
 1

Supplemental text and figures 
 
1. Details for naïve Bayes integration 

1.1. Gold standard datasets  

We define gene pairs sharing the same biological process term in Gene Ontology 

(GO) as being functionally associated. Since GO terms are organized 

hierarchically, according to different levels of specificity, we need to choose a 

specificity level. Similar to other research groups [1-3], we count the total number 

of genes annotated with a GO term to measure that term’s specificity, with low 

counts corresponding to high specificity GO terms and high counts corresponding 

to low specificity terms [1-3]. To select GO terms with the appropriate level of 

specificity, we adopt the definition of an informative GO term defined by Zhou et 

al. [1, 3]. Specifically, informative GO terms need to satisfy two criteria: (i) at 

least 175 genes are annotated with the term, and (ii) none of its descendant terms 

are used to annotate over 175 genes. The files for mapping genes to GO terms 

were downloaded from Entrez Gene [4], and we only consider  annotations with 

non-IEA evidence code [5]. Based on the above criteria, a total of 54 informative 

GO terms are selected. 

We define gene pairs sharing one or more informative biological-process GO 

terms as the gold standard positive (GSP) set. To minimize bias, the most 

populous informative GO term “GO:0048513” (“organ development”) is excluded 

from the GSP set (it is associated with ~14% of the GSP if included, compared to 

<6% of the GSP for any of the other 53 informative GO terms [6]).  A list of the 

53 GO terms that we include is provided in Additional File 13. 

Our gold standard negative (GSN) set is defined as the collection of gene pairs 

that are annotated by the 53 GO informative terms but do not share common GO 

biological-process terms except for the root term.   
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In addition, we also construct the gold standard set using KEGG pathways instead 

of GO terms. The integration performance using KEGG is similar to that using 

GO. 

1.2 Features and scoring 
(1)  Curated protein-protein interaction (curated PPI) 

Curated human protein-protein interaction are downloaded from HPRD, 

BIND, BIOGRID, INACT, MIPS, DIPS, and MINT [7-13]. To differentiate 

with high-throughput PPI, large-scale yeast two-hybrid data and mass 

spectrometry data are excluded. We use a binary score to denote the presence 

or absence of an interaction. All these databases retrieve their data entries 

from published literature. To minimize redundancy, we combine these 7 

datasets as one feature as described in Section 1.4.  

 

(2)  High-throughput Yeast two-hybrid (Y2H) 

We download Y2H data from Rual et al’s datasets [14]. We also use a binary 

score to denote the presence or absence of an interaction. 

 

(3)  Large-scale mass spectrometry (MassSpec) 

Our mass spectrometry data are from Ewing et al [15]. We also use a binary 

score to denote whether two proteins occur in the same protein complex. Note: 

The high-throughput Y2H experiment and the large-scale mass spectrometry 

are performed by independent groups, so we treat them as two separate 

features. 

 

(4)  PPI inferred from domain-domain interaction (DDI) 

Protein-protein physical interactions (PPI) involve interactions between 

protein domains. Therefore new PPI’s could be predicted by identifying pairs 

of protein domains enriched in known interacted protein pairs [16, 17]. Two 

studies have identified enriched domain pairs by mining the HPRD database 

and the identified domain pairs were measured by confidence scores [16, 17]. 
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We download these domain pairs from both studies and then retrieve the 

protein pairs containing these domain pairs using InterPro database [18]. Each 

retrieved protein pair is given the same confidence score as the corresponding 

domain pair. Since both studies identified the interacted domain pairs by 

mining the HPRD database, to minimize redundancy we combine the two 

resulting datasets as one feature as described in Section 1.4. In addition, we 

also exclude protein pairs having been incorporated in the curated PPI since 

their interactions have been counted.  

 

(5)  Text mining (TexM) 

Text mining is also an important source to retrieve functionally associated 

gene pairs by searching for co-ocurrence of gene names in PubMed abstracts 

[19]. We download human text mining data from String database with each 

gene pair associated with a corresponding text mining score [19].  

  

(6)  Correlated gene expression (Co-exp)  

Correlated gene expression from gene expression microarray experiments is 

also included as a feature to predict functionally associated gene pairs. We 

include three expression-correlation studies [19-22]. Each of them 

incorporated multiple microarray datasets and identified gene pairs with 

correlated gene expression profiles. We refer to these three studies as Tmm 

[20], Canada [21], and String [19, 22], respectively.  

 

For Tmm and String, we directly download the co-expressed gene pairs and 

their co-expression scores. For Canada, we use the high-confidence human 

expression set and treat the data set as binary, 1 for presence of high-

confidence correlation and 0 for absence of high-confidence correlation. 

 

To minimize redundancy, the above three co-expression datasets are 

combined as one feature as described in Section 1.4. 
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(7)  Phylogenetic profile (PG) 

The presence and absence of a protein across a set of genomes can be 

represented by a binary string, a phylogenetic profile [19, 23, 24]. Genes with 

sufficiently similar profiles tend to be functionally related [19, 23, 24]. Gene 

pairs with correlated phylogenetic profiles and their associated correlation 

scores are downloaded from String database [19, 23, 24]. 

 

(8) Gene neighbor (GN) 

If two genes are found to be chromosomal neighbors in several different 

genomes, a functional linkage can be inferred between the proteins they 

encode [19, 23, 24]. Gene pairs identified by gene neighbor method and their 

associated interaction scores are downloaded from string database [19, 23, 24]. 

 

(9) Gene fusion (Fusion) 

Some protein pairs with similar functions fuse into different domains of one 

single protein in other species [19, 23, 24]. Gene pairs with domain fusions 

and their scores are downloaded from String database [19, 23, 24]. 

 

(10) Functional associations inferred from model organisms (Yeast, Worm, Fly, 

and Mouse-rat) 

Previous studies indicated that gene-gene functional associations in worm can 

be predicted by mapping the functional associations in other model organisms 

via gene orthology [6]. Such conserved functional associations are defined as 

‘associalogs’ [6]. Similarly, we retrieve functionally associated gene pairs 

from yeast [25], worm [6], fly [19], mouse [19] and rat [19] and then map 

them into their human associalogs using INPARANOID databases [26]. 

 

For yeast, the human associalogs are mapped from yeast functional genomic 

data, including co-citation, co-expression, genetic interaction, co-complex, 

curated PPI, interaction inferred from protein tertiary structure, and high-

throughput yeast 2 hybrid, which are all downloaded from [25].  
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For worm, the human associalogs are mapped from worm functional genomic 

data, including  co-citation, co-expression, genetic interaction, and worm 

protein interactome, which are all downloaded from [6].  

 

For each of fly, mouse and rat, the corresponding human associalogs are  

mapped from corresponding organism’s functional genomic data, including 

co-expression, protein-protein interaction, text mining, which are  downloaded 

from String database [19].  

 

Associalogs from each model organism encode one single feature. We 

evaluate the correlation of associalogs mapped from any two model organisms. 

Not surprisingly, we find strong correlation (Pearson correlation coefficient = 

0.645) between mouse and rat, since they are very close in the evolutionary 

tree. To minimize redundancy, we combine associalogs from mouse and rat 

into one feature as described in Section 1.4. These associalog features are 

referred as “Yeast”, “Worm”, “Fly”, and “Mouse-rat”, respectively.  

 

(11) Sharing molecular-function terms in Gene Ontology (MF) 

Two genes sharing the same molecular function GO term [27] are more likely 

to belong to the same biological process (functionally linked) [28]. 

Furthermore, genes sharing more specific molecular function terms should be 

more likely to belong to the same biological process than genes sharing 

general terms. We download human molecular function annotations from 

Entrez Gene (Nov. 2007) [4]. As a measure of functional association for two 

genes with one or more shared GO terms, every shared GO term is examined 

for the count of the genes annotated with that term and the smallest count is 

used as the score [16]. A lower score corresponds to higher degree of 

functional association. 

 

(12) Sharing cellular-component GO terms (CC) 
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Cellular localization information can be described by GO cellular-component 

terms [27]. Genes sharing cellular localizations tend to functionally associated. 

We downloaded human cellular component annotations from Entrez Gene 

(Nov. 2007) [4]. The scoring scheme is the same as the feature of “Sharing 

molecular-function GO terms”.  

 

(13) Protein domain sharing (DS) 

Proteins containing the same protein domains tend to have similar function 

[29, 30]. To retrieve protein domain information, we use InterPro database, 

which is a database of protein families, domains, repeats, and sites [18]. We 

refer these protein families, domains, repeats, and sites as InterPro terms. 

Similar to GO terms, there are also hierarchical organizations among these 

InterPro terms. Therefore we use the same scoring scheme as the feature of 

“Sharing molecular-function GO terms”. 

 

1.3 Overlap among Y2H, MassSpect , and curated PPI  
Three PPI sources were included as input features for naïve Bayes integration: (i) 

Rual et al. Y2H dataset, (ii) Ewing et al. MassSpect interaction dataset, and (iii) 

the union of seven curated PPI databases (HPRD, BIND, BIOGRID, INTACT, 

MIPS, DIPS, and MINT).  All seven curated PPI databases have a PubMed ID 

field describing the literature source of a PPI record.  By examining the PubMed 

ID field of these databases, we found that the Rual et al. Y2H dataset and the 

Ewing et al. APMS interaction dataset are indeed included in some of the curated 

databases.  To fix this problem of redundancy, we removed Rual et al. Y2H 

dataset and Ewing et al. APMS interaction dataset from the curated databases, 

based on the corresponding PubMed ID fields. 

 

We compared the overlap between the curated PPI, Rual et al. Y2H, and Ewing et 

al. APMS datasets.  The comparison results reveal small overlaps among the three 

PPI sources (see table S1, S2, and S3).  It is still possible for a protein-protein 

interaction to be included in more than one PPI source; however, this is not 
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because the same interaction from the same literature reference is counted 

multiple times, but rather because the same interaction has been detected in 

multiple independent experiments from different literature references.  These 

cases can be properly handled by naïve Bayes integration.eing redundant and treat 

them as 3 features.  

 

1.4 Calculation of likelihood ratios (LRs)  
(1) Features with binary scores 
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Where I and ~I denote belonging to gold standard positive set and gold 

standard negative set, respectively; and fi denotes feature i. 

 

(2) Features with non-binary scores 

For a feature i (fi) with continuous values, we bin the scores into consecutive 

intervals and then calculate a LR for each individual bin. We use startij and 

endij to denote the start value and end value for interval j of feature fi (startij <  

endij), respectively. 
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Where I and ~I denote belonging to gold standard positive set and gold 

standard negative set, respectively; and fi denotes feature i; fi_binj denotes the 

jth bin for fi.  

 

Gene pairs with missing values are put into a separate bin for LR calculation.  
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(3) LR calculation for associalogs mapped from model organisms’ functional 

associations is similar to those used by Zhong et al and Lee et al [6, 31]. 

Below we use yeast as an example to show the calculation procedures. 

(i) For each type of functional genomics data in yeast, identify the human 

orthologs according to INPARANOID database and give them the same 

association scores as in yeast [26].  

(ii) Treat each type of functional genomics data as a single feature and 

calculate their LR as described above based on the human gold standard 

set.  

(iii) Perform naïve Bayes integration for these yeast based features by 

multiplying their LRs (equation 2 of the main manuscript). The resulting 

integrated LR is used as one overall feature of yeast associalogs for the 

final integration.  

 

1.5 Combination of two or more dependent datasets or features as 
one single feature 
First, for each dataset or each feature, an individual LR is calculated 

independently. Next, the maximum LR among these individual LRs is used as the 

final LR for each gene pair [16, 31]. 

 
1.6 Integration procedures 
Step 1) Calculate LRs for the associalogs of yeast, worm, fly, mouse and rat. The 

mouse associalogs and rat associalogs are combined as one feature. Each of the 

rest organisms is treated as a single associalog feature. 

 

Step 2) Calculate LR for each of the rest non-associalog features listed in Section 

1.2. 

 

Step 3) After Step 2, a total of 16 features are generated (Table 1 of the main 

manuscript) and the LR for each feature is calculated. Perform the final naïve 

Bayes integration using these 16 features (Equation 3 of the main manuscript).  
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2. Seed genes for FLN-based disease gene prioritization 

The seed disease genes are obtained from the Online Mendelian Inheritance in Man 

(OMIM) database, a compendium of human disease genes and phenotypes [32]. The 

disease-gene associations are downloaded from the Morbid Map (April 2008) [32]. To 

obtain highly reliable seeds, we select only entries with the “(3)” tag, which indicates 

“mapping of a wildtype gene combined with demonstration of a mutation in that gene in 

association with the disorder” [32, 33]. Next the subtypes of a single disease are merged 

into one unique disorder entry according to the merging files provided by Gol et al. 

(Supporting Information Table 1 in Goh et al’s paper [33]). For example, “Alport 

syndrome, 301050 (3)” and “Alport syndrome, autosomal recessive, 203780 (3)” are 

merged as “Alport syndrome”. Each disease is assigned a disease ID. 

3. Selection of the Neighborhood weighting rule 

We perform network based disease gene prioritization in two steps: (i) build a functional 

linkage gene network as input network by integrating multiple data sources, and (ii) apply 

an appropriate decision rule to the input gene network to rank candidate genes based on 

their connection to the seed disease genes. The choice of the optimal decision rule is 

determined by the nature of the input gene network. 
 

Our choice of the neighborhood weighting (NW) rule is based on the unique properties of 

our FLN. Derived from extensive data integration (16 genomic features and over 30 sub-

features), our FLN is a very dense and high-coverage gene network (over 21,000 genes 

and over 22,000,000 edges), and each gene has over 2,000 neighbors on average. Edges 

in our FLN are properly weighted by naïve Bayes, and the linkage weight is proportional 

to the strength of the functional association between a linked gene pair (Figure 2). The 

NW rule, which ranks each gene in the network according to the sum of the weights of its 

links to the known disease (seed) genes (Equation 4, see Methods), takes advantage of 

linkage weights and the availability of direct measures of functional associations between 

each seed gene and thousands of its neighboring genes to successfully rank about 12,000 

genes for each disease. 
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The NW rule is simple, yet already very effective. Our framework (construction of an 

integrated and weighted FLN plus the application of the NW rule) compares favorably 

with exiting methods (see below). We choose the NW rule due to its simplicity and 

effectiveness, and leave to future work the exploration of other more complex, diffusion-

type rules. 
 

Finally, the combination of the NW rule with weighted FLN is a common practice in the 

field. For example, Lee et al and McGary et al have successfully applied the same NW 

rule to integrated FLNs in worm and yeast to predict perturbation phenotypes of genes [6, 

34]. 
 

NW rule is a local decision rule, and it uses only immediate network neighbors for new 

disease gene prediction. Other non-local decision rules have been proposed for disease 

gene predictions, such as the shortest path rule and the random walk rule [35, 36]. These 

rules make use of indirect connections between non-adjacent nodes for predictions. These 

rules are usually applied to networks that are much sparser than our FLN. For example, in 

Wu et al.’s study [35] where the shortest path rule is used, the input network is an 

unweighted protein-protein physical interaction network (14,433 nodes, 72,431 edges, 

and about 10 edges per node). In Kohler et al.’ study [36] where a random walk rule is 

used, the input network is an unweighted functional linkage network (13,726 nodes, 

258,314 edges, and about 38 edges per node). Because the average number of seed genes 

of the OMIM diseases is about 10, a local rule using only the direct neighbors of seeds 

can only rank hundreds of neighboring genes in both of these networks, and non-local 

rules are more desirable in these networks. In contrast, our weighted FLN is much denser 

(over 21,000 genes, over 22,000,000 edges, and over 2,000 edges per node). For each 

disease, our NW rule can already rank about 12,000 genes based on their weighted links 

to the seed genes. Thus our NW rule is most suited for our dense, weighted FLN. 
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4. ROC-50 analysis as the disease centric evaluation of the FLN based 
disease gene prioritization. 

We have also performed the disease centric evaluations using only the area of the 

extreme left side of the ROC curve, which represents the top ranking predictions. 

We plot the true positive rate (sensitivity) versus the false positive rate (1-specificity) and 

show the ROC curve with up to the 50th false positives (ROC-50) (Figure S2). For a 

particular disease, the true positive rate is defined as the fraction of seed genes above a Si 

cutoff, and the false positive rate is defined as the fraction of non-seed genes above a Si 

cut-off (see Methods). Figure S2 shows that our disease gene predictions are significantly 

better than random for all seven diseases. 

To further use ROC-50 to evaluate all 110 diseases, we calculated the area under the 

ROC-50 (AUC-50) for each of the 110 diseases, and normalized it to [0, 1]. Figure S3 

shows the box plots for FLN based predictions versus random controls (see Methods for 

random control generations). Again, our FLN based predictions (median AUC-50 of 

about 0.4) significantly outperforms random controls (median AUC-50 of 0). This trend 

still holds even when text mining data is excluded from the FLN. 

5. Comparison with other disease gene prioritization methods 

We compare our FLN-based disease gene prioritization with another network based 

disease gene prioritization approach, which was recently proposed by Kohler et al [36]. 

In particular,  Kohler et al. constructed a functional linkage network composed of 

heterogeneous PPI and functional links imported from STRING database [19]. Next they 

applied a random walk algorithm for disease gene prioritization.  

To compare different methods, the same benchmark set should be used for comparison. 

So we use the same disease seed gene sets provided by Kohler et al. for performance 

comparison. These seed sets represent 110 diseases. Particularly, in leave-one-out cross 

validation, the performance is compared by the mean fold enrichment, with the artificial 

chromosomal region containing 100 genes as the background set (see the main 
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manuscript). A similar performance criteria has also been used by other groups [35, 37, 

38]. The mean fold enrichment of our approach is 41.8 (with text mining) and 25.3 

(without text mining), slightly lower than Kohler et al.’s method (44 with text mining and 

27 without text mining, computed by Kohler et al. [36]), but comparable, especially 

considering that our FLN has a higher gene coverage and thus allows scanning more 

genes for prioritization (21,657 genes in our FLN versus less than 14,000 genes in Kohler 

et al’s gene network).  

Additionally, with text mining data included, Kohler et al utilized 7 recently identified 

disease genes not included in the seed sets to assess the novel-prediction performance and 

compared their performance with other approaches. The disease-association landmark 

references of these 7 genes were after the publication of the STRING database where 

Kohler et al. retrieved their text mining data [19], therefore relatively minimal literature 

bias was expected. Since our text mining data are from the same STRING database, with 

the text mining data included, we also evaluate our method using these 7 disease genes. 

The result indicates that our method (mean fold enrichment of 30.7) even slightly 

outperforms Kohler et al’s approach (mean fold enrichment of 25.9) (Table S4). The 

other  two methods in comparison, ENDEAVOUR, which also utilizes data integration 

[30],  and PROSPECTOR, which is based on sequence data [29], also have lower mean 

fold enrichment than ours (mean fold enrichment of 18.4 and 10.9, respectively, 

calculated by  Kohler et al. [36]).  

 

Both our approach and Kohler’s could be summarized as a common two-step framework 

composed of (i) building an FLN using multiple data sources and (ii) applying a decision 

rule to rank candidate genes based on their direct or indirect connection to the seed genes.  

 

In the first step, Kohler et al. constructed a less optimal FLN than ours as illustrated 

below. Instead of data integration, they simply took the union of a heterogeneous set of 

PPI links and functional links from STRING database [19]. It is of note that no linkage 

weighting was utilized, despite the fact that links vary in confidence levels. For instance, 

othology mapped PPI from other species has higher error rates than curated PPI derived 
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from the HPRD database [7]. As for the functional links imported from String database 

[19], instead of using linkage weights calculated by the String database, a confidence 

cutoff was applied prior to network construction, where links above the cutoff were 

included without weighting, and links below the cut-off were simply discarded. Our 

results suggest that some information could be lost by removing entirely these low 

confidence links, as demonstrated by Figure S5B and S5C.  

 

6.  P-value calculation for the obesity case study 
 

There are a total of 21,657 genes in FLN, among which 24 are obesity seed genes based 

on OMIM database, and the rest 21,633 are non-seed genes.  Among these 21,633 non-

seed genes, 334 are included in the obesity candidate genes collected from literature by 

Hancock et al. (referred as “ObesHancock genes”) [39].  If one selects 100 genes at 

random from the non-seed genes of the FLN, its overlap with the “ObesHancock gene” 

set follows a binomial distribution, with an average overlap of 334/21,633×100= 1.54. 

 

Among the top 100 predicted candidate obesity genes by the FLN (excluding text 

mining), 22 genes overlap with the “ObesHancock genes”. The p-value for the observed 

overlap can be estimated based on the above-mentioned binomial distribution, and is less 

than 10-13. 

 

7. Comparison of FLN based mutual predictability method with Goh et al’s 
disease gene sharing method for identification of disease-disease 
associations 
 

We perform a quantitative assessment for comparing our FLN based mutual 

predictability method with Goh et al’s disease gene sharing method, which identified the 

associations between two diseases by counting their overlapping disease genes [33].  

Since both our method and Goh et al’s method identify the disease-disease association 

from the aspect of underlining molecular mechanisms, we need a disease-disease 

association benchmark dataset based on related underlining molecular mechanisms for 
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quantitative comparison. Unfortunately, there is no such benchmark available since our 

understanding for molecular mechanisms manifesting individual diseases is still limited 

and remains to be further explored.   

 

Goh et al divided the OMIM diseases into 20 disease classes based on the clinical 

phenotypes. Since diseases with similar phenotypes tend to have related molecular 

mechanisms [4], we use this phenotype-based classification to generate a disease-disease 

association benchmark. Specifically, disease pairs with both disease members belonging 

to the same disease class (co-class disease pairs) are considered to be associated. It 

should be noted that this phenotype based disease classification benchmark is only an 

approximation: diseases with the same phenotypes can have different molecular 

mechanisms, and diseases with different phenotypes can share related molecular 

mechanisms [40, 41]. Therefore, the comparison results based on this approximate 

phenotypic benchmark should be interpreted in a semi-quantitative way. 

 

Next we compare the two methods at different disease-disease association score cutoffs 

(using mutual predictability scores for our method and number of overlapping disease 

genes for Goh et al’s method) using the sensitivity versus precision plot (Figure S8), 

where sensitivity is defined as the fraction of co-class disease pairs above the threshold 

among all the co-class disease pairs, and precision is defined as the fraction of co-class 

disease pairs among the disease pairs above the threshold. 

 

The comparison results are shown for two scenarios: (i) identification of co-class disease 

pairs for those disease pairs that share one or more known disease genes; (ii) 

identification of co-class disease pairs for those disease pairs that share no known disease 

genes.  For scenario (i), we find that the two methods have comparable performances 

(Figure S8A). However, for scenario (ii), the disease-gene sharing method fails 

completely with random performance, as these disease pairs share no known disease 

genes and all have the same association score of 0 (Figure S8B).  On the contrary, our 

mutual predictability method can still take advantage of the FLN to quantify the 

association for these disease pairs, and our method clearly outperforms the disease-gene 
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sharing method (Figure S8B). It should be noted the disease pairs sharing disease genes 

only cover 15% of all the co-class disease pairs (maximum sensitivity of ~0.15 in Figure 

S8A), and 85% of co-class disease pairs are missed by disease-gene sharing method. On 

the contrary, our mutual predictability method can identify additional 20% co-class pairs 

at the precision cutoff of 0.2, which is more than twice of the precision of the disease-

gene sharing method (Figure S8B).   

 

Therefore, the above quantitative comparison confirms that our FLN based mutual 

predictability method is able to identify additional disease-disease associations sharing no 

known disease genes, which traditional disease-gene sharing method fails to identify. 
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Figure S1 
 

 
 

 Figure S1: Individual data sources for inferring functional links.  The x-axis denotes 

the number of GSP gene pairs that are linked at different linkage weight cutoffs, this 

count represents the linkage sensitivity (see Methods of the main manuscript). Note the x-

axis is on a log scale. The Y axis denotes corresponding linkage precisions (see Methods 

of the main manuscript). The individual data sources are described in Table 1 of the main 

manuscript. 
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Figure S2 

 
Figure S2:  Predictability of 7 example diseases evaluated by ROC-50 curves in the 

disease-centric assessment. Prediction performance for individual diseases is measured 

by the true positive rate (sensitivity) versus false positive rate (1-specificity). In particular, 

for each given disease, each gene in the network is ranked based on the disease 

association score (Si, Equation 4). The Si for each known disease (seed) gene is computed 

using leave-one-out cross-validation, based on its connectivity to other seeds. Next the 

performance for each disease is assessed by calculating the sensitivity (TP/(TP +FN)) and  

1-specificity (FP/(TN + FP)) at different Si cut-offs.  Here TP is the number of seed genes 

above the Si cut-off, FP is the number of non-seed genes above the cut-off, TN  is the 

number of non-seed genes below the cut-off, FN  is the number of seed genes below the 

cut-off. Random prediction performance is indicated by the purple color. Only the partial 

regions (with up to the 50th false positives) of  the ROC curves, the ROC-50s,  are shown. 

Because the false positives range from 0 to 50 for ROC-50 and for each disease there are 

over 21,000 non seed genes in the FLN, the maximum false positive rate shown is less 

than 50/21,000 (about 0.0023). The true positive rate ranges between 0 and 1. Therefore, 

for ROC-50, 1-specificity (X axis) and sensitivity (Y axis) are in different scales. 
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Because of the scale difference between the X axis and Y axis, unlike the full ROC curve, 

the expected random control for ROC-50 is not the diagonal any more, but a line linking 

the data point of (0,0) and the data point of (0.0023, 0.0023), a line very close to X axis. 



 19

Figure S3 

 
 

Figure S3: FLN-based disease gene prioritization significantly outperforms random 

control based on the disease centric evaluation (using the AUC of ROC-50). 

Performances are compared between FLN (inclusion or exclusion of text mining data) 

based disease-gene prioritization and the random control. The random control is 

generated using the FLN to prioritize randomly assembled disease gene sets (See 

Methods). Box plots of AUC of ROC-50 for 110 diseases, based on the disease-centric 

assessment (See Methods), are shown. For each box plot, the bottom, middle, and top 

lines of the box represent the first quartile, the median, and the third quartile, respectively; 

whiskers represent 1.5 times the inter-quartile range; red plus signs represent outliers. 
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Figure S4 

 
Figure S4: Performance comparison among monogenic diseases, complex diseases, 

and cancers. The classification of mongenic diseases, complex diseases, and cancers are 

based on Kohl et al’s manual classification [36]. Gene-centric assessment is used for 

performance comparison (see Method). Gene-centric assessment treats each known gene-

disease association as a test case. For each test case, the task is to assess how well the 

known disease (seed) gene ranks relative to a background gene set according to the 

disease-association score(Si) (Equation 4 of the main manuscript). The Si for each gene in 

each test case is calculated in leave-one-out setting based on the connectivity to the 

remaining seed genes. The background gene set used is referred as the artificial 

chromosomal interval, which is composed of a collection of 100 nearest genes flanking 

the tested disease gene physically on the chromosome. Finally, after the rank of each 

tested disease gene within each test case is determined, all the test cases are pooled 

together and the overall performance is assessed by evaluating the fraction of the tested 

disease genes ranked above various rank cut-offs.  Note: FLN excluding text mining is 

used for all the comparisons.     
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Figure S5 
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S5C 
 

 

Figure S5: Data integration is important for FLN based disease gene prioritization. 

(A) FLN based disease prioritization shows improvement over the PPI network based on 

the disease centric assessment (see Methods). Box plots of AUCs of disease-gene-

prioritization performances for 110 diseases, are compared between FLN based 

prioritization and PPI based prioritization. For each box plot, the bottom, middle, and top 

lines of the box represent the first quantile, the median, and the third quantile, 

respectively; whiskers represent 1.5 times the interquartile range; red plus signs represent 

outliers. (B) Lower weighted functional links also contribute to prioritization 

performance since the full FLN outperforms filtered networks. Links in the FLN are 

ranked in descending order based on linkage weight, FLNs composed of top 1%, 10% 

and 100% links are compared for prioritization performance. Disease centric assessment 

is used for comparison (see Methods). (C) Same comparison as (B) based on the gene 

centric assessment (see Method). Gene-centric assessment treats each known gene-

disease association as a test case. For each test case, the task is to assess how well the 

known disease (seed) gene ranks relative to a background gene set according to the 

disease-association score(Si) (Equation 4 of the main manuscript). The Si for each gene in 

each test case is calculated in leave-one-out setting based on the connectivity to the 
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remaining seed genes. The background gene set used is referred as the artificial 

chromosomal interval, which is composed of a collection of 100 nearest genes flanking 

the tested disease gene physically on the chromosome. Finally, after the rank of each 

tested disease gene within each test case is determined, all the test cases are pooled 

together and the overall performance is assessed by evaluating the fraction of the tested 

disease genes ranked above various rank cut-offs.   
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Figure S6 
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Figure S6: FLN-based disease gene prioritization does not rely on text mining, GO 

Molecular Function, GO Cellular Component, or curated PPI alone. FLN excluding 

text mining (human, mouse and rat), GO Molecular Function, GO Cellular Component, 

and curated PPI (human, mouse, and rat) is evaluated for disease gene prioritization in 

comparison with random control. (A) Disease centric assessment (see Methods). Box 

plots of AUCs of disease-gene-prioritization performance for 110 diseases, are compared 

between FLN-based prioritization and random control. For each box plot, the bottom, 

middle, and top lines of the box represent the first quantile, the median, and the third 

quantile, respectively; whiskers represent 1.5 times the interquartile range; red plus signs 

represent outliers. (B) Gene centric assessment (See Method). Gene-centric assessment 

treats each known gene-disease association as a test case. For each test case, the task is to 

assess how well the known disease (seed) gene ranks relative to a background gene set 

according to the disease-association score(Si) (Equation 4 of the main manuscript). The Si 

for each gene in each test case is calculated in leave-one-out setting based on the 

connectivity to the remaining seed genes. The background gene set used is referred as the 

artificial chromosomal interval, which is composed of a collection of 100 nearest genes 

flanking the tested disease gene physically on the chromosome. Finally, after the rank of 

each tested disease gene within each test case is determined, all the test cases are pooled 

together and the overall performance is assessed by evaluating the fraction of the tested 

disease genes ranked above various rank cut-offs.  
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Figure S7 
 
 

 
 

Figure S7: Calculation of the mutual predictability score between disease I and 

disease II. Disease I is associated with 3 known genes, K, I, and L, and disease II is 

associated with 4 known genes, K, M, P, and J. One of the disease genes, K, is shared. 

Mutual predictability evaluates how well the known disease genes in I can be used to 

identify the disease genes in II (predictability I-II) and vice versa (predictability II-I).To 

quantify predictability I-II, we first use genes associated with disease I as seeds, and rank 

all other genes based on the Si score (Equation 4 of the main manuscript).  In addition, 

disease II genes that overlap with the seed genes from disease I, gene K, is given a Si 

score of infinity and ranked on the top.  Next, we plot a ROC curve of sensitivity versus 

1-specificity on how well the disease II genes are ranked in the sorted gene list (see 

Methods of the main manuscript).  Finally, we calculate the AUC of the ROC curve 
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(AUCI-II) as a measure for predictability I-II. Similarly, we can calculate AUCII-I as a 

measure of predictability II-I. The mutual predictability between disease I and II is defined 

as the geometric mean of AUCI-II and AUCII-I. 
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Figure S8 
A 

     

                   
B 

 

                   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensitivity

Pr
ec

is
io

n

 

 

FLN based mutual predictability method
Disease-gene sharing method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensitivity

Pr
ec

is
io

n

 

 

Disease-gene sharing method
FLN based mutual predictability method



 29

Figure S8: Comparison of mutual predictability method and disease-gene sharing 

method. (A) Comparison for the scenario where the evaluated disease pairs share 

one or more disease genes. The comparison is performed at various disease-disease 

association score cut-offs. The disease-disease association score for mutual predictability 

method is the mutual predictability score; the disease-disease association score for 

disease-gene sharing method is the number of overlapping disease genes between a 

disease pair.  The number of overlapping disease genes is a discrete value ranging from 1 

to 6 (based on OMIM); the mutual predictability score is a continuous value ranging from 

0 to 1 (see Methods in the main manuscript).  X axis denotes sensitivity: fraction of co-

class disease pairs above the threshold among all the co-class disease pairs; Y axis 

denotes precision: fraction of co-class disease pairs among the disease pairs above the 

threshold.  The disease classification is based on Goh et al manual classification [4]. 

Since 15% of co-class disease pairs share disease genes, the maximum sensitivity is about 

0.15. (B) Comparison for the scenario where the evaluated disease pairs share no 

known disease genes. Disease-gene sharing method cannot differentiate these disease 

pairs, as they all have the same association score of 0. To plot the data points for the 

disease-gene sharing method, we rank these disease pairs randomly and threshold the 

randomized rank score to plot the sensitivity and precision. Since 85% of co-class disease 

pairs share no disease genes, the maximum sensitivity is about 0.85.  The sum of the 

maximum sensitivity in (A) and the maximum sensitivity in (B) is 1.  
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Figure S9 
 

 
 
 
 

Figure S9: An example network of 66 diseases (nodes) linked by top 100 edges with 

the highest mutual predictability scores. The disease nodes are labeled with disease 

IDs (see Additional File 2). Many of these edges cannot be identified using simple 

disease-gene sharing method, and these are colored red.  The rest of the edges are colored 

blue. These top 100 disease pairs, their mutual predictability scores, and the supporting 

evidence for association are listed in Additional file 9. This disease-disease association 

network has a modular topology, and diseases tend to form clusters (rectangles). The 

disease clusters are labeled based on enriched disease class or underlying molecular 

mechanisms (see Additional File 10). 
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Table S1: Number of gene pairs in each PPI source. 

 

Curated PPI 

databases  Rual et al Y2H 

Ewing et al 

MassSepct  

Number of gene 

pairs 90,352 2,611 2,046 

  

Table S2: Number of overlapping gene pairs between different PPI sources. 

 

Curated human PPI 

databases  Rual et al Y2H 

Ewing et al 

MassSepct  

Curated human PPI 

databases  \ 157 335 

Rual et al Y2H 157 \ 8 

Ewing et al 

MassSepct  335 8 \ 

 

Table S3: Percentage of overlapping gene pairs between different PPI sources. 

 

Curated human PPI 

databases  Rual et al Y2H 

Ewing et al 

MassSepct  

Curated human PPI 

databases  \ 157/90,352 = 0.17% 335/90,352 = 0.37% 

Rual et al Y2H 157/2,611= 6.0% \ 8/2,611 = 0.3% 

Ewing et al 

MassSepct  335/2,046 = 16.4% 8/2,046=0.39% \ 
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Table S4:  Comparison of four disease gene prioritization methods to predict seven 

recently identified disease genes. 
 

Rankings 
 

 
Diseases 

  
  Genes 

 

Kohler et al  
 

ENDEAVOUR  PROSPECTR Our method 
 

Nephronophthisis 
 

GLIS237 100 43 3* 100 
 

ARVD 
 

JUP38 1* 1* 67 1* 
 

RP  
 

TOPORS39 23* 69 56 23* 
 

RP  
 

NR2E340 2 2 1 1* 
 

Noonan Syndrome 
 

RAF141 1* 3 42 1* 
 

Brachydactyly 
 

NOG42 1* 5 34 1* 
 

CMT4H 
 

FGD443 13 2* 9 4 
 

Mean Fold Enrichment 
 

25.9 18.4 10.9 30.7* 

Kohler’s approach [36], ENDEAVOUR [30] , and PROSPECTR [29], and our method 

are compared  for predicting 7 recently identified disease causing genes, using artificial 

chromosomal region containing 100 genes as the background set. The gene ranking and  

fold enrichments for the other 3 compared methods except our own were computed by 

Kohler et al (see the original Table 2 in Kohler et al [36]). Best performances are labeled 

with *. 

ARVD: Arrhythmogenic right ventricular dysplasia 

RP: retinitis pigmentosa 

CMT4H: Charcot-Marie-Tooth type 4H 
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