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Figure S1. [previous page]. (A) LOOCV performance of each of nine different 

methods on 31 data sets in benchmark. Color accents represent Nucleotide-

level sensitivity on a scale of 0 to 1, and cases with empirical p-value <= 

0.05 are marked by asterisks. The top row shows the number of such data 

sets for each method. Numbers to the right are best Nucleotide-level 

sensitivity for each data set. One-on-one comparison of methods: For each 

pair of methods M1 (row) and M2 (column), (B) the “wins” of M1 versus 

M2 (i.e., the number of data sets on which nucleotide-level sensitivity of M1 

was greater than that of M2 by at least 10% of data set size). (C) The 

difference between the wins of M1 versus M2 and the wins of M2 versus 

M1 in nucleotide-level sensitivity. (D) Sixteen data sets on which at least 

one method has nucleotide level sensitivity p-value of 0.05 or less in all four 

instantiations. Color indicates the number of instantiations (out of four) on 

which the performance was significant (p <= 0.05): white=4, yellow=3, 

orange=2, brown=1, black=0. (E) Comparison of single species and multi-

species versions of HexMCD. For each each LOOCV instantiation, the 

Nucleotide-level sensitivity and number of amenable data sets at p ≤ 0.05 

(the value above each bar) are compared between the two methods. 
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Figure S2. [previous page]. (A, B, C) The best CRM-level (left)/nucleotide-

level(right) sensitivity on a data set is plotted against three high level 

characteristics of the data set: extent of homotypic clustering as measured by 

the “FTT-Z rank” (A), G/C content of training CRMs (B) and evolutionary 

conservation of training CRMs (C). The Pearson’s correlation coefficient 

(corr) and its p-value are reported on each plot. 



 

 
 



Figure S3. [previous page]. Dataset size and performance for amenable 

datasets in random training set evaluations. Red circles indicate datasets that 

performed no better with their appropriate training set than with a random 

training set; blue circles indicate datasets where random training sets led to 

worse performance. Near-perfect discrimination is achieved at n=33.5 (line). 





Figure S4. [previous page]. Cladogram view of the 200 6-mers used by 

HexYMF for the blastoderm data set. We find k-mers matching the 

consensus string of six of the canonical motifs of the segmentation network  

(Bicoid, Caudal, Hunchback, Dstat, Kruppel, Tailless, matching the 6-mers 

GGATTA, CATAAA, AAAAAC, CCGGGA, AAGGGT, AGTCAA 

respectively) and Dorsal, also a blastoderm stage-active transcription factor, 

matching GGGAAA. 
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Figure S5. [previous page]. Cross-validation on mammalian enhancers. CRM-

level sensitivity is shown for each method on each data set. Values with 

empirical p-value < 0.05 are shaded, and those at p < 0.01 are in darker 

shade. Best performance on each data set is shown in bold entries. 



Table S1. [next page]. Relationship between performance and methodological 

features. For each methodological feature, two methods were evaluated – 

one that incorporates the feature (top) and one that does not (bottom). (The 

two methods are identical otherwise). The average CRM-level sensitivity of 

each method and the net number of wins of the second method (i.e., one with 

the methodological feature) are shown. The “net number of wins” is the 

difference in numbers of wins of the two methods. 



Method characteristic Method Name
CRM-Level 
Sennsitivity

# wins 
(Second method vs. First)

D2z-mo1 0.21
D2z-mo2 0.24
D2z-cond-s100-weights 0.24
D2z-cond-mo1-s200-weights 0.25
D2z-cond-weights 0.24
D2z-cond-mo1-weights 0.25
D2z-cond-mo1-s200-weights 0.25
D2z-cond-mo1-weights 0.25
D2z-cond-mo1-k5 0.23
D2z-cond-mo1 (k=6) 0.24
D2z-cond-mo1-weights 0.25
D2z-cond-mo1-weights-rc 0.26
D2z-mo1 0.21
D2z-cond-mo1 0.24
D2-s100-rc 0.25
D2-s100-weights-rc 0.24
D2z-cond-s100 0.24
D2z-cond-s100-weights 0.24
D2z-cond 0.14
D2z-cond-s100 0.24
D2-s100-weights-rc 0.24
D2-s200-weights-rc 0.25
D2z-mo1 0.21
D2z-mo1-sepcrms 0.24
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Table S2*. In-depth analysis of CRM predictions for the blastoderm dataset. 

For each of the 113 predicted modules (Release 4.3 coordinates in Column A), 

the table shows: (i) nearest neighbor gene and location of module relative to 

gene (column B), (ii) whether or not it is a known module (column C), and if so, 

(iii) whether or not it is a “training CRM” (column D), (iv) whether or not the 

nearest gene has “pair-rule” expression pattern (column E), or “dorso-ventral 

(D/V)” expression pattern (column F), and (v) for the modules that do not 

overlap known modules (rows 62-115), the motifs associated with the module 

(columns G-AB). For modules that do overlap known modules, column AC 

names that known module, and for the subset of these that were not in the 

training set, column AD notes the tissue where the known module drives 

expression. The key word “long” in this column indicates that the reason for the 

module not being in the training set was its large length (modules longer than a 

threshold length were excluded from the training sets). 

 

Table S3*. Cross-validation performance (complete data). The CRM and 

nucleotide level sensitivity and corresponding p-values of all methods in the 

four instantiations of cross-validation. Also included are the average 

sensitivity values over all instantiations. 

 

Table S4*. Worksheets “HexYMF-s200-rc” and “PAC-rc”  represent the 

genome-wide predictions in human for the early cardiovascular development 

data set, using these two methods respectively. Column A names the 

evolutionarily conserved region (ECR) in which the predicted module is 

located, with the start position of the window being given by column B. The 

score of the module is in column C, and information on adjacent gene(s) is 
                                                 
* These tables are included as separate Excel files: TableS2.xls, TableS3.xls, TableS4.xls, 
TableS5.xls 



in column D. The fraction of the module’s sequence that was identified as 

being short tandem repeats is shown in column E. Columns F and G indicate 

if the GATA motif or the Ets motif were found to be present in this module 

(and if so, which of the many variants of these motifs from TRANSFAC 

were present). The last two columns indicate the rank of the module by each 

method, based on the raw score (i.e., before modules were re-ranked based 

on other factors such as presence of at least one motif and the amount of 

short tandem repeat coverage). 

 

Table S5*. CRM-level and nucleotide level sensitivity values for each of 

seven motif-blind methods on eight data sets of mouse enhancers.  

Worksheet “localflanks.crm.sens”: CRM-level sensitivity values. Worksheet 

“localflanks.crm.pval”:  Empirical p-values of CRM-level sensitivity. 

Worksheet “localflanks.nuc.sens”: Nucleotide-level sensitivity values. 

Worksheet “localflanks.crm.pval”:  Empirical p-values of nucleotide-level 

sensitivity. 

 

Table S6*.  Cross-validation performance in mouse enhancers (complete 

data). The CRM and nucleotide level sensitivity and corresponding p-values 

of all methods in all 10 instantiations of cross-validation. 

                                                 
* These tables are included as separate Excel files: TableS5.xls, TableS6.xls 
 



Table S7. Individual anatomy terms included in each data set of REDfly 

CRMs  

 
amnioserosa (n=3): ventral ectoderm (n=4): 
amnioserosa ventral_ectoderm 
amnioserosa_anlage ventral_ectoderm_anlage_in_statu_nascendi 
amnioserosa_anlage_in_statu_nascendi ventral_ectodermal_primordium 
  ventral_epidermis_primordium 
blastoderm (n=1):   
blastoderm_embryo ectoderm.2 (n=16): 
  dorsal_ectoderm 
cardiac (n=9): dorsal_ectoderm_anlage 
cardiogenic_mesoderm dorsal_ectoderm_anlage_in_statu_nascendi 
dorsal_vessel_specific_anlage dorsal_ectodermal_primordium 
embryonic_dorsal_vessel dorsal_epidermis_specific_anlage 
embryonic_heart ectoderm 
embryonic_pericardial_cell ectoderm_anlage 
larval_dorsal_vessel ectoderm_anlage_in_statu_nascendi 
larval_heart embryonic_epidermis 
larval_pericardial_cell procephalic_ectoderm_anlage 
myocardial_cell procephalic_ectoderm_anlage_in_statu_nascendi 
  procephalic_ectoderm_primordium 
cns (n=21): ventral_ectoderm 
RP2_neuron ventral_ectoderm_anlage_in_statu_nascendi 
U_neuron ventral_ectodermal_primordium 
anterior_corner_cell ventral_epidermis_primordium 
embryonic_brain   
embryonic_central_brain mesoderm.2 (n=47): 
embryonic_central_brain_glia abdominal_lateral_transverse_muscle 
embryonic_central_brain_mushroom_body adepithelial_cell 
embryonic_central_nervous_system adult_dorsal_vessel 
embryonic_ganglion_mother_cell adult_fat_body 
embryonic_nervous_system adult_heart 
embryonic_neuroblast adult_muscle_system 
embryonic_neuron adult_pericardial_cell 
embryonic_ventral_nervous_system adult_somatic_muscle 
interneuron adult_visceral_muscle 
larval_central_nervous_system cardiogenic_mesoderm 
larval_mushroom_body direct_wing_muscle 
larval_optic_lobe dorsal_internal_oblique_muscle_1 
neuroblast_NB6-4 dorsal_vessel_specific_anlage 
neuron embryonic_dorsal_vessel 
thoracico-abdominal_ganglion embryonic_fat_body 
ventral_unpaired_cell embryonic_heart 
  embryonic_muscle_system 
Imaginal-disc.1 (n=14): embryonic_myoblast 



antennal_disc embryonic_pericardial_cell 
clypeo-labral_disc embryonic_somatic_muscle 
eye_disc embryonic_visceral_muscle 
eye-antennal_disc fat_body 
eye-antennal_disc_specific_anlage fat_body/gonad_primordium 
genital_disc hemocyte_primordium 
haltere_disc larval_dorsal_vessel 
imaginal_disk larval_fat_body 
labial_disc larval_heart 
male_genital_disc larval_muscle_system 
ventral_thoracic_disc larval_pericardial_cell 
ventral_thoracic_disc_specific_anlage larval_somatic_muscle 
visual_primordium larval_visceral_muscle 
wing_disc longitudinal_visceral_mesoderm 
  longitudinal_visceral_muscle_fibers 
ectoderm.1 (n=4): longitudinal_visceral_muscle_primordium 
ectoderm mesoderm 
ectoderm_anlage mesoderm_anlage_in_statu_nascendi 
ectoderm_anlage_in_statu_nascendi midgut_muscle 
embryonic_epidermis myocardial_cell 
  somatic_mesoderm 
endoderm (n=13): somatic_muscle_specific_anlage 
anterior_endodermal_primordium tergotrochanteral_muscle 
anterior_midgut_proper_primordium trunk_mesoderm_anlage 
embryonic_hindgut trunk_mesodermal_primordium 
embryonic_midgut tubular_muscle 
foregut_primordium ventral_plate 
foregut_specific_anlage visceral_mesoderm 
larval_midgut visceral_muscle_primordium 
midgut_constriction_1   
pHiGP2 neuronal (n=31): 
posterior_embryonic_midgut RP2_neuron 
posterior_endoderm_anlage U_neuron 
posterior_endodermal_primordium anterior_corner_cell 
posterior_midgut_proper_primordium chemosensory_sensory_organ 
  embryonic_brain 
mesoderm.1 (n=2): embryonic_central_brain 
mesoderm embryonic_central_brain_glia 
mesoderm_anlage_in_statu_nascendi embryonic_central_brain_mushroom_body 
  embryonic_central_nervous_system 
neuroectoderm (n=2): embryonic_ganglion_mother_cell 
neuroectoderm embryonic_nervous_system 
ventral_neuroectoderm embryonic_neuroblast 
  embryonic_neuron 
pns (n=15): embryonic_peripheral_nervous_system 
chemosensory_sensory_organ embryonic_ventral_nervous_system 
embryonic_peripheral_nervous_system interneuron 
mesothoracic_femoral_chordotonal_organ larval_central_nervous_system 
metathoracic_femoral_chordotonal_organ larval_mushroom_body 
peripheral_nervous_system larval_optic_lobe 



prothoracic_femoral_chordotonal_organ mesothoracic_femoral_chordotonal_organ 
scolopophorous_organ metathoracic_femoral_chordotonal_organ 
sensillum_campaniformium_of_anterior_crossvein neuroblast_NB6-4 
sensillum_campaniformium_of_dorsal_radius neuron 
sensillum_campaniformium_of_dorsal_radius_Sc1 peripheral_nervous_system 
sensory_organ_precursor_cell prothoracic_femoral_chordotonal_organ 
twin_sensillum_of_margin_1 scolopophorous_organ 
twin_sensillum_of_margin_2 sensory_organ_precursor_cell 
ventral_cibarial_sense_organ thoracico-abdominal_ganglion 
ventral_pit ventral_cibarial_sense_organ 
  ventral_pit 
tracheal-system (n=7): ventral_unpaired_cell 
embryonic_spiracle   
embryonic_trachea wing (n=7): 
embryonic_tracheal_pit sensillum_campaniformium_of_anterior_crossvein 
embryonic_tracheal_system sensillum_campaniformium_of_dorsal_radius 
filzkorper sensillum_campaniformium_of_dorsal_radius_Sc1 
posterior_spiracle_primordium twin_sensillum_of_margin_1 
tracheal_primordium twin_sensillum_of_margin_2 
  wing 

 wing_disc 

 

 



Table S8. [next page]. a refers to percentage of CRMs that drove gene 

expression in the predicted pattern. na=not applicable to this method 
b 5/7 (71%) gave enhancer activity, 1/7 was found to be a negative 

regulatory element 

Note: Only studies in which at least 5 sequences were validated are included, 

and only those with true in vivo (not just cell culture) testing. 



 

Study Organism Success Rate Tissue Specificitya 
(Halfon et al., 2002) Drosophila 14% (1/7) 14% 
(Berman et al., 2004) Drosophila 33% (9/27) 22% 
(Gaudet et al., 2004) C. elegans 86% (6/7)b 100% 
(Schroeder et al., 2004) Drosophila 81% (13/16) 100% 
(Ochoa-Espinosa et al., 2005) Drosophila 79% (11/14) 100% 
(Hallikas et al., 2006) mouse 70% (7/10) na 
(Pennacchio et al., 2006) mouse 45% (75/167) na 
(Philippakis et al., 2006) Drosophila 50% (6/12) 33% 
this study Drosophila and mouse 100% (7/7) 57% 
    

 



Table S9. Primer sequences used for Drosophila and mouse construct  
 
 
Primer sequences used for Drosophila constructs 
edl 
F: CTATATTATTCCACGTTTTC 
R: TGTCCAAGACGATTCTTAT  
 
odd 
F: GTTTTCAAATAAAATTACAATG       
R: GCTAGGACGCAGAGCTG            
 
srp 
F: GGGAATTCCATTTATCTGA  
R: CTTTTAATGCAACAATAAGC 
 
SoxN 
F: ATTACTTCGACTCCAGTC   
R: CTTTCCTTTTAATCAAAGTG 
 
cas 
F: CATAAATATAATCAAATCTTAG       
R: ATCGTACTCCGCCCCT     
 
 
Primer sequences used for mouse constructs 
C1orf164Fw      TAAGGATCCACAACCCCCTTATCCCTCAC 
C1orf164Rv      TAAGTCGACCTGCTAGGACCCTGGAAGTG 
 
EBF3Fw          TAAGGATCCTTTCAAAGAGCAACTGGGAC 
EBF3Rv          TAAGATATCCGGTGGGCTATTGTTATAGGG 



Table S10. Search Criteria used for defining expression gene sets 
 
Blastoderm (BDGP) 
select stages 1-6 only 
genes with blastoderm pattern as used in Halfon et. al (2002). 
 
cardiac_mesoderm (BDGP) 
cardiac mesoderm primordium 
cardiac mesoderm primordium 
dorsal vessel specific anlage 
embryonic/larval circulatory system 
embryonic/larval dorsal vessel 
 

embryonic/larval pericardial cell 
lymph gland 
lymph gland specific anlage 
pericardial cell specific anlage 
 
 

 
cns (BDGP) 
embryonic brain 
embryonic central brain 
embryonic central brain 
embryonic central brain glia 
embryonic central brain glia 
embryonic central brain mushroom body 
embryonic central brain neuron 
embryonic central brain neuron 
embryonic central brain pars intercerebralis 
embryonic central brain surface glia 
embryonic central brain surface glia 
embryonic central nervous system 
embryonic ganglion mother cell 

embryonic ganglion mother cell 
embryonic inner optic lobe 
embryonic inner optic lobe primordium 
embryonic optic lobe 
embryonic optic lobe primordium 
embryonic outer optic lobe 
embryonic outer optic lobe primordium 
mushroom body primordium 
neuroblasts of ventral nervous system 
pars intercerebralis primordium 
procephalic neuroblasts 
protocerebrum primordium 
ventral nerve cord 
ventral nerve cord primordium 
 

 
eye.1 (FlyBase) 
FBbt: 00004508 (eye) 
 
imaginal_disc.1 (FlyBase) 
FBbt: 00001761 (imaginal disc) 
 
mesectoderm (BDGP) 

mesectoderm anlage 
mesectoderm anlage in statu nascendi 
 

mesectoderm primordium 
midline primordium 
 

 
mesoderm.1 (BDGP) 
head mesoderm P2 primordium,  
head mesoderm anlage,  

trunk mesoderm anlage,  
trunk mesoderm anlage in statu nascendi,  



head mesoderm in statu nascendi,  
mesoderm anlage in statu nascendi,  

trunk mesoderm primordium 

 
neuroectoderm (FlyBase) 
a) FBbt: 00001061 (ventral neurogenic region) 
b) FBbt: 00005554 (ventral_nerve_cord_primordium) 
 
pns (BDGP) 
sensory nervous system primordium,  
sensory nervous system specific anlage 
 
somatic muscle (FlyBase) 
a) FBbt: 00000464 (embryonic/larval somatic muscle) 
b) FBbt: 00000129 (somatic mesoderm) 
 
ventral_ectoderm (BDGP) 
ventral ectoderm anlage 
ventral ectoderm anlage in statu nascendi 

ventral ectoderm primordium 
ventral epidermis primordium 
ventral epidermis primordium 

 
visceral_mesoderm (BDGP) 
circular visceral muscle fibers 
embryonic/larval visceral muscle 
longitudinal visceral mesoderm primordium 

longitudinal visceral muscle fibers 
visceral muscle primordium 
 

 
ectoderm.2 (BDGP) 
dorsal ectoderm anlage 
dorsal ectoderm anlage in statu nascendi 
dorsal ectoderm primordium 
dorsal epidermis primordium 
ectoderm anlage in statu nascendi 
embryonic dorsal epidermis 
procephalic ectoderm anlage 

procephalic ectoderm anlage in statu 
nascendi 
procephalic ectoderm primordium 
ventral ectoderm anlage 
ventral ectoderm anlage in statu nascendi 
ventral ectoderm primordium 
ventral epidermis primordium 

 
neuronal (BDGP) 
embryonic central brain neuron,  
lateral cord neuron,  
ventral midline neuron 
 



Supplementary Note S1. General-level characterization of various scoring 

schemes evaluated here. 
 

Score category Scores in 
category Novel? What is new? 

Based on all 
words or 
subset of 
words? 

Clover-
ClusterBuster No - Motif 

compendium-
based  Stubb-MDB  Yes Motif selection 

procedure 

N/A 

HexMCD No - Markov chain 
based 
discrimination  DiHexMCD Yes Discriminative training 

of Markov chains 
All 

Dot product-based D2z variants Yes Calculation of 
statistical significance 

Either all or 
subset 

Word selection, 
followed by 
Poisson statistics 

PAC Yes Definition of score is 
new Subset 

HexDiff No - Word selection, 
followed by 
weighted sum of 
counts 

HexYMF Yes Selection and weights 
of words 

Subset 

 
 

Score category Scores in 
category 

Statistical 
significance of 
score calculated? 

CRM 
Model?

Background 
model for test 
sequence 

Clover-
ClusterBuster Motif 

compendium-based Stubb-MDB 
Yes (use of LLR) Yes 

(HMM) 
Markov chain 
(low order) 

HexMCD Markov chain 
based 
discrimination DiHexMCD Yes (use of LLR) Yes 

(MC-5) 
Markov chain 
(5th order) 

Dot product-based D2z variants Yes (z-score) No MC (low order) 

Word selection, 
followed by 
Poisson statistics 

PAC 

Partially (Poisson 
p-values are 
combined 
heuristically) 

No MC (low order) 

HexDiff Word selection, 
followed by 
weighted sum of 
counts 

HexYMF No No No 

 



 
Supplementary Note S2. Discussion on the choice of p≤0.05 as the 

threshold for statistically significant sensitivity 

Note that Figure 1A marks a cell with a “*” whenever the sensitivity of the 

method on the data set has p-value ≤ 0.05. Given that we are testing 9 

methods for each data set, there is an issue similar to “multiple hypotheses 

correction”, and a concern whether 0.05 is “too liberal” a choice. 

• Firstly, most (i.e., 90/118) of the p-values corresponding to the “*” cells 

are actually ≤ 0.01. (See Supplementary Table S3, worksheet 

“crm_pval.1”; the “<0.05” and “<0.01” cases are highlighted in darker 

and lighter shades respectively.).  

• Secondly, we believe that 0.05 is a reasonable threshold for assessing 

significant performance of a given method on a given data set. The 

problem arises when we make global claims about the number of 

significant cells in Figure 1A; such claims must correct for “multiple 

hypotheses testing”. The first such “global” claim we have made is that 

“… the best motif-blind methods … succeed on close to half of the data 

sets.” We have checked that this is true if we use Q-values of Storey & 

Tibshirani (PNAS 2003) for multiple hypotheses correction. The q-value 

is, loosely speaking, the expected false discovery proportion 

corresponding to a p-value. For the three methods mentioned in context, 

the p-value threshold of 0.05 corresponds to a q-value threshold of 0.02, 

0.10 and 0.07 respectively, thus validating our claim even after multiple 

hypotheses correction. The only other global claim we have made about 

the matrix of p-values (Figure 1A) is that 15 of the 31 data sets are 

amenable to at least one method (among the eight listed). For this claim, 



we have required that the p-value threshold (of 0.05) be met by the 

method on each of four independent instantiations of cross-validation, 

thus effectively setting a much stricter threshold on each (method, data 

set) combination.  

Finally, as a “back-of-the-envelope” calculation, we point out that there are 

118 cells marked with a “*” in Figure 1(A), while at p ≤ 0.05, one would 

expect 0.05 x 9 x 31 = 14 such cells. Similarly, there are 90 cells with p ≤ 

0.01 (Supplementary Table S3), while only 3 are expected. 



Supplementary Note S3. Motif-based prediction using an externally 

developed suite of algorithms 

We have deployed our new method called “Stubb-MDB” as a point of 

comparison to the motif-blind approaches that are the main topic of this 

paper. Results showing that Stubb-MDB performs relatively poorly 

compared to the motif-blind methods tested here, may be found in Figure 1. 

In order to have great confidence in this comparison between motif-based 

and motif-blind approaches, we evaluated an alternative motif-based 

pipeline – that of using “Clover” for motif selection and “ClusterBuster” for 

scanning with selected motifs. Both programs are developed by Zhiping 

Weng and colleagues and run with default. The motif compendium used was 

the same as that for Stubb-MDB. ClusterBuster was run with default 

parameters. We found success levels to be comparable to that of Stubb-

MDB. (See Supplementary Table S3, worksheets crm_sens.1 and 

crm_pval.1, showing the CRM-level sensitivity and p-values respectively 

with each method for each data set, on one of the cross-validation 

instantiations.) Here is a brief summary of the results of Stubb-MDB and 

Clover-ClusterBuster: 
 Stubb-MDB Clover-ClusterBuster 

# data sets tested on 31 31 

Average CRM-level sensitivity 28% 23% 

Average CRM-level sensitivity over 15 

amenable data sets 

39% 35% 

# data sets with p <= 0.05 10 9 

Average nucleotide-level sensitivity 14% 17% 

Average nucleotide-level sensitivity over 15 

amenable data sets 

25% 20% 

# data sets with p <= 0.05 12 12 



Supplementary Note S4. Difference between our benchmark and that of 

(Ivan et al., 2008). 

In our new benchmark each test CRM is planted in a genomic sequence of 

length 10 Kbp, with G/C content similar to the native flank of the CRM 

(called target sequence). Therefore the search space for CRM is 10kb+CRM 

length. This is harder benchmark than our previous benchmark introduced in 

Ivan et. al (2008) in which each CRM is embedded in a genomic sequence of 

length 10 times CRM length. Since all of our datasets except cns, imaginal-

disc-2, tracheal system, and wing have average CRM length of less than 1kb, 

the search space is usually shorter than the search space in our new 

benchmark. 



Supplementary Note S5. Web Interface for the results, training datasets and 

sources 

 

 

The web interface2 includes (i) a link to predicted CRMs for each dataset 

which contains some information about the CRM (e.g. location, nearby gene, 

chromosome number, corresponding link to genome surveyor, flybase, 

BDGP and flyexp), the number of presented motifs, and link to presented 

motifs’ logo. (ii) The genesets that have been used in this report (the search 

criteria used for defining the genesets are itemized in the next section) (iii) 

the pipeline source code that includes the implementation of all methods 

described in the paper and (iv) The training crms. 
 

                                                 
2 http://veda.cs.uiuc.edu/scrm/index.htm 



Supplementary Note S6. Novel CRMs in blastoderm data set 

We report here on the overlap between the 113 modules predicted for the 

blastoderm data set by our pipeline and the A/P patterning modules predicted by a 

previous motif-based method (Sinha et al., 2004) and a non motif-based method 

(Grad et al., 2004). Note that the latter was based on two-species comparisons, 

while the predictions (considered here) from (Sinha et al., 2004) as well as our 

current work are based on D. melanogaster alone. 

1) We have noted in text that the 5 tested fly CRMs were not reported by Ahab.  

2) We considered the list of predictions made using Stubb (single species) in 

(Sinha et al., 2004).   

3) We considered the list of predictions made by (Grad et al., 2004).  

Our “novel” set of 54 predictions had very little overlap with the predictions of 

(Grad et al., 2004). There was a more substantial overlap (23/54) when 

considering all 2964 module predictions made by Stubb-SS in (Sinha et al., 2004). 

However, when we consider only the top 113 modules predicted by Stubb (i.e., the 

same number of predictions as our method), there is an overlap of only two 

modules. In other words, our novel set largely consists of unreported modules, 

although many of these were predicted at relatively low confidence levels in 

(Sinha et al., 2004) (Stubb). In any case, we designate these 54 modules as novel 

since none of them have been experimentally characterized previously.  

 Our predictions with 

literature support (total 59) 

Our novel predictions 

(total 54) 

Overlap with Stubb (all 2964) 27 23 

Overlap with Stubb (top 113) 14 2 

Overlap with Grad et al (all 

412) 

24 5 

Overlap with Grad et al (top 

113) 

10 3 



Supplementary Note S7. Relationship between performance and 

methodological features  

We performed pair-wise comparison of different variants of the D2-z score 

that differed in only one aspect (such as Markov order, or use of subsets of 

motifs, etc.), by counting the number of data sets (over all four instantiations) 

on which one method outperforms the other. The results are shown in Table 

S1 (Supplementary Materials). The most interesting observations from this 

table are that we get significantly better performance overall by (1) using a 

subset of words instead of all possible k-mers, (2) calculating conditional z-

scores (of D2) rather than using unconditional z-scores as done in (cite), (3) 

keeping the CRMs in the training set separate, rather than concatenating 

them into one sequence, (4) using a first-order Markov order for the 

background model rather than an iid model, (5) counting words on both 

strands. Note that these features needed to be investigated only in the context 

of the D2-z score; the other scores such as HexDiff, HexYMF and PAC, do 

not face issues (1) – (4), and HexDiff and HexYMF do count words on both 

strands. On the other hand, the published D2-z score does not handle issues 

(1), (2), (3) and (5), and allows both iid and Markov backgrounds (issue 4) 

without prescribing which is better for our application. 
 
Supplementary Note S8. The ten enhancers known to function in the 

developing blood and vasculature were taken from: (Chan et al., 2007; 

Chapman et al., 2003; De Val et al., 2004; Donaldson et al., 2005; Gottgens 

et al., 2002; Landry et al., 2008; Pimanda et al., 2007a; Pimanda et al., 

2007b). 
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Supplementary Methods
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1 Alignment free similarity measures

In this section we describe PAC and compute the z-score for the various modifications of the D2
statistic used in the text.

1.1 A Poisson based similarity measure, PAC.

This measure is based on [6]. Let A be a random DNA sequence. Fix a word length k. For a k-word
w, let NA

w be the count of the word w in the sequence A, including overlaps. A simple model for
NA

w is the binomial distribution, which is approximately a Poisson distribution in our applications.
This approach assumes an iid background model. It does not take into account the dependency of
occurrences of the word w in overlapping positions. Also, because of this independence assumption,
the count of occurrences of a word w is done on one strand only.

The parameters for the Poisson distributions can be computed as follows. Let fA
w be the prior

probability of seeing the word w at any position of the sequence A. The expected number of
occurrences is then mA

w = fw(|A| − k + 1), where |A| is the length of the sequence A. (Note: in the
main text we used the notation λ(w) instead of mw.)

Now suppose A and B are two DNA sequences. Define

CAB
w = min(NA

w , NB
w ).

Then, assuming the sequences A and B are generated independently,

Pr(CAB
w ≥ c) =

{
(1− F (mA

w, c− 1))(1− F (mB
w , c− 1)) if c > 0,

1 otherwise,

where F (m,−) is the Poisson distribution function with mean m.
Now define a similarity measure as follows. Let

sAB
w = 1− Pr(CAB

w ≥ cAB
w ),

where cAB
w is the observed value of CAB

w .
For a set W of k-words, the additive Poisson similarity measure between the sequences A and

B is defined in [6] to be
SAB

add = 1/|W |
∑

w∈W

sAB
w . (1)

1
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In our setting of LOOCV we have a dataset of n known CRMs planted in n random sequences.
For each fold, we fix the sequence A to be a concatenation of n − 1 CRMs. Sequence B is then
a sliding window along the test sequence, where the window length is the average length of the
CRMs in the given dataset. In this setting, the length of sequence A is so much longer than the
length of B that in effect, min(NA

w , NB
w ) = NB

w . Hence, the above Poisson measure was simplified
to

PAC(B|A) = 1/|W |
∑

w∈W

F (mB
w , nB

w − 1), (2)

where nB
w is the observed value of NB

w . (Note: in the main text, we used the notation nB(w) instead
of nB

w).
The abbreviation PAC stands for ”Poisson Additive Conditional”, since the score is computed

given that the sequence A is known. Note that the input from sequence A in PAC is only captured
during the process of choosing the set of k-words W . For this we used the YMF motif finding
program [5] and took the top 100 scoring k-words.

1.2 D2z score

The D2z score was developed in [1]. It is a z-score for the D2 statistic [3]

D2(A,B) =< NA,NB >, (3)

where NA (NB) is the count vector for the k-words in A (B), and < −,− > is the inner product
operator. The z-score is then

D2z(A,B) =
D2(A,B)− E(D2(A,B))

σ(D2(A,B))
, (4)

where the (theoretical) expectation, E(D2(A,B)), and standard deviation, σ(D2(A,B)), are com-
puted under the assumption that the random sequences A and B are independent and were gen-
erated by two, possibly different, Markov processes of any order (order zero means iid). The
parameters of the Markov model are learned from the data.

1.3 Conditional D2z score, cD2z.

When the sequence A is fixed (e.g. concatenated known CRMs), the formulas for the expectation
and variance given in [1] are not valid. Here we compute the mean and the variance for D2(A,B)
where A is fixed and B is a random sequence generated by a Markov process. We call the corre-
sponding z-score, cD2z(B|A), a ”conditional D2z” score. (Note: in the main text the cD2z score
is denoted by D2z-cond).

In what follows we use the following notation.

Notation. Let n1 = |A| be the length of sequence A and let n2 = |B|. Write n̄1 = n1− k + 1. and
n̄2 = n2 − k + 1. Let I be the index set

I = {(i, j) ∈ N× N : 1 ≤ i ≤ n̄1, and 1 ≤ j ≤ n̄2}.

For indices i ≤ c, use the notation A[i, c] for the subsequence of length c− i + 1, AiAi+1 . . . Ac.

2



For a k-word w and an index m < k, define sufm(w) to be the last m letters in w,

sufm(w) = wk−m+1 . . . wk.

Define prem(w) to be the first m letters in w,

prem(w) = w1 . . . wm.

IID case.

Proposition 1.1. Under the IID model,

E(cD2(B|A)) = n̄2

∑
|w|=k

NA
w PrB(w), (5)

where PrB(w) is the probability of seeing the word w at any position in the sequence B.

Proof. The D2 statistic in (3) can be computed via

D2(A,B) =
n̄1∑
i=1

n̄2∑
j=1

Y(i,j), (6)

where Y(i,j) is the k-word match indicator at position i in A and j in B,

Y(i,j) =

{
1 if A[i, i + k − 1] = B[j, j + k − 1],
0 otherwise.

Then

E(cD2(B|A)) =
n̄1∑
i=1

n̄2∑
j=1

E(Yij |A) =
n̄1∑
i=1

n̄2∑
j=1

PrB(A[i, i + k − 1])

= n̄2

n̄1∑
i=1

PrB(A[i, i + k − 1]) = n̄2

∑
|w|=k

NA
w PrB(w).

Theorem 1.2. Under the IID model,

Var(cD2(B|A)) =

2
k−1∑
m=1

(n2 − 2k + m + 1)
∑
|v|=m

(
∑
|w|=k

sufm(w)=v

NA
w PrB(w))(

∑
|u|=k

prem(u)=v

NA
u PrB(sufk−m(u)))

+ n̄2

∑
|w|=k

(NA
w )2PrB(w)

− 2
k−1∑
m=1

(n2 − 2k + m + 1)

∑
|w|=k

NA
w PrB(w)

2

− n̄2

∑
|w|=k

NA
w PrB(w)

2

3



Note that the above formula can be computed in O(4k) (the count vectors for the fixed sequence A
are precomputed).

Proof.
Var(D2) = Var(

∑
(i,j)∈I

Y(i,j)) =
∑

(i,j),(s,t)∈I

Cov(Y(i,j), Y(s,t)).

case 1: no overlap in B.
In this case, since we are in the iid case, Y(i,j) and Y(s,t) are independent and hence Cov(Y(i,j), Y(s,t)) =
0.
case 2: overlap in B.
Let m be the size of the overlap. Then

E(Y(i,j)Y(s,t)) =


PrB(A[i, i + k − 1])PrB(A[s + m, s + k − 1])

if A[i + k −m, i + k − 1] = A[s, s + m− 1],
0 otherwise.

(7)

Hence, for a fixed j and t = j + k −m (i.e. have overlap of size m in B),

n̄1∑
i=1

n̄1∑
s=1

E(Y(i,j)Y(s,t)) =∑
|v|=m

(
∑
|w|=k

sufm(w)=v

NA
w PrB(w))(

∑
|u|=k

prem(u)=v

NA
u PrB(sufk−m(u)))

Add them all up:

k∑
m=1

∑
j,t

|t−j|=k−m

n̄1∑
i=1

n̄1∑
s=1

E(Y(i,j)Y(s,t)) =

2
k−1∑
m=1

(n2 − 2k + m + 1)
∑
|v|=m

(
∑
|w|=k

sufm(w)=v

NA
w PrB(w))(

∑
|u|=k

prem(u)=v

NA
u PrB(sufk−m(u)))

+ n̄2

∑
|w|=k

(NA
w )2PrB(w).
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Finally subtract all the terms E(Y(i,j))E(Y(s,t)) with overlap in B:

k∑
m=1

∑
j,t

|t−j|=k−m

n̄1∑
i=1

n̄1∑
s=1

E(Y(i,j)E(Y(s,t))) =

k∑
m=1

∑
j,t

|t−j|=k−m

(
n̄1∑

s=1

PrB(A[s, s + k − 1])

)(
n̄1∑
i=1

PrB(A[i, i + k − 1])

)
=

k∑
m=1

∑
j,t

|t−j|=k−m

∑
|w|=k

NA
w PrB(w)

2

=

2
k−1∑
m=1

(n2 − 2k + m + 1)

∑
|w|=k

NA
w PrB(w)

2

+ n̄2

∑
|w|=k

NA
w PrB(w)

2

.

Higher order Markov model case. Here we state and prove the formulas for the mean and
variance for cD2z under Markov model (MM) of order 1. Extension to higher order MM is clear.
We follow notation from [2] and [5]. For a DNA sequence B, and a nucleotide b let pB

j (b) be the
probability of a b in position j. As justified in [2], we may assume pB

j is independent of j and
denote it by pB. The probabilities {pB(b)} are calculated as the steady state probabilities of the
background Markov model. For a k-word w = w1w2 . . . wk, write pB

∗ (w) for Pr(w|w1), i.e., the
probability of a k-word being w, given that its first letter is w1. With this notation,

PrB(w) = pB(w1)pB
∗ (w) (8)

Then the expectation of cD2(−|A) can be expressed as follows.

Proposition 1.3. Assume the sequence B is generated by a Markov model of order one. Then

E(cD2(B|A)) = n̄2

∑
|w|=k

NA
w PrB(w) = n̄2

∑
|w|=k

NA
w pB(w1)pB

∗ (w.). (9)

Proof. Same as Proposition 1.1, and use equation (8).

In the next Theorem, we give a formula for the variance of cD2. We will use the following
notation.

Notation. For two nucleotides, b and c, and an index l > 0 let pB
l (c|b) be the probability of seeing

c, l steps in the Markov chain after b. Let

SB
b,c =

q2−1∑
j=1

n̄2∑
t=j+k

pB
l (c|b).

where l = s− (i + k − 1) and q2 = n2 − 2k + 2.
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Theorem 1.4. Under Markov model of order one,

Var(cD2(B|A)) =

2
∑

wk,u1

SB
wk,u1

∑
w1,...,wk−1

PrB(w1w2 . . . wk)NA
w1w2...wk

∑
u2,...,uk

p∗
B(u1u2 . . . uk)NA

u1u2...uk

+ 2
k−1∑
m=1

(n2 − 2k + m + 1)
∑
|v|=m

∑
|w|=k

sufm(w)=v

NA
w PrB(w)

∑
|u|=k

prem(u)=v

NA
u pB(um+1|vm)p∗B(sufk−m(u))

+ n̄2

∑
|w|=k

(NA
w )2PrB(w)

− n̄2
2

∑
|w|=k

NA
w PrB(w)

2

(10)

Proof.
Var(D2) = Var(

∑
(i,j)∈I

Y(i,j)) =
∑

(i,j),(s,t)∈I

Cov(Y(i,j), Y(s,t)).

case 1: no overlap in B.
Unlike the iid case, Y(i,j) and Y(s,t) may be dependent under the Markov Model. To compute
Cov(Y(i,j), Y(s,t)), we consider the following. For a fixed j < t, with t = j + k− 1 + l and l > 0 (i.e.
no overlap in B and l is the ”gap” from the last letter of the first word in B to the the first letter
of the second word in B),

n̄1∑
i=1

n̄1∑
s=1

E(Y(i,j)Y(s,t)) =

n̄1∑
i=1

n̄1∑
s=1

Pr(B[j, j + k − 1] = A[i, i + k − 1], B[t, t + k − 1] = A[s, s + k − 1]) =

n̄1∑
i=1

n̄1∑
s=1

pB(Ai)p∗B(A[i, i + k − 1])p∗B(A[s, s + k − 1])pB
l (As|Ai+k−1) =∑

|w|=k

∑
|u|=k

NA
w NA

u pB(w1)p∗B(w)p∗B(u)pB
l (u1|wk).

6



Sum up over all such j’s and t’s:

∑
j,t

|t−j|≥k

n̄1∑
i=1

n̄1∑
s=1

E(Y(i,j)Y(s,t)) =

2
q2−1∑
j=1

n̄2∑
t=j+k

∑
|w|=k

∑
|u|=k

NA
w NA

u pB(w1)p∗B(w)p∗B(u)pB
l (u1|wk) =

2
∑
|w|=k

∑
|u|=k

NA
w NA

u pB(w1)p∗B(w)p∗B(u)
q2−1∑
j=1

q2−j∑
l=1

pB
l (u1|wk) =

2
∑
|w|=k

∑
|u|=k

NA
w NA

u pB(w1)p∗B(w)p∗B(u)SB
wk,u1

.

(11)

The computational complexity of the formula above, as a function of k, is O(42k). To reduce this
to O(4k) we split the sum as follows.

2
∑
|w|=k

∑
|u|=k

NA
w NA

u pB(w1)p∗B(w)p∗B(u)SB
wk,u1

=

2
∑

wk,u1

SB
wk,u1

∑
w1,...,wk−1

PrB(w1w2 . . . wk)NA
w1w2...wk

∑
u2,...,uk

p∗
B(u1u2 . . . uk)NA

u1u2...uk
.

This gives the first term of equation (10).
case 2: overlap in B.

The next two terms in formula (10) come from E(Y(i,j)Y(s,t)) where the k-words in sequence B
overlap. The proof follows the proof of the IID case (Theorem 1.2) with the obvious changes for
the Markov model.

Finally subtract all the terms E(Y(i,j)E(Y(s,t))):

n̄1∑
i=1

n̄2∑
j=1

n̄1∑
s=1

n̄2∑
t=1

E(Y(i,j)E(Y(s,t)) =

 n̄1∑
i=1

n̄2∑
j=1

E(Y(i,j))

( n̄1∑
s=1

n̄2∑
t=1

E(Y(s,t))

)

=

 n̄1∑
i=1

n̄2∑
j=1

E(Y(i,j))

2

=

n̄2

∑
|w|=k

NA
w PrB(w)

2

.

This is the last term in (10).

Remark 1.5. The formula for the variance in equation (10) has computational complexity of O(n2
24

k)
due to the O(n2

2) computation of SB
b,c. To reduce complexity we use the following approximation.

By [2], when the length of the sequence is large enough,

SB
b,c ≈

q2(q2 + 1)
2

pB(c)− (q2 − 1)e′bQPec − e′bQP2Qec, (12)

7



where P is the d × d matrix of transition probabilities, where d is the size of our alphabet (i.e.
d = 4) Q = (P− I + 1p′)−1, with 1′ = (1, . . . , 1) and p is the vector of steady state probabilities.
The vector ec is the unit vector that picks up the column corresponding to c.

With this approximation, formula (10) can be computed in O(4k) time.

1.4 Conditional D2z with weights, wD2z.

In cD2(B|A) of section 1.3, we give every k-word the same weight. In a more realistic setting, we
would like to give more weight to some words and less to others. For this, we define a weighted
conditional D2 measure, wcD2(B|A) or wD2(B|A) for short, and compute its z-score. We assume
the weights are learned from the sequence A. Hence we make the following definition. (Note: in
the main text wD2z is called D2z-cond-weights).

Definition 1.6. Let A and B be two DNA sequences. For each k-word w, let aw be a weight
associated with w. Define a weighted D2 score by

wD2(B|A) =
∑
|w|=k

awNA
w NB

w .

In terms of the match indicator random variables,

wD2(B|A) =
n̄1∑
i=1

n̄2∑
j=1

aijY(i,j), (13)

where aij is the weight of the k-word A[i, i + k − 1].

Next we compute the z-score for wD2(−|A).
IID case.

Theorem 1.7. Under the IID model,

E(wD2(B|A)) = n̄2

∑
|w|=k

awNA
w PrB(w), (14)

and

Var(wD2(B|A)) =

2
k−1∑
m=1

(n2 − 2k + m + 1)
∑
|v|=m

(
∑
|w|=k

sufm(w)=v

awNA
w PrB(w))(

∑
|u|=k

prem(u)=v

auNA
u PrB(sufk−m(u)))

+ n̄2

∑
|w|=k

a2
w(NA

w )2PrB(w)

− 2
k−1∑
m=1

(n2 − 2k + m + 1)

∑
|w|=k

awNA
w PrB(w)

2

− n̄2

∑
|w|=k

awNA
w PrB(w)

2

(15)

Note that the above formula can be computed in O(4k).
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Proof. Same as the proof of Proposition 1.1 and Theorem 1.2, while keeping track of the weights.

Markov Model case.

Theorem 1.8. Under Markov model of order one and with notation as in Theorem 1.4,

E(wD2(B|A)) = n̄2

∑
|w|=k

awNA
w PrB(w) = n̄2

∑
|w|=k

awNA
w pB(w1)pB

∗ (w.). (16)

For the variance formula, to simplify notation, write aw for aw1...wk
and au for au1...uk

. Then

Var(wD2(B|A)) =

2
∑

wk,u1

SB
wk,u1

∑
w1,...,wk−1

PrB(w1 . . . wk)awNA
w1...wk

∑
u2,...,uk

p∗
B(u1 . . . uk)auNA

u1...uk

+ 2
k−1∑
m=1

(n2 − 2k + m + 1)
∑
|v|=m

 ∑
|w|=k

sufm(w)=v

awNA
w PrB(w)


 ∑

|u|=k

prem(u)=v

auNA
u pB(um+1|vm)p∗B(sufk−m(u))


+ n̄2

∑
|w|=k

a2
w(NA

w )2PrB(w)

− n̄2
2

∑
|w|=k

awNA
w PrB(w)

2

(17)

Proof. Same as the proof of Proposition 1.3 and Theorem 1.4, while keeping track of the weights.

As in Remark 1.5, an approximation of formula (17) for the variance can be computed in O(4k).
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