Supplementary figures for:

SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction

Saskia B. Neher^{*1,2}, Niels Bradshaw^{*1,2}, Stephen N. Floor^{3,4}, John D. Gross³, and Peter Walter^{1,2}

Howard Hughes Medical Institute¹, Department of Biochemistry and Biophysics², Department of Pharmaceutical Chemistry³, and Graduate Group in Biophysics⁴ University of California at San Francisco 600 16th Street, San Francisco, CA 94158

Corresponding author: Peter Walter (<u>pwalter@biochem.ucsf.edu</u>) *These authors made equal contributions

Supplementary Figure 1: Helix N1 is present in structures of uncomplexed FtsY. Allignment of FtsY structures from PDB files 1FTS, 2QY9, 1ZU4, 1ZU5, 2Q9C, 2Q9B, 2Q9A, 1VMA, 3B9Q, and 2OG2. Residues homologous to *E. coli* residues 204-221 of helix N1 are shown in red.

Supplementary Figure 2: Effect of length of Ffh N-terminal truncation. Truncation of the entire Ffh helix N1 (amino acids 1-20, called Ffh-21 here) is functionally equivalent to truncation of the first 8 amino acids (Ffh Δ N1). Observed binding rates are plotted as a function of Ffh concentration for Ffh Δ N1-FtsY –RNA (\mathbf{V}), Ffh-21-FtsY –RNA (\mathbf{I}), and Ffh-FtsY –RNA ($\mathbf{\bullet}$). Lines are fits to the equation k_{obs}=k_{on}[Ffh]+k_{off}.

FtsY-204 С FtsY∆N1 10 15 ¹³C (ppm) 20 25

2.0

1.5

1.0

0.5

¹H (ppm)

0.0

-0.5

-1.0

Supplementary Figure 3: Comparison of FtsY-204 and FtsY Δ N1. a. Observed binding rates are plotted as a function of Ffh concentration for Ffh-FtsY –RNA (\blacklozenge), Ffh-FtsY-204 –RNA (\bigstar), and Ffh-FtsY Δ N1 –RNA (\blacklozenge). Lines are fits to the equation $k_{obs}=k_{on}[Ffh]+k_{off}$. b. Plot of observed rates from single turnover GTPase assays measuring GTP hydrolysis rate as a function of FtsY Δ N1 (\blacklozenge),FtsY-204 (\bigstar), or FtsY (\blacklozenge) concentration. Lines are fits to the equation $k_{obs}=k_{cat}[FtsY]/(K_M+[FtsY])$. c. 2D CHSQC NMR spectrum for FtsY Δ N1 (red) is overlaid on the spectrum of FtsY-204 (blue).

Supplementary Figure 4: FtsY Δ N1 but not FtsY-204 undergoes a GppNHp dependent conformational change. a. 2D CHSQC spectrum for FtsY-204+GppNHp (red) is overlaid on the spectrum of FtsY-204 (blue). A peak that broadens in the FtsY-204 spectrum +GppNHp is marked with an arrow. b. 2D CHSQC spectrum for FtsY Δ N1+GppNHp (red) is overlaid on the spectrum of FtsY- Δ N1 (blue).

Supplementary Figure 4. FtsY Δ N1 but not FtsY-204 undergoes a GppNHp dependent conformational change. c. The affinity of GppNHp for FtsY Δ N1 and FtsY-204 was measured by GTPase inhibition assays. Relative rates of GTP hydrolysis are plotted as a function of concentration of GppNHp. Lines are fits to the equation $k_{rel}=K_l/(K_l+[GppNHp])$ d. A region of the 2D CHSQC spectrum containing the peak marked in a is magnified with decreased contour cutoff.