOA-deficient)

Normal sleep/waking amounts; increased sleep apneas 32

Dbh (dopamine beta hydroxylase) KO 
mice (norepinephrine and epinephrine 
deficient) 

Increased total sleep (due to 30% more NREM); no increase in sleep time after 
deprivation
reduced latency to sleep after mild stressors; increased arousal threshold after sleep 
deprivation

33

34

35

Sert (serotonin transporter) KO mice ~50% more REM sleep/24h 36

37

5-Htr1a (serotonin receptor 1A) KO 
mice

~40% more REM sleep/24h; no increase in REM sleep after sleep deprivation 38

5-Htr1b (serotonin receptor 1B) KO 
mice

~30% more REM sleep, and ~ 10% less NREM sleep in the light phase; no increase 
in REM sleep after sleep deprivation-

39
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5-Htr2a (serotonin receptor 2A) KO 
mice

~25% less NREM sleep/24h; no increase in delta activity after sleep deprivation 40

5-Htr2c (serotonin receptor 2C) KO 
mice

~20% more waking/24h, ~ 20% less NREM sleep/24h; increase in NREM sleep 
duration after sleep deprivation (20-40% vs ns in controls); larger increase in delta 
activity after sleep deprivation relative to controls

41

5-Htr7 (serotonin receptor 7) KO mice <20% less REM sleep/24h (decrease in the light period only) 42

Hdc (histidine decarboxilase) KO mice >23% more REM sleep/24h; decreased waking around the light-to-dark transition; 
shorter sleep latency compared to wild type mice after behavioral stimuli

43

Hrh1 (histamine H1 receptor) KO mice Normal sleep/waking amounts (but fewer brief awakenings); no increase in waking 
after infusion of orexin A in the lateral ventricle
No increase in waking after infusion of H3 receptor antagonist

44

45

46

Hrh2 (histamine H2 receptor) KO mice
Hrh3 (histamine H3 receptor) KO mice
Hdc (histidine-decarboxylase) KO mice

No increase in waking after infusion of H3 receptor antagonists in HDC or H3R KO 
mice; increased waking in H2R KO mice 

46

Hcrt/Ox (Prepro-hypocretin/orexin) KO 
mice

“narcoleptic episodes” (behavioral arrest); sleep-onset REM episodes; decreased 
latency to REM sleep; more REM sleep in the dark period
slightly more REM sleep in the dark period; fewer waking episodes of long duration; 
normal circadian and homeostatic sleep regulation

47

48

49

Hcrt/Ox -ataxin 3 transgenic mice (loss 
of orexin cells)
Hcrt/Ox -ataxin 3 transgenic rats (loss 
of orexin cells)

Effects on sleep very similar to those in the  Prepro-orexin KO mice

Narcoleptic phenotype similar to those in orexin-ataxin 3 mice

50

51

Hcrtr1 (Hypocretin receptor 1) KO 
mice
Hcrtr2 (Hypocretin receptor 2) KO 
mice
Hcrtr1,2 (Hypocretin receptor 1,2) 
double KO mice

Mild sleep fragmentation

decrease in duration of waking and NREM sleep bouts (mostly in the dark phase); 
not as affected by “cataplexy-like” attacks of REM sleep as prepro-orexin KO mice
effects on sleep very similar to those in the  Prepro-orexin KO mice

52

53

Gabra1 (GABA-A receptor a1 subunit; 
point mutation H101R) 

Normal 24h sleep/waking amounts; sleep effects of diazepam as in wild-type mice 54

Gabra2 (GABA-A receptor a2 subunit; 
point mutation H101R) 

Smaller decrease in NREM delta activity after diazepam 55

Gabra3 (GABA-A receptor a3 subunit; 
point mutation H126R; diazepam-
insensitive)

Gabra3 KO mice

Decrease in NREM delta activity after diazepam as in controls

Normal 24h sleep/waking amounts; normal sleep homeostasis; reduced spindling 
activity (10-15Hz) at the NREM-REM transition 

56

57

Gabrb3 (GABA-A receptor b3 subunit) 
KO mice

Normal 24h sleep/waking amounts; no increase in sleep after oleamide infusion

~ 25% less REM sleep during the light phase; ~50% increase in NREM EEG power 
(mainly <7Hz); blunted increase in spindling (sigma activity) at the transition 
NREM-REM

58

59

Gabrd (GABA-A receptor d subunit)
KO mice

No abnormal EEG pattern after gaboxadol 60

Gria3 (glutamate AMPA receptor 
Glur3 subunit) KO mice

8h of recording in the light phase only; overall decrease in EEG power in waking 
and NREM sleep; no increase in low range (<7.5Hz) EEG power in NREM sleep 
relative to waking or REM sleep

61

Grin2a (glutamate NMDA receptor 
NR2A subunit) KO mice

Normal amount of NREM sleep 62

Other signaling pathways, hormones

Sleepless (glycosyl-
phosphatidylinositol-anchored 
protein) loss of function mutation 
(P1) 

~85% decrease in daily sleep amounts, mainly due to decrease in sleep episode 
duration; no hyperactivity but motor incoordination; weak rest/activity rhythm, 
reduced response to sleep deprivation; reduced lifespan

63

Insertional 
mutagenesis
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Acads (short-chain acyl-coenzyme A 
dehydrogenase) 

A deficiency in Acads is linked to a slower theta peak frequency during REM sleep
(mouse chromosome 5)

64

QTL analysis

Rarb (retinoid acid receptor beta) A deletion and polymorphisms affecting Rarb expression influence cortical EEG 
synchrony during NREM sleep as measured by the ratio between delta and theta 
activity 
(mouse chromosome 14)

65

QTL analysis

Pgds (prostaglandin D synthase) 
transgenic mice
L-Pgds (lipocalin-type PGDS) KO mice
H-Pgds (hematopoietic-type PGDS) 
KO mice

Normal 24h sleep/waking amounts; increased NREM sleep after tail clipping

Decreased sleep after infusion of PGDS inhibitor in H-PGDS KO mice but not in L-
PGDS KO mice or H-PGDS/L-PGDS double KO mice

66

67

Dp (prostaglandin receptor) KO mice No increase in NREM sleep after prostaglandin D2 infusion
No decrease in sleep after infusion of PGDS inhibitor 

68

67

Il1r1 (interleukin-1beta type 1 receptor) 
KO mice

Normal 24h sleep/waking amounts (<20% less NREM in the dark phase)
No increase in sleep after IL-1 infusion

69

Il6 (interleukin 6) KO mice ~30% more REM sleep in baseline
Smaller increase in NREM sleep after administration of lipopolysaccharide 

70

71

Il10 (interleukin 10) KO mice Normal 24h sleep/waking amounts (<20% more NREM in the dark phase) 72

Tnfr1 (TNF receptor 1) KO mice ~20% less NREM sleep/24h (due to decrease in the light phase), and ~ 20% less 
REM sleep/24h (genetic background?)

No change in 24h amounts of sleep

73

74

Tnfr2 (TNF receptor 2) KO mice No change in 24h amounts of sleep; ~15% less REM sleep in the light phase 74

Tnf-lt-alpha  (TNF and lymphotoxin 
alpha) double  KO mice

~15% less REM sleep/24h (due to a decrease in the light phase) 74

Ifnar1 (interferon type 1 receptor) KO 
mice

~30% less REM sleep/24h 75

Nfkb1 (nuclear factor-kappaB p50 
subunit) KO mice

26% more sleep/24h (increase in both NREM and REM sleep); larger response after 
sleep deprivation (increase in NREM sleep and delta activity) 

76

Nos (Nitric oxide synthase) KO mice REM sleep reduced (33% less, light phase) in neuronal NOS KO, and increased 
(28% more, light phase) in inducible NOS KO mice

77

Prkg1 (cGMP-dep. Protein kinase type 
I) conditional KO mice (lacking Prkg1
in the brain)

Normal total sleep/24h (but more awake in the light phase); ~25% decrease in REM 
sleep; reduced NREM delta activity during baseline, but normal delta rebound after 
sleep deprivation; increased sleep duration after sleep deprivation; increased 
fragmentation (shorter episodes) of both waking and NREM sleep 

78

ArKO (aromatase cytochrome P450) 
deficient female mice (estrogen-
deficient) 

Normal total sleep/24h (but more sleep in the dark phase); normal response to sleep 
deprivation

79

Lep (ob/ob, leptin-deficient) mice ~10% increase in NREM sleep;  sleep fragmentation; smaller increase in sleep time 
after sleep deprivation

80

Ghrl (ghrelin)  KO mice Slight decrease in NREM sleep, and slight increase in REM sleep; normal response 
to sleep deprivation

81

Prl (prolactin) KO mice ~30% less REM sleep (light phase only); smaller increase in REM sleep after sleep 
deprivation

82
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Dwarf (dw/dw) rats (nonfunctional 
GHRH receptor)

~20% less NREM sleep (both light and dark phase); ~30% less REM sleep (light 
phase only); smaller increase in delta activity after sleep deprivation

83

Dwarf (lit/lit) mice (nonfunctional 
GHRH receptor)

~30% less NREM sleep and <20% less REM sleep in the light phase; 84

TH-hGH transgenic mice (somatotropic 
axis deficiency)

~ 30% less NREM sleep/24h 85

MT-rGH transgenic mice (growth 
hormone overexpression)

11% more NREM sleep and 40% more REM sleep during the light period only 86

Mchr1 (melanin-concentrating hormone 
receptor 1) KO mice

Normal total sleep/24h; 19% more REM sleep in the light phase; larger increase in 
NREM sleep after total sleep deprivation; no differences relative to controls after 
REM sleep deprivation

87

Faah (fatty acid amide hydrolase) KO 
mice (catabolism of endogenous 
cannabinoids)

<15% less waking and <10% more NREM sleep during the light period only; 6% 
more NREM delta activity during the light period; normal response to sleep 
deprivation

88

Plcb1 (phospholipase C, b1 isoform) 
KO mice

Irregular theta activity in REM sleep 89

CRH (corticotrophin-releasing 
hormone) conditional overexpressing 
mice (whole brain or forebrain only)

Increased REM sleep (dark period) and decreased NREM sleep (light period) after 
overexpression in the whole brain (similar trend after overexpression in forebrain 
only); increased REM rebound after sleep deprivation  

90

Others: transcription factors, 
synaptic vesicle release, etc

Prnp (prion) KO mice Normal 24h sleep/waking amounts; increased sleep fragmentation (~ 2-fold increase 
in brief awakenings); larger increase in delta activity after sleep deprivation (40% 
increase vs 20% in controls)

91

92

Prnp transgenic mice (carrying the 
D178N/V129 mutation)

EEG abnormalities (bursts of polyphasic complexes), lack of sleep spindles, reduced 
REM sleep, presence of a  mixed (sleep/wake) state

93

Beta-amyloid precursor protein 
overexpressing mice

~25% less REM sleep/24h 94

Stop (calmodulin-regulated 
microtubule-associated protein) KO 
mice

Videotape, 3h in the dark phase only: reduced “sleeping” time; less grooming before 
sleep 

95

Rho-GDI gamma KO mice Normal sleep/waking cycle and EEG 96

Ube3a (ubiquitin-protein ligase) KO 
mice (animal model for Angelman 
syndrome)

44% less REM sleep/24h; no increase in NREM sleep and delta activity after sleep 
deprivation; paroxysmal EEG discharges in waking and NREM sleep

97

Rab3 (earlybird), Asp77Gly point 
mutation
Rab3 KO mice 

~ 25% increase NREM sleep/24h in Rab3a-/- (but not in Rab3 Ebd/Ebd); reduced 
increase in sleep time after sleep deprivation in both (EEG power not studied)

98

Rim1alpha (Rab3 interacting molecule 
1 alpha) KO mice

~ 50% less REM sleep /24h; ~ 35% less NREM sleep in the dark phase only 99

Fos KO mice ~27% more waking/24h,  ~ 25% less NREM/24h 100

Fosb KO mice ~35% less REM/24h 100
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CREB alpha/delta ( cyclic AMP-
response element binding protein, alpha 
and delta isoforms) deficient mice

<20% more NREM sleep/24h; normal response to sleep deprivation 101

Ion Channels

Shaker (voltage-dependent potassium 
channel, alpha subunit) loss of 
function mutations (Shmsn, Sh102, 
Sh133, ShM) 

~60-85% decrease in daily sleep amount (depending on allele and genetic 
background), mainly due to decrease in sleep episode duration; hyperactivity; 
normal circadian and homeostatic regulation of sleep; memory impairment, reduced 
lifespan

102

EMS 
mutagenesis

Cav2.2 (N-type Ca++ channel, 
alpha1B subunit) KO mice

Normal 24h sleep/waking amounts; longer, fewer REM sleep episodes; overall EEG 
spectral power increased in waking and REM sleep and decreased in NREM sleep 

103

Cav3.1 (T-type calcium channel, 
alpha1G subunit) global KO mice

Cav3.1 (T-type calcium channel, 
alpha1G subunit ) global, thalamic, or 
cortical KO mice

~10% less NREM sleep/24h; more brief awakenings; decreased NREM EEG power 
in the 2-6.5Hz range and at 9.5-10Hz (2.5min recordings only)

<20% less NREM sleep and more brief awakenings in mice with global or thalamic 
deletion; normal sleep mice with cortical deletion; increase in NREM delta activity 
in global and thalamic KO mice is mentioned

104

105

Kv1.2 (voltage-dependent potassium 
channel) KO mice

23% less NREM sleep/24h (at P17; early death due to seizures) 106

Kcnc1, Kcnc3, Kcnc1/3 (Kv3.1, Kv3.3
voltage-dependent potassium channel)
KO mice

Double KO (Kv3.1/Kv3.3): ~30% less total sleep/24h (37% less in the light phase, 
23% less in the dark phase), shorter NREM sleep episodes; similar effects in Kv3.1 
KO mice; no sleep loss in Kv3.3 KO mice
overall decrease in EEG spectral power, but mainly in NREM sleep (<15Hz); no 
increase in sleep time or delta activity after sleep deprivation

107

108

Kcnc2 (Kv3.2 voltage-dependent 
potassium channel) KO mice

Normal 24h sleep/waking amounts; normal response to sleep deprivation; subtle 
change in EEG power spectrum (3-6Hz) in sleep

109

Kcnn2 (Sk2 calcium-dep. small 
conductance potassium channel) KO 
mice

Overall decrease in EEG power in all states, but more pronounced in NREM sleep; 
increased brief awakenings 

110
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