Supplemental Data. Reinheimer and Kellogg (2009). Evolution of *AGL6-like* MADSbox genes in grasses (Poaceae): ovule expression is ancient and palea expression is new

Supplemental Figure 1. Differences in amino acid composition between the paralogous copies Os *MADS17* and Os *MADS6*.

	1	10	20	30	35
OsMADS6 OsMADS17	MDRSEMGRO	R V E L K R I E R V E L K R I E	NKINRQV NKINRQV	T F S K R R N G L T F S K R R N G L	. L K . L K
	36 40	50		60	70
OsMADS6 OsMADS17	K A Y E L <mark>S V</mark> L C K A Y E L <mark>S V</mark> L C	D A E V A L I I D A E V A L I I	F	Y E F G <mark>S A G I T</mark> Y E F G <mark>S A G I N</mark>	Г К Т N К Т
	71	80	90	100	105
OsMADS6 OsMADS17	L E R Y Q H C C Y L E K Y N S C C Y	N A Q D S N N A N A Q G S N S A	L <mark>S – –</mark> E T Q L A G G E H Q	S W Y H E M S K L S W Y Q E M S R L	. К <mark>А</mark> К Т
	106 110	120		120	140
OsMADS6	KFEALORTO		G P L S V K E		
OsMADS17	KLECLQRSC	RHMLGEDL	GPLSIKE		YS
	141	150	160	170	175
OsMADS6	L S Q A R Q R K T	[.] Q <mark>L</mark> M M E Q V E	E L R R K E R	QLGELNRQ	кн
OsMADS17	L S Q A R Q R K T	<u> Q I M M E Q V</u> D	D L R R K E R	QLGELNKQL	. K N
	176 180	190		200	210
OsMADS6	K L E <mark>V</mark> E <mark>G S T S</mark>	NYR - AMQQ	A S WA Q G A	V V E N G A A Y -	- 🔽 Q
OsMADS17	K L E A E A D S S	$\mathbf{N} \subseteq \mathbf{R} \stackrel{\bullet}{\mathbf{S}} \stackrel{\bullet}{\mathbf{A}} \stackrel{\bullet}{\mathbf{I}} = \mathbf{Q}$	DSWVHGT	VVSGGRVLN	A Q
	211	220	230	240	245
OsMADS6	P P P H S A A M D	SEPTLQIG	YPHQFVP		TA
USMADS17				$\mathbf{P} = \mathbf{A} \mathbf{A} \mathbf{N} \mathbf{P} \mathbf{F}$	S N
	246 250	261			
OsMADS6	PAGAE N N	FMLGWVL			
USWAD317	G G G G D Q N N N				

Supplemental Figure 2. Alignment of the predicted amino acid sequences of *AGL6-like* genes included in this study (only the IKC-terminus domains are shown). The black arrow indicates the single amino acid in the K-domain changed before the divergence of *Pharus*, which correlates with the origin of the grass spikelet.

Tradescantia (TVAGL6) Elaesi (GAGL6-1) Liliaro (LAGL6) Crocus (CSAGL63) Crocus (CSAGL63) Crocus (CSAGL63) Crocus (CSAGL63) Aaparathus (AaFAC16) Hyacinthus (MoRL61) Aparatogus (AoMA3) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS17) Oryza (OBMADS6) Oryza (OBMADS7) Dendrocalmus (OBMADS12) Triticum (TMADS2) Oracinathium (CLG6) Charanathium (CLG6) Charanathium (CLG6) Charanathium (CLG6) Crainathium (CLG6) Crainathium (CLG6) Crainathium (CLG6) Oracinathium (CLG6) Oracina	1 2 2 4 4 5 4 4 5 4 5	10 10 1 <td1< td=""> 1 1 1</td1<>	I I	300 300 V 1 - 0 0 V 1 - 0 0 0 V 1 - 0 0 0 V T - 0 0 0 V T - 0 0 0 V T - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 V N - 0 0 0 <tr< th=""><th>- -</th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	- -						
Setaria (SvAGL6)		G <mark>SAGITK</mark>	T L E R Y Q H (<u>C Y N</u> <u>Q D</u> -	- <u>N G A L</u>	Ε Τ Q G W Y Q Ε	MSKLRAKF	EALQRTQ	K H L L G E D L G P L	SVKELQQLEK	Q
Tradescantia (TvAGL6) Elaesis (GAGL6-1) Liliem (LAGL6) Crocus (CAGL6a) Crocus (CAGL6a) Crocus (CAGL6a) Apparagus (AOM3) Oryaz (IOMMADS17) Oryaz (IOMMADS17)	171	180 S Q S S G L S Q S S M D M S Q S S M M S Q S S S M S Q S S M S Q S S S S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 201 207 207 207 207 207 207 207 207	III V S P D I. V P P E I. V Q P T I. V Q P T I. V Q P T I. V Q P E	210 	220 E N G - - E G - - E M - - E M - - E M - - E G G G C N G G G Q N G G G Q N G G G Q N G G G Q N G G G Q N G G G Q N G G G Q N G G G Q N	230 N F M L G W V N F M L G W V			
Streptocheata (SAACL6) Zizania (ZAACL6) Oryaz (OMNAD56) Oryaz (OMNAD56) Oryaz (OMNAD56) Unitachne (LAACL6) Dendrocalamus (OMAD518) Phalaris (PcACL6) Brachypodium (BidACL6) Hordeum (HivAGL6) Triticum (TiaMAD572) Triticum (TiaMAD57)		P P H S T A M P P H S T A M P P H S A M M P P H S A M M P P H S A M M P P H S A M M P P H S A M L P P H S A M L P P H S A M L P P H S A M L P N H S A M M P N H S A M M P N H S A M M P N H	D C = P P T P C C D C = P T P C C D C = P T L C C D S = P T L C C D S = P P T L C C D S = P P T L C C D S = P P T P P T L C C D C = P P T P C C D C = P P T L C D C = P P T L C D C = P P P P P P P P P P P P P P	I I		- NI QRST ANTI QRST ANTI QRST ANTI QRST ANTI QRST ANTI QRST ANTI QRST ANNI PRSS ANNI PRSS	A P A; G - E N P A; G - E N A A P A; G - E N				
Avena (AstACL6) Avena (AstACL6) Poa (PAMADS1) Lolium (LMADS4) Lolium (LMADS4) Lolium (LMADS4) Chasmanthium (CIACL6) Eragrostis (EACL6) Eragrostis (EACL6) Eragrostis (EACL6) Eragrostis (EACL6) Zea (ZAC3) Tripascam (TAACL6) Zea (ZAC3) Tripascam (TAACL6.2) Coxi (CoAACL6) Negathysus (MRACL6)	H HI H Q K Q Q Q H Q N Q K K N Q Q Q Q Q Q Q Q Q Q 	P N H S G A M P N H S G A M P N H S A A M P N H S A A M P N H S A A M P N H S A A M P H H S A M M P H H S A M M P A H S V A M P A H S V A M P A H S V A M P A H S V A M P A H S V A M P A H	D - P T P D - P T P D - P T P D C - P T C D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L D C - P T L	1 G P	I I A D C A A D C C A A D C A A D C A P D C V V P P A P C C V V P P A P C C V V P P A P C C V V P P A D C C V V P P A D C C V V P P A D C V V P V V P V V P V V P V V P V P C V P C V P P V P P V P P V P P V P V P </th <th>N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S P N N P R S P N N P R S P N N P R S P</th> <th>Q Q C N</th> <th>N F M L G W V N F M L G W V</th> <th></th> <th></th> <th></th>	N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S S N N P R S P N N P R S P N N P R S P N N P R S P	Q Q C N	N F M L G W V N F M L G W V			
Pennisetum (PgAGL6) Setaria (SiAGL6) Setaria (SvAGL6)		P A H S A A M P A H S A A M P A H S A A M	E C P T L C D C P T L C D C P T L C	21 G Y - РНН Q 21 G Y - РНН Q 21 G Y - РНН Q	E L - P S A E L - P S A E L - P S A	A N N I P R S A A N N I P R S A A N N I P R S A	P A E N P G E N P G E N	N F M L G W V N F M L G W V N F M L G W V	L L		

Supplemental Figure 3. *AGL6-like* RT-PCR products from RNA of roots (**R**), stems (**S**), leaves (**L**), and inflorescence (**I**) in *Agapanthus africanus* and grasses, and outer tepals (**OT**), inner tepals (**IT**), stamens (**ST**) and carpels (**CA**) in *Agapanthus africanus*. *ACTIN* was used as a positive control. The question mark indicates missing data.

	R	S	L		ΟΤ	IT	ST	CA	
Agapanthus	_	_	_	-	_	=	_	=	Aaf AGL6 Actin
Streptochaeta	?	?	_	-	Sa AGI _{Actin}				
Oryza	_			\equiv	Os MA Os MA _{Actin}	DS6 DS17			
Eleusine		-			Ei AGI _{Actin}	.6			
Eragrostis	_	_	_		Et AGI Actin	L6			
Hordeum	_	-	_		Hv AG Actin	L6			
Phalaris	-	-	_	_	Pc AGI Actin	L6			
Lolium	_	_		_	Lt AGL Actin	.6			
Sorghum	_	_	_	_	Sb AGI Actin	26			
Panicum	_	_	_	_	Pm AG Actin	EL6			
Megathyrsus	-	-	-	_	Mm A(Actin	GL6			
Pennisetum	_	_	_	=	Pg AGI Actin	L6			
Setaria	-	-	_	=	Sv AGI Actin	L6			

Supplemental Figure 4. *AGL6-like* expression in floral meristems of *Streptochaeta angustifolia* (Anomochlooideae), and *Triticum monoccocum* (Pooideae). (A) Sa AGL6 in *S. angustifolia*. (B) Tm *AGL6* in *T. monococcum*. The arrowhead indicates the floral meristem. Bar = 100μ m.

Supplemental Table 1. Expression patterns reported for *AGL6-like* homologs in gymnosperm species. Abbreviations: IH, in situ hybridization; RT-PCR, Reverse transcriptase, polymerase chain reaction.

Species	Gene		Expr	ession		Technique	References
		Female	Male		Vegetativ		
	-	cones	cones	Leaves	e shoot		
Gnetum gnemon	GMM9	+	+	-	?	RNA gel blot	Winter et al. (1999) Becker et al. (2003)
	GMM11	+	+	-	?	IH	
Picea abies	DAL1	+	+	?	+	RNA gel blot	Tandre et al. (1995)
Pinus radiata	PrMADS2	+	+	?	-	RNA gel blot, IH	Mouradov et al. (1998)
	PrMADS3	+	+	?	+		
Pinus resinosa	PMADS1	+	+	?	?	RNA gel blot	Liu and Podila (1997)

Supplemental Table 2. *AGL6-like* gene expression patterns reported in eudicots and monocots. Abbreviations: IH, in situ hybridization; MA, microarrays; RQ RT-PCR, Relative Quantitative RT-PCR; RT-PCR, Reverse transcriptase - polymerase chain reaction; DNA gel blot; Veg., vegetative tissues; W1, first whorl or sepals in eudicots, outer tepals in non-grass monocots, and lemma and palea in Grasses; W2, second whorl or petals in eudicots, inner tepals in Non-grasses monocots and lodicules in grasses; W3, third whorl or stamens; W4, fourth whorl or carpels.

Species	Gene	Expression				on	Technique	References	
							Veg.		
		W1	W2	W3	W4	Fruit	tissues	-	
Dicots									
Arabidopsis	AGL6	+	+	+	+	-	+	RNA gel	Ma et al. (1990)
								blot	
	AGL13	-	-	+	+	-	+	RNA gel	Rounsley et al. (1995)
								blot, IH	
Vitis vinifera	VvMADS3	-	+	+	+	+	-	RNA gel	Boss et al. (2002)
								blot	
Petunia	pMADS4	+	+	-	+	?	?	RNA gel	Tsuchimoto et al.
								blot	(2000)
Amborollalos									
Amborenales									
Amborella	Am.tr.AGL6	+	+	+	+	?	-	RQ RT-	Kim et al. (2005)
trichopoda								PCR	
Magnoliales									
Magnolia	Ma.gr.AGL6	+	+	-	-	?	-	RQ RT-	Kim et al. (2005)
grandiflora								PCR	
Persea	AGL6.1	+	+	-	-	?	-	RQ RT-	Chanderbali et al.
americana D	AGL6.2	+	+	-	-	?	-	PCR	(2006)
Persea									
Non gross									
monocots									
Asparagus	AOM3	+	+	+	+	9	_	RNA opl	Losa et al. (2004)
officinalis		·	·	·				blot. IH	× /

Oncidium Gower Ramsey	O MADSI	-	+	-	+	?	-	RT-PCR, DNA gel blot	Hsu et al. (2003)
Hyacinthus orientalis	Но <i>AGL6</i>	+	+	-	+	?	-	RNA gel blot	Fan et al. (2007)
Grasses									
Oryza sativa	Os MADS6	+	+	-	+	?	-	RNA gel	Moon et al. (1999)
		-	-	-	+	?	?	blot IH	Pelucchi et al. (2002)
	Os MADS17	?	?	?	?	?	-	MA	Arora et al. (2007)
Lolium perenne	Lp <i>MADS4</i>	-	?	?	?	?	-	RQ RT- PCR	Petersen et al. (2004)
Triticum aestivum	Ta <i>MADS37</i>	?	?	?	?	+	-	RT-PCR	Zhao et al. (2006)
Poa annua	Pa <i>MADS1</i>	-	?	?	?	?	-	RNA gel blot	Aiguo and Griffin (2002)
Zea mays	zag3	+	+	-	+	?	-	RNA gel	Mena et al. (1995)
		+	+	-	+	?	?	blot IH	Thompson et al (submitted)
	zag5	-	-	-	+	?	-	RNA gel blot	Mena et al. (1995)

Species	Family/Subfamily	Gene	Accession no
Crocus sativus	Iridaceae/—	Cs AGL6a	EF041505
		Cs AGL6b	EF041506
Lilium lancifolium	Liliaceae/—	Ll AGL6	<u>GQ496626</u>
Hyacinthus orientalis	Hyacinthaceae/—	Ho AGL6	AY591333
Asparagus officinalis	Asparagaceae/—	Ao <i>M3</i>	AY383559.1
Agapanthus africanus	Agapanthaceae/—	Aaf AGL6	<u>GQ496627</u>
Elaeis guineensis	Arecaceae/—	Eg <i>AGL6-1</i>	AY739701
Tradescantia virginiana	Commelinaceae/—	Tv AGL6	<u>GQ496625</u>
			Malcomber and
Elegia sp	Restionaceae/—	Es AGL6	Christensen
			(unpublished)
Joinvillea ascendens	Joinvilleaceae/—	Ja AGL6	<u>GQ496631</u>
Streptochaeta angustifolia	Poaceae/Anomochlooideae	Sa AGL6	<u>GQ496633</u>
Pharus sp.	Poaceae/Pharoideae	Ps AGL6	<u>GQ496632</u>
Dendrocalamus latiflorus	Poaceae/Bambusoideae	DI MADS17	AY599754.1
		DI MADS18	AY599755.1
Lithachne humilis	Poaceae/Bambusoideae	Lh AGL6	<u>GQ496639</u>
Oryza sativa	Poaceae/Ehrhartoideae	Os MADS6	U78782.1
		Os MADS17	AF109153.1
Oryza barthii	Poaceae/Ehrhartoideae	Ob MADS6	<u>GQ496637</u>
		Ob MADS17	<u>GQ496630</u>
Oryza glaberrima	Poaceae/Ehrhartoideae	Og MADS6	<u>GQ496635</u>
		Og MADS17	<u>GQ496629</u>
Oryza meridionalis	Poaceae/Ehrhartoideae	Om MADS6	<u>GQ496636</u>
		Om MADS17	<u>GQ496628</u>
Leersia sp.	Poaceae/Ehrhartoideae	Ls AGL6	<u>GQ496638</u>
Zizania aquatica	Poaceae/Ehrhartoideae	Za AGL6	<u>GQ496634</u>
Brachypodium distachyon	Poaceae/Pooideae	Bd AGL6	<u>GQ496641</u>
Triticum aestivum	Poaceae/Pooideae	Ta MADS37	DQ512353.1
		Ta MADS12	AB007505.1

Supplemental Table 3. AGL6 homologs included in this study

Triticum monococcum	Poaceae/Pooideae	Tm AGL6	<u>GQ496643</u>
Hordeum vulgare	Poaceae/Pooideae	Hv AGL6	<u>GQ496642</u>
Lolium temulentum	Poaceae/Pooideae	Lt AGL6	<u>GQ496646</u>
Lolium perenne	Poaceae/Pooideae	Lp MADS4	AY198329.1
Phalaris canariensis	Poaceae/Pooideae	Pc AGL6	<u>GQ496640</u>
Avena strigosa	Poaceae/Pooideae	Ast AGL6	<u>GQ496644</u>
Avena sativa	Poaceae/Pooideae	As AGL6	<u>GQ496645</u>
Poa annua	Poaceae/Pooideae	Pa MADS1	AF372840.1
Eleusine indica	Poaceae/Chloridoideae	Ei <i>AGL6</i>	<u>GQ496648</u>
Eragrostis pilosa	Poaceae/Chloridoideae	Ep AGL6	<u>GQ496650</u>
Eragrostis tef	Poaceae/Chloridoideae	Et AGL6	<u>GQ496649</u>
Chasmanthium latifolium	Poaceae/Centothecoideae	Cl AGL6	<u>GQ496647</u>
Setaria viridis	Poaceae/Panicoideae	Sv AGL6	<u>GQ496659</u>
Setaria italica	Poaceae/Panicoideae	Si AGL6	<u>GQ496658</u>
Pennisetum glaucum	Poaceae/Panicoideae	Pg AGL6	<u>GQ496657</u>
Megathyrsus maximus	Poaceae/Panicoideae	Mm AGL6	<u>GQ496655</u>
Panicum miliaceum	Poaceae/Panicoideae	Pm AGL6	<u>GQ496656</u>
Sorghum bicolor	Poaceae/Panicoideae	Sb AGL6	<u>GQ496651</u>
Zea mays	Poaceae/Panicoideae	ZAG3	NM_001111862.1
		ZAG5	NM_001112222.1
Tripsacum dactyloides	Poaceae/Panicoideae	Td <i>AGL6.1</i>	<u>GQ496652</u>
		Td AGL6.2	<u>GQ496653</u>
Coix sp.	Poaceae/Panicoideae	Cos AGL6	<u>GQ496654</u>

Voucher information for each sequence is included in GenBank. Newly generated sequences are underlined.

Supplemental Table 4. Primers used for isolation of Os *MADS6*-like sequences and Os *MADS17*-like sequences, and expression analysis in Poaceae and other monocots.

Method	Species	Primer	Primer sequence
Isolation of Os MADS6-like genes			
0	Lilium lancifolium	147F	SAG CCG HGG CAA RCT CTA
	Agapanthus africanus	147F	SAG CCG HGG CAA RCT CTA
	Tradescantia virginiana	147F	SAG CCG HGG CAA RCT CTA
	Xyris sp.	147F	SAG CCG HGG CAA RCT CTA
	Joinvillea ascendens	163F	TAC GAR TTC GGY AGC GCC
	Streptochaeta angustifolia	163F	TAC GAR TTC GGY AGC GCC
	Pharus sp.	163F	TAC GAR TTC GGY AGC GCC
	Oryza barthii	157F	AAG CTS TAC GAR TTC GGY AG
	Oryza glaberrima	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Oryza meridionalis	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Lithachne humilis	157F	AAG CTS TAC GAR TTC GGY AG
	Leersia sp.	157F	AAG CTS TAC GAR TTC GGY AG
	Zizania aquatica	157F	AAG CTS TAC GAR TTC GGY AG
	Brachypodium distachyon	157F	AAG CTS TAC GAR TTC GGY AG
	Triticum monococcum	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Lolium temulentum	157F	AAG CTS TAC GAR TTC GGY AG
	Phalaris canariensis	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Avena strigosa	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Avena sativa	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Eleusine indica	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Eragrostis pilosa	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Eragrostis tef	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Chasmanthium latifolium	215F	GYT GCT AYA ATG CTC AAG ATT CC
	Setaria viridis	157F	AAG CTS TAC GAR TTC GGY AG
	Setaria italica	157F	AAG CTS TAC GAR TTC GGY AG
	Pennisetum glaucum	163F	TAC GAR TTC GGY AGC GCC
	Megathyrsus maximus	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Panicum miliaceum	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Sorghum bicolor	270F	GAG YTG GTA CCA KGA AAT GTC AAA
	Tripsacum dactyloides	157F	AAG CTS TAC GAR TTC GGY AG
	Coix sp.	163F	TAC GAR TTC GGY AGC GCC
Isolation of Os <i>MADS17</i> -like			
sequences		1 205	
		150F	CCG TGG CAA ACT GTA TGA ATT
		1 / /F	
		192F	AAC CCI GGA AAA AIA IAA CAG CIG
		237F	GUG AAC ATC AGA GUT GUT ATC
		15/F 1(2E	AAGUISTAUGAKTIUGGYAG
		103F 650P	
		050K 711D	
		/11K 714D	
		/14K 725D	
		/23K	
		polyT	TTT TTT TTT TTT
Q-PCR			
		ACTIN591F	GAG RGG TTA CTC CTT CAC VAC
	Stream to all wat with 1.	/04K	
	sireptocnaeta angustifolia	StrepAGL0_IF	TTA TAC OCA COT TCC ATC TCC
		Surep_SUTK	
	Oryza sativa	OSMADS0_2F	
		OSWIADS0_JUIIIJ	
		$\frac{\text{OSMADSI}_{17}}{\text{OSMADSI}_{7}}$	
	Flausina indiaa	ELCI 6 2F	TTT GAC CTA CAG ATC CAT CCG
	Lieusine inuicu	EIAOLU_2r Ei2UTD	
		LIJUIK	

	Lolium temulentum	LtAGL6_1F	CTA ATA AAA TGC GTG TTC TGC TTC T
		Lt3UTR	TTC AAA TAA TCA AAA CGT AGA AGT GG
	Setaria italica	SiAGL6_1F	TTC TAT GTG ATT GTA TTG TGG CAC TT
		Seta3UTR	ATA CGT ACC GGT AGA GAT AAT TTT GG
	Sorghum bicolor	SbAGL6_2F	GTG GTG TGG CAC TTC TAT GTT TT
		Sb3UTR	ATA AGT ACC GTT GCA GAT AAT TTT GG
	Triticum monoccocum	TmAGL6_1F	TCG TTA TTT GTG CGT GTA AGA AGTA
		Tri_3UTR	GCA TGC ATG GAT AGC TTG G
RT-PCR and in			
situ hybridization			
	Agapanthus africanus	147F	SAG CCG HGG CAA RCT CTA
		559r	CCC AGC CCA GCA TAA AGT T
	Joinvillea ascendens	JO_5CT158	CTC TGC AAA TTG GGC AGT ATC
		JO23_3UTR	AGA GCT TAA ATT TTA CAA GGT CC
		Jo5CT	GGA GAA ATT AAC AAA CAA CTC AAA AAC
		JO32_3UTR	TTT TTG GCA GTC AAG GGA ATA
	Streptochaeta angustifolia	Strep_5CT270	CGT AGA CTG AGT TTA TCT GCC TAG C
		Strep_5CT	TAA CAG GCA GCT CAA AAA CAA G
		Strep_3UTR	TTA TAC CCA CCT TGG ATG TCG
	Lithachne humilis	LITHA_5CT316	GTG GGT TCT TTA AGC TTG CTT G
		Litha_181_3UTR	TTT GAG TTG CTA GGG AAT TTG AA
	Oryza sativa	OsMADS6 5CT	CTG GGT GAA ATT AAT AGG CAA CTC
		OSMADS6 5CT113	ATT ATT AGC CCC AAC TTC TGA CAG
		OsMADS6_3UTR	CAG CTA GCA GTA GCT TAC ACA CAA A
		OSMADS17 5CT100	AAG CTA GAA GCT GAA GCC GAT A
		OSMADS17 3UTR451	CAA ACA TAC ACT CAT AGG TAC GTG C
		OsMADS17_5CT	CAG GCT CGA CAA CGA AAG A
		OsMADS17 ³ UTR	ACC GGA TAG GGG AGA AAT ATA CA
	Leersia sp.	LE_5CT202	CGG CCA TGG ACT CTG AAC
		Le_3UTR	AAA CAC AGC CAC GTA CGT AGA AC
	Hordeum vulgare	Hv5CT	GCG TCA GCT GGG AGA CAT
		Hv3UTR	AAT TGT CCA GAA ATT ATG GTT GTA CT
	Triticum monococcum	Tri_5CT	GGC AGC AAC AGC AAC AAC TA
		Tri_3UTR	GCA TGC ATG GAT AGC TTG G
	Lolium temulentum	Lt5CT	CAG CAG CAG CCA AAT CAC T
		Lt3UTR	TTC AAA TAA TCA AAA CGT AGA AGT GG
	Phalaris canariensis	270F	GAG YTG GTA CCA KGA AAT GTC AAA
		805R	TTC ATG CTG GGR TGG GTT
	Eleusine indica	Ei5CT	TGG GAG AAA TGA ACA GGC A
		Ei3UTR	ACG ACC ACA CAA TCA CGG T
	Eragrostis tef	270F	GAG YTG GTA CCA KGA AAT GTC AAA
		805R	TTC ATG CTG GGR TGG GTT
	Setaria viridis	Seta5CT	GAG AAA TGA ACA GGC AAC TCA AG
		Seta3UTR	ATA CGT ACC GGT AGA GAT AAT TTT GG
	Setaria italica	Seta5CT	GAG AAA TGA ACA GGC AAC TCA AG
		Seta3UTR	ATA CGT ACC GGT AGA GAT AAT TTT GG
	Pennisetum glaucum	Pg5CT	GTC ACC TGG GAG AAA TGA ACA
		Pg3UTR	CGG CAG CAT AGA AGT ATT TTT ACA
	Megathyrsus maximus	270F	GAG YTG GTA CCA KGA AAT GTC AAA
		805R	TTC ATG CTG GGR TGG GTT
	Sorghum bicolor	Sb5CT	GAA CAG GCA ACT CAA ACA CAA G
		Sb3UTR	ATA AGT ACC GTT GCA GAT AAT TTT GG

Statistical tests

Statistical tests of nucleotide sequences (tabulated results at Supplemental Table 5 bellow)

We performed a Shimodaira–Hasegawa (SH) test (Goldman et al. 2000) to test whether we could statistically reject alternative hypotheses for the timing of the *AGL6*/Os *MADS6/Os MADS17* duplication and the *zag3/zag5* duplication.

We tested whether the duplication could have taken place at the base of the grasses after the divergence of Joinvilleaceae. Also, we explored alternative hypothesis for the Os *MADS6*/Os *MADS17* duplications based on previous studies that suggested that the two copies are the result of rice genome duplication event (Arora et al., 2007). Each topology differed in the placement of *Oryza MADS17* sequences as follows: (1) *Oryza MADS17-like* sequences sister to the *Oryza MADS6* clade (testing whether the duplication could have occurred just prior to the origin of the genus *Oryza*), (2) *Oryza MADS17-like* sequences sister to the Oryzea clade sequences (testing whether the duplication could have occurred just prior to the origin of the tribe Oryzeae), (3) *Oryza MADS17-like* sequences sister to the Ehrhartoideae (testing whether the duplication could have occurred just prior to the origin of the subfamily Ehrhartoideae), (4) *Oryza MADS17-like* sequences sister to the grasse family (testing whether the duplication could have occurred just prior to the origin of the grasses), (5) *Oryza MADS17-like* sequences sister to the BEP clade (testing whether the duplication could have occurred just prior to the origin of the grasses), (5) *Oryza MADS17-like* sequences sister to the common ancestor of Bambusoideae, Ehrhartoideae, and Pooideae).

In addition, phylogenetic analysis could not determine precisely when the duplication of *zag3*/Td *AGL6.2* and *zag5*/Td *AGL6.1* happened. We tested whether *zag3*/Td *AGL6.1* and *zag5*/Td *AGL6.2* genes are sister taxa, meaning that the duplication occurred prior the divergence of maize and *Tripsacum*.

A priori constraint trees were created in MacClade (Maddison and Maddison 2003). Each constraint tree was tested against the unconstrained ML phylogeny using PAUP* version 4.0b10 (Swofford 2001). The SH test was performed using 1000 bootstrap replicates and the RELL (resampling estimated log likelihoods) option.

Tests for positive selection (tabulated results at Supplemental Tables 6-9 bellow)

The tests are based on estimates of the ratio of non-synonymous to synonymous substitutions (dN/dS, or ω). If this ratio is appreciably less than 1, then we infer that the

protein has been subject to purifying selection, such that mutations causing amino acid changes have been selectively eliminated. If the ratio is near 1, we infer that selection pressures are relaxed, and if the ratio is greater than 1, we infer that there has been selection for diversification (positive selection).

The best-supported tree obtained from Bayesian inference analysis was pruned to include only full-length sequences, and likelihood scores were calculated and statistically compared using the program codeml from the PAML package, version 4 (Yang, 2007). PAML calculates the likelihood of the data given the tree under a set of increasingly complex models of evolution. We began with the simplest model (M₀), which calculates a single ω ratio averaged over the entire tree (Yang et al., 1998). We compared this to a set of models that allow the ω ratio to vary among sites (among codons or amino acids in the protein) (Nielsen and Yang 1998; Yang et al. 2000). Model 1a assumes two site classes with $0 < \omega_0 < 1$ and $\omega_1 = 1$, Model 2a is like 1a but also assumes positive selection, Model 3 uses three site classes, Model 7 assumes variable selection among sites, and Model 8 is like Model 7, but with the addition of positive selection. We repeated this set of tests on an alignment including all sequences but excluding the MADS box, and on another alignment including only the C terminus of all sequences.

We also wanted to test for positive selection on particular branches of the *AGL6-like* gene tree. In particular, we were interested in testing for positive selection along all branches subsequent the *AGL6*/Os *MADS6* and Os *MADS17*. For this test we used the following models that incorporate heterogeneity over sites and branches: Model A (assumes $0 < \omega_0 < 1$ estimated from the data and $\omega_1 = 1$) and Model B (determines ω_0 and ω_1 as free parameters estimated from the data). We tested the data set that included only the IKC regions and excluded the MADS-box, which we had shown to be largely invariant.

Models were compared using the likelihood ratio test statistic ($2\Delta \ln L$).

Tajima's relative rate test (tabulated results at Supplemental Tables 10 bellow)

To test whether Os *MADS17/Os MADS6*, as well as *zag5/zag3* duplicates show differences in evolutionary rates, we used the test proposed by Tajima (1993) using MEGA4 (Tamura et al., 2007). This method compares three sequences, where one of them is an outgroup sequence. The test compares the identical sites in all three

sequences (m_{iii}), the divergent sites in all three sequences (m_{ijk}), the unique differences in sequence A (m_{ijj}), the unique differences in sequence B and the unique differences in the outgroup sequence. Statistical significance among these is assessed under the χ^2 distribution. We compared the evolutionary rate between Os *MADS17* vs. Os *MADS6* and *zag5* vs. *zag3* using Es *AGL6* and Os *MADS6* as outgroups, respectively. **Supplemental Table 5.** Results of the Shimodaira-Hasegawa test preformed to evaluate whether we could statistically reject alternative hypotheses for the timing of the Os *MADS6*/Os *MADS17* duplication and *ZAG3/ZAG5* duplication. Statistically worse trees as compared to the best tree are marked with an asterisk (*), and *P* values < 0.05.

Tree	-ln Likelihood	Difference from best tree (-ln <i>L</i>)	<i>P</i> value
Likelihood tree (GTR+I+G)	8550.63754	(best)	
<i>Oryza MADS17</i> -like sequences sister to <i>Oryza MADS6</i> clade	8586.81569	36.17815	0.000*
<i>Oryza MADS17</i> -like sequences sister to the Oryzeae clade sequences	8579.31828	28.68074	0.004*
<i>Oryza MADS17</i> -like sequences sister to the Ehrhartoideae subfamily	8572.32382	21.68628	0.020*
<i>Oryza MADS17</i> -like sequences sister to the grass family	8551.18172	0.54418	0.691
<i>Oryza MADS17</i> -like sequences sister to the BEP clade	8572.40916	21.77162	0.020*
<i>zag3</i> /Td <i>AGL6.1</i> and <i>zag5</i> /Td <i>AGL6.2</i> are sister taxa	8551.78152	1.14398	0.327

Supplemental Table 6. Likelihoods and estimated parameters under different site models of codon substitution using the pruned data set with sequences that expand the MIKC regions. Abbreviations: $-\ln L$, log likelihood, *p*, parameter; Kappa (ts/tv), transition/transversion ratio; NA, non applicable; ω , dN/dS value calculated under each model and applied to all branches in the phylogeny. Parameters in parenthesis are not free parameters.

Model	p	-ln <i>L</i>	Kappa (ts/tv)	ω	Additional Parameters Calculated
0	1	-4129.210037	2.72999	0.0954	NA
la (neutral)	2	-4245.967313	2.69268	0.4632	$p_0 = 0.53680, (p_1 = 0.46320)$
2a (positive)	4	-4245.967313	2.69267	0.4632	$p_{0} = 0.53682, p_1 = 0.46318, (p_2 = 0.00000)$ $\omega = \infty$
3 (discrete)	3	-4015.407265	1.81912	0.1158	$p_0 = 0.54898, (p_1 = 0.35404), p_2 = 0.09698$ $\omega_0 = 0.01390, \omega_1 = 0.13578, \omega_2 = 0.61991$
7 (β)	2	-4054.198096	1.80986	0.1162	$p = 0.33480, \ q = 2.45264$
$8 (B + \omega)$	4	-4054.328221	1.79949	0.5511	$p_0 = 0.99940, \ p = 0.33622, \ q = 2.45648, \ (p_1 = 0.00060), \ \omega = 724.93092$

Supplemental Table 7. Likelihoods and estimated parameters under different site models of codon substitution using the data set excluding the MADS-box. Abbreviations: $-\ln L$, log likelihood, *p*, parameter; Kappa (ts/tv), transition/transversion ratio; NA, non applicable; ω , dN/dS value calculated under each model and applied to all branches in the phylogeny. Parameters in parenthesis are not free parameters.

Site Model	р	-ln <i>L</i>	Kappa (ts/tv)	ω	Additional Parameters Calculated
0	1	-3842.679439	2.09356	0.1317	NA
1a (neutral)	2	-3784.514745	2.15909	0.1977	$p_0 = 0.88116, (p_1 = 0.11884)$
2a (positive)	4	-3784.514745	2.15909	0.1977	$p_0 = 0.88116, p_1 = 0.11884, (p_2 = 0.00000)$
3 (discrete)	3	-3770.470138	2.01294	0.1590	$\omega = \infty$ $p_0 = 0.61960, (p_1 = 0.27508), p_2$ = 0.10532 $\omega = 0.04262, \omega = 0.20315, \omega$
7 (β)	2	-3777.500304	1.99916	0.1636	$\omega_0 = 0.04262, \omega_1 = 0.20313, \omega_2$ = 0.72797 p = 0.54167, q = 2.70239
8 (B + ω)	4	-3777.500402	1.99916	0.1636	$p_0 = 1.00000, p = 0.54167, q = 2.70239$ ($p_1 = 0.00000$), $\omega = 6.48257$

Supplemental Table 8. Likelihoods and estimated parameters under different site models of codon substitution using only the C-terminus. Abbreviations: $-\ln L$, log likelihood, *p*, parameter; Kappa (ts/tv), transition/transversion ratio; NA, non applicable; ω , dN/dS value calculated under each model and applied to all branches in the phylogeny. Parameters in parenthesis are not free parameters.

Site Model	р	-ln L	Kappa (ts/tv)	ω	Additional Parameters Calculated
0	1	-1640.637362	2.15397	0.1994	NA
la (neutral)	2	-1690.315486	3.46592	0.7867	$p_0 = 0.21335, (p_1 = 0.78665)$
2a (positive)	4	-1690.318441	3.46590	0.7866	$p_0 = 0.21337, p_1 = 0.78663, (p_2 = 0.00000)$
3 (discrete)	3	-1618.117196	2.03426	0.2106	$\omega = \infty$ $p_0 = 0.70167, (p_1 = 0.29833),$ $p_2 = 0.000000$ $\omega_0 = 0.10034, \omega_1 = 0.46658, \omega_2$
7 (β)	2	-1614.406920	2.06628	0.2117	= 999.000 p = 0.76756, q = 2.81030
8 (B + ω)	4	-1614.497092	2.06632	2.1553	$p_0 = 0.99758, p = 0.76772, q =$ 2.81123, ($pl=0.00242$), $\omega =$ 804.09372

Model	Data set	H ₀ (null)	H ₁ (alternate)	$2\Delta \ln L$	df	P value (χ2)
Site Models						
	MIKC					
		0	3	227.60	4	0.000
		1a	2a	0.00	2	1.000
		7	8	-0.26	2	1.000
	IKC					
		0	3	144.41	4	0.000
		1a	2a	0.00	2	1.000
		7	8	0.00	2	1.000
	C-terminus					
		0	3	45.04	4	0.000
		1a	2a	0.00	2	1
		7	8	-0.18	2	1
Branch site Models						
	IKC	Os MADS17				
		Model A null	А	-12.46	2	1.000
		Model B null	В	-14.42	1	1.000
		AGL6/Os MADS6				
		Model A null	А	-11.42	2	1.000
		Model B null	В	-14.42	1	1.000
	Gain of palea expression					
		Model A null	А	-10.19	2	1.000
		Model B null	В	-8.87	1	1.000

Supplemental Table 9. Hypothesis tested using likelihood ratio tests. Abbreviations: $2\Delta \ln L$, the likelihood ratio statistic; df, degrees of freedom (is the difference in the number of parameters calculated under the models being compared).

Supplemental Table 10. Results from Tajima's relative rates test. The asterisk indicates *P* values less than 0.05 is often used to reject the null hypothesis of equal rates between lineages. dN/dS ratio was estimated using codeml as implemented in PAML 3.14 package (Yang 1997).

Test	Gene	$dN/dS = \omega$	Unique sites	P value
ZAG5 vs ZAG3	ZAG5 ZAG3	0.09049 0.08171	7 4	0.36571
Os MADS17 vs Os MADS6	Os <i>MADS17</i> Os <i>MADS6</i>	0.57442 0.21785	25 11	0.01963*

References not cited in the text but mentioned in the Supplemental Data

Nielsen, R., and Yang, Z. (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936.

Yang, Z., Nielsen, R., and Hasegawa, M. (1998). Models of amino acid substitution and applications to mitochondrial protein evolution. Mol. Biol. Evol. 15:1600-1611.

Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A.M. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431–449.

Zhao T., Ni, Z., Dai, Y., Yao, Y., Nie, X., and Sun, Q. 2006 Characterization and expression of 42 MADS-box genes in wheat (*Triticum aestivum* L.). Mol. Genet. Genomics **276:** 334-350.