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Supplement 1:

Complete derivation for Step 1,

finding K and A

The dataset used as input to Step 1 of the algorithm is an ordered list of spike times

(t1, ..., tNs), where t1 < t2 < ... < tNs and Ns is the number of spikes in the experimental

record, together with the experimental response to this spike train, Rexp(t). We describe

here an algorithm to minimize

I0 =

∫ +∞

−∞
[R(t)−Rexp(t)]

2 dt,

or, replacing R(t) with the model assumed in Eq. 1 of the main text,

I0 =

∫ +∞

−∞

[
Ns∑
i=1

K(t− ti)Ai −Rexp(t)

]2

dt,

with respect to the discrete variables Ai, i = 1, ..., Ns, and the continuous function K(t).

K(t) is assumed to be causal, that is, to satisfy K(t) = 0 for t ≤ 0, since the system cannot

respond to a spike before the spike has occured, nor can it respond instantaneously.

In practice, we make two simplifications before tackling the problem. The first simplifi-

cation is to discretize time into bins of duration ∆t. Thus,

t = n∆t

ti = ni∆t

Kn = K(n∆t)

Rexp
n = Rexp(n∆t)

where n and ni are integers. Then I0 is replaced by the Riemann sum I:

I =
∞∑

n=−∞

[
Ns∑
i=1

Kn−ni
Ai −Rexp

n

]2

∆t.

The second simplification is to assume that the kernel K has finite memory, that is, that

Kn = 0 for n > N for some integer N . By the causality assumption, we also have Kn = 0
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for n ≤ 0. Thus, the nonzero values of K are at most K1, ..., KN .

Our task now is to minimize I with respect to the N+Ns variables K1, ..., KN , A1, ..., ANs .

This is a calculus problem. To solve it, we differentiate I with respect to each of these

variables and set the result equal to 0. In evaluating the derivatives, we make use of the

relationships

∂Kn

∂Km

= δnm

∂Kn

∂Ai

= 0

∂Ai

∂Kn

= 0

∂Ai

∂Aj

= δij

where δab = 1 if a = b, and δab = 0 otherwise.

Differentiating I with respect to K, we have

0 =
∂I

∂Km

= 2∆t

∞∑
n=−∞

[
Ns∑
i=1

Kn−ni
Ai −Rexp

n

]
Ns∑
j=1

δn−nj ,mAj

= 2∆t

[
Ns∑

i,j=1

Km+nj−ni
AiAj −

Ns∑
j=1

Rexp
m+nj

Aj

]
.

In the last step, we have made use of the fact that the only value of n for which δn−nj ,m is

nonzero is n = m + nj. Let

Pn =
∑

(i,j):ni−nj=n

AiAj

with the understanding that Pn = 0 if there are no pairs (i, j) such that ni − nj = n, and

also let

Qm =
Ns∑
j=1

Rexp
m+nj

Aj.

In this notation, the equation 0 = ∂I/∂Km becomes

∞∑
n=−∞

Km−nPn = Qm.
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Recalling that the only nonzero values of K are K1, ..., KN , and changing indices, we obtain

N∑
n=1

Pm−nKn = Qm, (S1)

which holds for m = 1, ..., N and therefore has the form of a linear system of N equations in

the N unknowns K1, ..., KN . It is clear from the definition of P that the matrix P with the

elements Pmn = Pm−n is a symmetric Toeplitz matrix, and it can be shown that this matrix

is positive definite (except in the trivial case that all of the Ai’s are equal to zero). These

properties of its matrix guarantee that the above linear system has a solution K1, ..., KN ,

and moreover that the solution is unique. Note, however, that the solution depends upon

the Ai’s, which are also unknown.

Differentiating I with respect to the Ai’s, we have

0 =
∂I

∂Ak

= 2∆t

∞∑
n=−∞

[
Ns∑
i=1

Kn−ni
Ai −Rexp

n

]
Ns∑
j=1

Kn−nj
δjk

= 2∆t

∞∑
n=−∞

[
Ns∑
i=1

Kn−ni
Ai −Rexp

n

]
Kn−nk

.

Let

Xki =
∞∑

n=−∞
Kn−nk

Kn−ni

Yk =
∞∑

n=−∞
Rexp

n Kn−nk
.

The sums over n that appear in these definitions of Xki and Yk each involve only a finite

number of nonzero terms, since Kn = 0 for n ≤ 0 and also for n > N . Expressed in terms

of X and Y , the equations for the Ai’s take the form of a linear system:

Ns∑
i=1

XkiAi = Yk (S2)

for k = 1, ..., Ns. It is clear that the matrix X of this linear system is a symmetric, banded

matrix, and it can be shown that X is positive definite. It follows that a solution A1, ..., ANs

of this linear system exists and moreover is unique. Note, however, that this solution depends
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on K1, ..., KN , which appears in the definitions of X and Y .

In the foregoing, we have found a linear system that determines K given A, Eq. S1, and

a linear system that determines A given K, Eq. S2. To solve for the values of K and A that

simultaneously minimize I, we use the following iterative scheme:

K̂(l+1) = (P−1Q)(l)

Â(l+1) = (X−1Y )(l+1)

for l = 0, 1, .... Recall that P and Q depend on A. Thus (P−1Q)(l) is shorthand for the

value of P−1Q when A = Â(l). Similarly, (X−1Y )(l) is shorthand for the value of X−1Y when

K = K̂(l). To start the iterations, we arbitrarily set Â
(0)
i = 1 for i = 1, ..., Ns.

For l ≥ 1, the iterative scheme defined above generates an estimate K̂(l) of K and an

estimate Â(l) of A. We can use these to construct an estimate R̂(l) of R according to

R̂(l)
n =

Ns∑
i=1

K̂
(l)
n−ni

Â
(l)
i .

Then we can follow the progress of the algorithm by monitoring

I(l) =
∞∑

n=−∞

[
R̂(l)

n −Rexp
n

]2

∆t.

Since each step of our iterative scheme finds the optimal value of K or A, given the current

estimate of A or K, respectively, it is guaranteed that

I(l+1) ≤ I(l).

Moreover, since I(l) is bounded from below by 0, it is also guaranteed that I(l) converges as

l → ∞. This does not by itself guarantee that K̂(l) and Â(l) converge, but that is what we

usually observe in practice (see main text).
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Supplement 2:

Complete derivation for finding H in Step 2

As explained in the main text, a key feature of our algorithm in Step 2 is the simplification

of Eq. 2 to the equation

S(t) =
∑

j:tj<t

H(t− tj).

This equation can then be used to find H(t) by an algorithm analogous to that in Step 1.

The input to this algorithm is an ordered list of spike times (usually the same spike times

as in Step 1) (t1, ..., tNs), where t1 < t2 < ... < tNs , together with the corresponding Sexp(t)

constructed as explained in the main text. We wish to minimize

I0 =

∫ +∞

−∞
[S(t)− Sexp(t)]

2 dt

=

∫ +∞

−∞

[
Ns∑
j=1

H(t− tj)− Sexp(t)

]2

dt

with respect to the continuous function H(t). We proceed with a similar discretization of

time as in Step 1:

t = n∆t

tj = nj∆t

Hn = H(n∆t)

Sexp
n = Sexp(n∆t)

where n and ni are integers. Then I0 is replaced by the Riemann sum I:

I =
∞∑

n=−∞

[
Ns∑
j=1

Hn−nj
− Sexp

n

]2

∆t.

As in Step 1, we assume that the kernel H is causal and has finite memory, so that Hn = 0

for n ≤ 0 and also for n > N for some integer N . Thus, the nonzero values of H are at most

H1, ..., HN .

To minimize I with respect to the variables H1, ..., HN , we differentiate I with respect to
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each of these variables and set the result equal to 0. We make use of the relationship

∂Hn

∂Hm

= δnm

where δnm = 1 if n = m, and δnm = 0 otherwise.

Thus,

0 =
∂I

∂Hm

= 2∆t

∞∑
n=−∞

[
Ns∑
j=1

Hn−nj
− Sexp

n

]
Ns∑
i=1

δn−ni,m

= 2∆t

[
Ns∑

i,j=1

Hm+ni−nj
−

Ns∑
i=1

Sexp
m+ni

]
.

In the last step, we have made use of the fact that the only value of n for which δn−ni,m is

nonzero is n = m + ni. Let

Wn =
∑

(i,j):nj−ni=n

1

with the understanding that Wn = 0 if there are no pairs (i, j) such that nj − ni = n, and

also let

Zm =
Ns∑
i=1

Sexp
m+ni

.

The equation 0 = ∂I/∂Hm then becomes

∞∑
n=−∞

Hm−nWn = Zm.

Recalling that the only nonzero values of H are H1, ..., HN , and changing indices, we obtain

N∑
n=1

Wm−nHn = Zm.

This holds for m = 1, ..., N , and therefore has the form of a linear system of N equations

in the N unknowns H1, ..., HN . It is clear from the definition of W that the matrix W with

the elements Wmn = Wm−n is a symmetric Toeplitz matrix, and it can be shown that this

matrix is positive definite. These properties of its matrix guarantee that the above linear

system has a solution H1, ..., HN , and moreover that the solution is unique.
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