#### Supporting Information for Moreau, Schubert, Nasr, Török, Miller, Kennedy, Kemp:

"Context-Independent, Temperature-Dependent Helical Propensities for Amino Acid Residues."

#### I. Circular Dichroism Data

A. Norleucine scan

peptide 2

 $-[\theta]_{222} \deg \operatorname{cm}^2 \operatorname{dmol}^{-1}$ 

|                                                                                                                                                | 2°C   | 25°C  | 60°C |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LNleA <sub>18</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                | 27844 | 18765 | 7750 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LANleA <sub>17</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 28975 | 18341 | 7394 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>2</sub> NleA <sub>16</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27579 | 18217 | 7233 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>3</sub> NleA <sub>15</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 30339 | 20298 | 8120 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>5</sub> NleA <sub>13</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27816 | 19068 | 7813 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>7</sub> NleA <sub>11</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28620 | 18815 | 7444 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> NleA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 28872 | 18798 | 7728 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>11</sub> NleA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28243 | 18134 | 7322 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>13</sub> NleA <sub>5</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28316 | 18422 | 7357 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>15</sub> NleA <sub>3</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28851 | 18590 | 7627 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>16</sub> NleA <sub>2</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27745 | 17947 | 7405 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>17</sub> NleA <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>              | 27900 | 18124 | 7598 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>18</sub> Nle <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 29162 | 19212 | 7728 |

#### B. Double Norleucine scan

|                                                                                                                                                                 | 2°C   | 25°C  | 60°C |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> Nle <sub>2</sub> A <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>     | 28066 | 17309 | 7466 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> NleANleA <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 27573 | 17264 | 7204 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> NleA <sub>2</sub> NleA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 26489 | 16843 | 7342 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>7</sub> NleA <sub>3</sub> NleA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 29313 | 19404 | 8408 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>6</sub> NleA <sub>4</sub> NleA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28321 | 17664 | 7353 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>5</sub> NleA <sub>7</sub> NleA <sub>5</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 28223 | 18262 | 7671 |
| $WK_4Inp_2{}^tLA_2NleA_{13}NleA_2{}^tLInp_2K_4NH_2$                                                                                                             | 27398 | 18080 | 7725 |

#### C. Double Norvaline scan

|                                                                                                                                                                  | 2°C   | 25°C  | 60°C |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> Nva <sub>2</sub> A <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>      | 26089 | 15519 | 6596 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> NvaANvaA <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                | 26211 | 15650 | 6610 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> NvaA <sub>2</sub> NvaA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 24274 | 14660 | 6161 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>7</sub> NvaA <sub>3</sub> NvaA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 27222 | 17311 | 7330 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>6</sub> NvaA <sub>4</sub> NvaA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 26698 | 16166 | 6999 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>5</sub> NvaA <sub>7</sub> NvaA <sub>5</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 27092 | 16638 | 7023 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>2</sub> NvaA <sub>13</sub> NvaA <sub>2</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 26442 | 16915 | 7171 |

 $D. \ Single \ and \ double \ Guests \ WK_4Inp_{2}{}^tLNleA_9XA_9{}^tLInp_2K_4NH_2 \ WK_4Inp_{2}{}^tLNleA_9X_2A_8{}^tLInp_2K_4NH_2 \ WK_4Inp_{2}{}^tLNleA_9X_2A_8{}^tLInp_{2}K_4NH_2 \ WK_4Inp_{2}K_4NH_2 \ WK_4Inp_{2}K_4NH_2 \ WK_4Inp_{2}K_4NH_2 \ WK_4NH_2 \ WK_$ 

| Guest   | 2°C   | 25°C  | 60°C | double Guest         | 2°C   | 25°C  | 60°C |
|---------|-------|-------|------|----------------------|-------|-------|------|
| Pro     | 1346  | 2406  | 3236 |                      |       |       |      |
| Gly     | 12828 | 7127  | 4285 | GG                   | 3925  | 3568  | 3429 |
| Val     | 21366 | 12056 | 5719 | VV                   | 13509 | 7157  | 4419 |
| Phe     | 22617 | 12688 | 5288 | FF                   | 13438 | 7372  | 4048 |
| Ser-OMe | 23835 | 13322 | 5385 | (S-OMe) <sub>2</sub> | 17349 | 8590  | 4203 |
| Ile     | 24035 | 14578 | 6303 | II                   | 19289 | 10906 | 5681 |
| Met     | 24048 | 14855 | 6374 | MM                   | 20615 | 12601 | 5888 |
| Abu     | 26323 | 16123 | 6485 | Abu <sub>2</sub>     | 23103 | 13006 | 5486 |
| Leu     | 26162 | 16701 | 7073 | 7357                 | 24143 | 15092 | 6813 |
| Ala     | 27464 | 17757 | 6825 | 7627                 | 27464 | 15519 | 6825 |
| Nva     | 27791 | 17353 | 7247 | Nva <sub>2</sub>     | 27464 | 17757 | 6596 |
| Nle     | 28872 | 18798 | 7728 | Nle <sub>2</sub>     | 28066 | 17697 | 7466 |
| Asn     | 18993 | 10685 | 5302 | NN                   | 10252 | 6488  | 4622 |
| Ser     | 19920 | 10912 | 4726 | SS                   | 11317 | 6517  | 4710 |
| Thr     | 20549 | 11057 | 5551 | TT                   | 9513  | 4551  | 4386 |
| Tyr     | 20930 | 12220 | 5533 | YY                   | 11922 | 6979  | 3715 |
| Gln     | 23943 | 14152 | 6232 | QQ                   | 17266 | 10021 | 4760 |

 $-[\theta]_{222} \deg \operatorname{cm}^2 \operatorname{dmol}^{-1} \operatorname{Guest} X$ 

## E. Lysine pH 7, Arginine pH 7, Histidine pH 1.2

 $-[\theta]_{222} \deg cm^2 dmol^{-1}$ 

|                                                                                                                                                | 2°C   | 25°C  | 60°C        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------|--|
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LLysA <sub>18</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                | 24035 | 14436 | 6123        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LALysA <sub>17</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 23168 | 13484 | 6189        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>2</sub> LysA <sub>16</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 22857 | 13453 | 5889        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>3</sub> LysA <sub>15</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 23532 | 13375 | 5754        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> LysA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 25582 | 14866 | 6154        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>11</sub> LysA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 24997 | 14817 | 6566        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>13</sub> LysA <sub>5</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 26565 | 16622 | 7198        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>15</sub> LysA <sub>3</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27835 | 18293 | 8021        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>16</sub> LysA <sub>2</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27371 | 18382 | 8043        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>17</sub> NleA <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>              | 28597 | 19703 | 8678        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>18</sub> Lys <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 29284 | 20029 | 8328        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LArgA <sub>18</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                | 22419 | 13118 | 4994        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>4</sub> ArgA <sub>14</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 22006 | 12016 | 4421        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> ArgA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 24321 | 14644 | 5296        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>12</sub> ArgA <sub>6</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 26244 | 16623 | 6571        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>15</sub> ArgA <sub>3</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27013 | 18068 | 7266        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>18</sub> Arg <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 28142 | 19271 | 7604        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>4</sub> HisA <sub>14</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 17611 | 9046  | 3177        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> HisA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 17620 | 9259  | 3374        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>12</sub> HisA <sub>6</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 26244 | 16623 | 6008        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>15</sub> HisA <sub>3</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 27013 | 18068 | 7266        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>18</sub> His <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>               | 27733 | 18800 | 8642        |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> GluA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 26364 | 14162 | 6232 pH 1.2 |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> GluA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 26539 | 16360 | 6609 pH 7   |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> AspA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 20929 | 11438 | 4694 pH 1.2 |  |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>9</sub> AspA <sub>9</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>  | 23174 | 12986 | 6198 pH 7   |  |

## F. Double and Triple Lysine scan

|                                                                                                                                                                             | 2°C   | 25°C  | 60°C |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> K <sub>3</sub> A <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                   | 10510 | 6154  | 6072 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>7</sub> KAKAKA <sub>7</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                             | 7263  | 4673  | 5463 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>6</sub> KA <sub>2</sub> KA <sub>2</sub> KA <sub>6</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 5638  | 4039  | 5100 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>5</sub> KA <sub>3</sub> KA <sub>3</sub> KA <sub>5</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 6874  | 4583  | 5920 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>4</sub> KA <sub>4</sub> KA <sub>4</sub> KA <sub>4</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub> | 12273 | 7030  | 6561 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>6</sub> KA <sub>5</sub> KA <sub>6</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                 | 18159 | 10835 | 7799 |
| WK <sub>4</sub> Inp <sub>2</sub> <sup>t</sup> LA <sub>8</sub> KAKA <sub>8</sub> <sup>t</sup> LInp <sub>2</sub> K <sub>4</sub> NH <sub>2</sub>                               | 18018 | 10015 | 6897 |

## **II. Molecular Ion MS Data for Series 2 Peptides**

| Peptide<br>NleA14 | <u><i>m/z</i> Found (Expected)</u><br>753.26 (752.48), 602.80 (602.19), 502.52 (501.99), 430.90 (430.42),<br>377.17 (376.75) |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| ANIeA13           | 753.23 (752.48), 602.78 (602.19), 502.52 (501.99), 430.88 (430.42),<br>377.06 (376.75)                                       |
| A2NleA12          | 1003.98 (1002.98), 753.38 (752.48), 602.80 (602.19), 502.52 (501.99),<br>430.90 (430.42), 377.17 (376.75)                    |
| A3NleA11          | 1003.98 (1002.98), 753.26 (752.48), 602.80 (602.19), 502.52 (501.99),<br>430.90 (430.42), 377.17 (376.75)                    |
| A5NleA9           | 753.16 (752.48), 602.72 (602.19), 502.52 (501.99), 430.81 (430.42),<br>377.00 (376.75)                                       |
| A7NleA7           | 1003.79 (1002.98), 753.38 (752.48), 602.87 (602.19), 502.52 (501.99),<br>430.96 (430.42), 377.17 (376.75)                    |
| A9NleA5           | 753.45 (752.48), 602.93 (602.19), 502.71 (501.99), 430.96 (430.42),<br>377.17 (376.75)                                       |
| A11NleA3          | 753.23 (752.48), 602.85 (602.19), 502.52 (501.99), 430.88 (430.42),<br>377.19 (376.75), 251.66 (251.50)                      |
| A12NleA2          | 602.52 (602.19), 502.26 (501.99), 430.68 (430.42), 376.86 (376.75),<br>251.46 (251.50)                                       |
| A13NleA           | 1003.85 (1002.98), 753.52 (752.48), 602.80 (602.19), 502.52 (501.99),<br>430.90 (430.42), 377.17 (376.75)                    |
| A14Nle            | 1004.17 (1002.98), 753.20 (752.48), 602.80 (602.19), 502.58 (501.99),<br>430.90 (430.42), 377.11 (376.75)                    |
| NleA18            | 659.55 (659.02), 549.82 (549.35), 471.34 (471.02), 412.52 (412.26)                                                           |
| ANIeA17           | 659.62 (659.02), 549.82 (549.35), 471.34 (471.02), 412.65 (412.26)                                                           |
| A2NleA16          | 659.55 (659.02), 550.02 (549.35), 471.47 (471.02), 412.72 (412.26)                                                           |
| A3NleA15          | 824.43 (823.52), 659.77 (659.02), 549.95 (549.35), 471.54 (471.02),<br>412.76 (412.26)                                       |
| A5NleA13          | 549.95 (549.35), 471.54 (471.02), 412.72 (412.26)                                                                            |
| A7NleA11          | 659.69 (659.02), 549.95 (549.35), 471.54 (471.02), 412.65 (412.26)                                                           |
| A2NleA13NleA2     | 667.81 (667.43), 556.43 (556.36), 477.09 (477.02), 417.56 (417.52)                                                           |
| A5NleA7NleA5      | 668.07 (667.43), 556.81 (556.36), 477.53 (477.02), 417.94 (417.52)                                                           |
| A6NleA4NleA6      | 668.01 (667.43), 556.81 (556.36), 477.47 (477.02), 417.88 (417.52)                                                           |

| A7NleA3NleA7  | 667.94 (667.43), 556.75 (556.36), 477.35 (477.02), 417.82 (417.52)                                      |
|---------------|---------------------------------------------------------------------------------------------------------|
| A8NleA2NleA7  | 668.07 (667.43), 556.81 (556.36), 477.53 (477.02), 417.94 (417.52)                                      |
| A8NleANleA8   | 667.62 (667.43), 556.43 (556.36), 477.09 (477.02), 417.56 (417.52)                                      |
| A9NleNleA8    | 668.07 (667.43), 556.94 (556.36), 477.47 (477.02), 418.01 (417.52)                                      |
| A2NvaA13NvaA2 | 662.08 (661.82), 551.88 (551.69), 473.22 (473.02), 414.20 (414.02)                                      |
| A5NvaA7NvaA5  | 827.42 (827.03), 662.08 (661.82), 551.88 (551.69), 473.22 (473.02),<br>414.20 (414.02)                  |
| A6NvaA4NvaA6  | 827.55 (827.03), 662.26 (661.82), 551.94 (551.69), 473.35 (473.02),<br>414.26 (414.02)                  |
| A7NvaA3NvaA7  | 827.55 (827.03), 662.14 (661.82), 551.94 (551.69), 473.22 (473.02),<br>414.20 (414.02)                  |
| A8NvaA2NvaA7  | 827.98 (827.03), 662.58 (661.82), 552.32 (551.69), 473.60 (473.02),<br>414.51 (414.02)                  |
| A8NvaANvaA8   | 827.36 (827.03), 662.14 (661.82), 551.94 (551.69), 473.16 (473.02),<br>414.20 (414.02)                  |
| A9NvaNvaA8    | 827.74 (827.03), 662.45 (661.82), 552.19 (551.69), 473.41 (473.02),<br>414.38 (414.02)                  |
| A9NvaA9       | 820.76 (820.02), 656.78 (656.22), 547.52 (547.01), 469.42 (469.01),<br>410.89 (410.51), 365.39 (365.01) |
| A9ValValA8    | 828.17 (827.03), 662.51 (661.82), 552.32 (551.69), 473.60 (473.02),<br>414.51 (414.02)                  |
| A9ValA9       | 820.88 (820.02), 656.90 (656.22), 547.58 (547.01), 469.55 (469.01),<br>410.95 (410.51)                  |
| A9AbuAbuA8    | 820.94, 656.90, 547.52, 469.48, 410.89, 365.39                                                          |
| A9AbuA9       | 817.20, 653.97, 545.15, 467.43, 409.08, 363.83                                                          |
| A9LeuLeuA8    | 835.03 (83), 668.12 (667.43), 556.87 (556.36), 477.46 (477.02), 417.94 (417.52)                         |
| A9LeuA9       | 824.25 (823.52), 659.52 (659.02), 549.76 (549.35), 471.42 (471.02),<br>412.57 (412.26)                  |
| A9IleIleA8    | 835.03 (834.03), 668.25 (667.43), 556.99 (556.36), 477.59 (477.02),<br>418.06 (417.52)                  |
| A9IleA9       | 824.18 (823.52), 659.46 (659.02), 549.70 (549.35), 471.29 (471.02),<br>412.51 (412.26)                  |

| A9MetMetA8 | 843.69 (843.01), 675.10 (674.61), 562.79 (562.34), 482.51 (482.15),<br>422.30 (422.01) |
|------------|----------------------------------------------------------------------------------------|
| A9MetA9    | 828.79 (828.01), 663.26 (662.61), 552.88 (552.34), 474.03 (473.58),<br>414.94 (414.51) |
| A9PhePheA8 | 681.33 (681.02), 567.92 (567.69), 486.96 (486.73), 426.27 (426.02)                     |
| A9PheA9    | 666.69 (665.82), 555.62 (555.01), 476.46 (475.87), 417.06 (416.51)                     |
| A9TyrTyrA8 | 687.56 (687.42), 573.02 (573.14), 491.43 (491.30), 430.10 (430.02)                     |
| A9TyrA9    | 836.76 (836.02), 669.71 (669.01), 558.13 (557.68), 478.56 (478.16),<br>418.88 (418.51) |
| A9AsnAsnA8 | 556.93 (556.68), 477.46 (477.30), 417.94 (417.76)                                      |
| A9AsnA9    | 659.71 (659.21), 549.89 (549.51), 471.42 (471.15), 412.64 (412.38)                     |
| A9SerSerA8 | 657.59 (657.01), 548.14 (547.67), 469.98 (469.58), 411.39 (411.01)                     |
| A9SerA9    | 654.22 (653.81), 545.29 (545.01), 467.49 (467.29), 409.20 (409.01)                     |
| A9ThrThrA8 | 552.82 (552.35), 473.97 (473.58), 414.88 (414.51)                                      |
| A9ThrA9    | 820.79 (820.51), 656.83 (656.61), 547.53 (547.34), 469.41(469.30),<br>410.86 (410.76)  |
| A9GlnGlnA8 | 673.79 (673.42), 561.65 (561.35), 481.58 (481.30), 421.51 (421.26)                     |
| A9GlnA9    | 551.94 (551.85), 473.22 (473.15)                                                       |
| A9GlyGlyA8 | 806.57 (806.00), 645.44 (645.00), 538.10 (537.67), 461.37 (461.00),<br>403.83 (403.50) |
| A9GlyA9    | 648.43 (647.81), 540.64 (540.01), 463.53 (463.01), 405.75 (405.26)                     |
| A9ProA9    | 820.03 (819.51), 656.26 (655.81), 547.02 (546.68), 468.97 (468.73),<br>410.55 (410.26) |
| LysA18     | 552.26 (551.85), 473.53 (473.16), 414.38 (414.14)                                      |
| ALysA17    | 552.26 (551.85), 473.53 (473.16), 414.44 (414.14)                                      |
| A2LysA16   | 662.07 (662.02), 551.95 (551.85), 473.13 (473.16), 414.21 (414.14)                     |
| A3LysA15   | 552.32 (551.85), 473.66 (473.16), 414.57 (414.14)                                      |
| HisA18     | 829.95 (829.51), 664.21 (663.81), 553.65 (553.35), 474.71 (474.44),<br>415.47 (415.26) |
| A4HisA14   | 829.76 (829.51), 664.03 (663.81), 553.46 (553.35), 474.52 (474.44),<br>415 41 (415 26) |

| A9HisA9          | 830.01 (829.51), 664.15 (663.81), 553.59 (553.35), 474.71 (474.44),<br>415.54 (415.26)                  |
|------------------|---------------------------------------------------------------------------------------------------------|
| A12HisA6         | 829.69 (829.51), 663.90 (663.81), 553.46 (553.35), 474.52 (474.44),<br>415.28 (415.26)                  |
| A15HisA3         | 829.76 (829.51), 664.09 (663.81), 553.52 (553.35), 474.59 (474.44),<br>415.41 (415.26)                  |
| A18His           | 830.20 (829.51), 664.40 (663.81), 553.78 (553.35), 474.84 (474.44),<br>415.60 (415.26)                  |
| A9HisHisA8       | 846.51 (846.02), 677.48 (677.02), 564.71 (564.35), 484.23 (483.87),<br>423.87 (423.51), 376.92 (376.57) |
| ArgA18           | 834.87 (834.28), 668.13 (667.62), 556.93 (556.52), 477.55 (477.16)                                      |
| A4ArgA14         | 834.93 (834.28), 668.13 (667.62), 556.93 (556.52), 477.55 (477.16)                                      |
| A9ArgA9          | 667.753 (667.62), 556.62 (556.52), 477.24 (477.16), 417.68 (417.64)                                     |
| A12ArgA6         | 834.87 (834.28), 668.07 (667.62), 556.93 (556.52), 477.55 (477.16)                                      |
| A15ArgA3         | 834.49 (834.28), 667.75 (667.62), 556.56 (556.52), 477.24 (477.16),<br>417.68 (417.64)                  |
| A18Arg           | 834.49 (834.28), 667.88 (667.62), 556.68 (556.52), 477.37 (477.16),<br>417.81 (417.64)                  |
| A9ArgArgA8       | 685.18 (684.63), 571.08 (570.70), 489.68 (489.31), 428.61 (428.27)                                      |
| A9AspAspA8       | 835.82 (835.00), 668.82 (668.21), 557.57 (557.01), 478.06 (477.58),                                     |
| A9AspA9          | 824.83 (824.01), 660.05 (659.41), 550.18 (549.67), 471.81 (471.29)                                      |
| A9GluGluA8       | 842.76 (842.01), 674.38 (673.81), 562.18 (561.68), 482.04 (481.58),<br>421.91 (421.51)                  |
| A9GluA9          | 828.30 (827.51), 662.89 (662.21), 552.51 (552.01), 473.77 (473.30),<br>414.65 (414.26)                  |
| A9S(OMe)S(OMe)A8 | 828.88 (828.01), 663.32 (662.61), 552.82 (552.35), 474.17 (473.58),<br>415.05 (414.51)                  |
| A9S(OMe)A9       | 821.05 (820.51), 656.99 (656.61), 547.70 (547.34), 469.58(469.30),<br>411.08 (410.76)                   |
|                  |                                                                                                         |

## III. <sup>13</sup>C=O NMR-derived Data and MS Data for Series 1 Peptides

|            | Helical Propen     | sity at T = 2°C | <sup>13</sup> C=O Chemical Shift |         |         |
|------------|--------------------|-----------------|----------------------------------|---------|---------|
| Amino Acid | Ø ₩ <sub>Xxx</sub> | SD              | Site 12                          | Site 14 | Site 15 |
| Ala        | 1.56               | -               | 180.576                          | 180.261 | 179.995 |
| Nle        | 1.49               | 0.06            | 180.563                          | 180.261 | 179.986 |
| Nva        | 1.47               | 0.05            | 180.564                          | 180.287 | 179.991 |
| Glu        | 1.22               | 0.21            | 180.476                          | 180.247 | 179.947 |
| Leu        | 1.10               | 0.20            | 180.448                          | 180.229 | 179.926 |
| Arg        | 0.87               | 0.04            | 180.435                          | 180.123 | 179.881 |
| Met        | 0.87               | 0.06            | 180.398                          | 180.142 | 179.885 |
| lle        | 0.78               | 0.02            | 180.389                          | 180.087 | 179.858 |
| Gln        | 0.68               | 0.07            | 180.288                          | 180.082 | 179.826 |
| Lys        | 0.67               | 0.06            | 180.357                          | 180.036 | 179.807 |
| Asp        | 0.56               | 0.04            | 180.247                          | 180.000 | 179.757 |
| Val        | 0.55               | 0.02            | 180.242                          | 179.981 | 179.757 |
| Trp        | 0.53               | 0.08            | 180.142                          | 180.005 | 179.752 |
| Phe        | 0.52               | 0.08            | 180.146                          | 180.004 | 179.734 |
| Tyr        | 0.50               | 0.09            | 180.105                          | 180.000 | 179.716 |
| Ser        | 0.45               | 0.07            | 180.151                          | 179.931 | 179.633 |
| Asn        | 0.37               | 0.04            | 180.041                          | 179.835 | 179.579 |
| Cys        | 0.37               | 0.02            | 180.032                          | 179.821 | 179.611 |
| Thr        | 0.36               | 0.02            | 180.050                          | 179.817 | -       |
| His        | 0.18               | 0.02            | 179.624                          | 179.441 | 179.258 |
| Gly        | 0.17               | 0.02            | 179.592                          | 179.377 | 179.212 |
| Pro        | 0.013              | 0.004           | 178.237                          | 179.201 | 178.324 |

Table 1. Helical propensities assigned from <sup>13</sup>C=O chemical shifts in <sup>t</sup>L-Ala<sub>9</sub>-Xxx-Ala<sub>9</sub>-tL at 2°C.

Table 2. Helical propensities assigned from <sup>13</sup>C=O chemical shifts in <sup>t</sup>L-Ala<sub>9</sub>-Xxx-Ala<sub>9</sub>-tL at 25°C.

|            | Helical Propens           | sity at $T = 25^{\circ}C$ | <sup>13</sup> ( | C=O Chemical S | hift    |
|------------|---------------------------|---------------------------|-----------------|----------------|---------|
| Amino Acid | $\emptyset W_{\chi_{XX}}$ | SD                        | Site 12         | Site 14        | Site 15 |
| Ala        | 1.39                      | -                         | 179.734         | 179.391        | 179.144 |
| Nle        | 1.37                      | 0.06                      | 179.707         | 179.405        | 179.139 |
| Nva        | 1.20                      | 0.05                      | 179.643         | 179.350        | 179.098 |
| Leu        | 1.15                      | 0.10                      | 179.597         | 179.354        | 179.079 |
| Glu        | 1.00                      | 0.07                      | 179.546         | 179.290        | 179.015 |
| Met        | 0.90                      | 0.03                      | 179.473         | 179.221        | 178.997 |
| lle        | 0.81                      | 0.03                      | 179.418         | 179.176        | 178.956 |
| Arg        | 0.80                      | 0.04                      | 179.450         | 179.153        | 178.933 |
| Gln        | 0.72                      | 0.03                      | 179.327         | 179.121        | 178.906 |
| Trp        | 0.64                      | 0.07                      | 179.208         | 179.089        | 178.851 |
| Lys        | 0.60                      | 0.04                      | 179.276         | 179.006        | 178.814 |
| Asp        | 0.54                      | 0.03                      | 179.199         | 178.965        | 178.764 |
| Val        | 0.53                      | 0.03                      | 179.162         | 178.970        | 178.764 |
| Ser        | 0.51                      | 0.03                      | 179.144         | 178.951        | 178.732 |
| Phe        | 0.50                      | 0.04                      | 179.075         | 178.960        | 178.754 |
| Tyr        | 0.50                      | 0.04                      | 179.066         | 178.965        | 178.750 |
| Asn        | 0.43                      | 0.04                      | 179.038         | 178.846        | 178.663 |
| Thr        | 0.40                      | 0.02                      | 178.988         | 178.823        | -       |
| Cys        | 0.36                      | 0.01                      | 178.892         | 178.759        | 178.608 |
| Gly        | 0.22                      | 0.02                      | 178.613         | 178.471        | 178.361 |
| His        | 0.20                      | 0.02                      | 178.562         | 178.448        | 178.324 |
| Pro        | 0.045                     | 0.01                      | 177.949         | 177.926        | 177.972 |

|            | Helical Propens    | sity at $T = 60^{\circ}C$ | <sup>13</sup> C=O Chemical Shift |         |         |  |  |  |
|------------|--------------------|---------------------------|----------------------------------|---------|---------|--|--|--|
| Amino Acid | Ø W <sub>Xxx</sub> | SD                        | Site 12                          | Site 14 | Site 15 |  |  |  |
| Nle        | 1.24               | 0.04                      | 178.178                          | 178.026 | 177.889 |  |  |  |
| Leu        | 1.22               | 0.05                      | 178.159                          | 178.022 | 177.885 |  |  |  |
| Ala        | 1.17               | -                         | 178.159                          | 177.999 | 177.857 |  |  |  |
| Nva        | 1.14               | 0.03                      | 178.127                          | 177.985 | 177.857 |  |  |  |
| Glu        | 1.04               | 0.01                      | 178.086                          | 177.949 | 177.817 |  |  |  |
| Met        | 0.99               | 0.04                      | 178.036                          | 177.921 | 177.816 |  |  |  |
| lle        | 0.98               | 0.05                      | 178.017                          | 177.917 | 177.811 |  |  |  |
| Asp        | 0.94               | 0.03                      | 178.045                          | 177.875 | 177.770 |  |  |  |
| Trp        | 0.92               | 0.07                      | 177.962                          | 177.903 | 177.793 |  |  |  |
| Gĺn        | 0.86               | 0.04                      | 177.958                          | 177.866 | 177.766 |  |  |  |
| Ser        | 0.83               | 0.03                      | 177.944                          | 177.848 | 177.752 |  |  |  |
| Val        | 0.78               | 0.04                      | 177.894                          | 177.834 | 177.734 |  |  |  |
| Asn        | 0.75               | 0.05                      | 177.926                          | 177.784 | 177.720 |  |  |  |
| Tyr        | 0.72               | 0.06                      | 177.830                          | 177.811 | 177.715 |  |  |  |
| Phe        | 0.72               | 0.06                      | 177.830                          | 177.807 | 177.715 |  |  |  |
| Thr        | 0.71               | 0.02                      | 177.848                          | 177.788 | -       |  |  |  |
| Arg        | 0.70               | 0.03                      | 177.880                          | 177.770 | 177.688 |  |  |  |
| Lys        | 0.67               | 0.02                      | 177.853                          | 177.756 | 177.679 |  |  |  |
| Cys        | 0.59               | 0.03                      | 177.734                          | 177.734 | 177.660 |  |  |  |
| Gly        | 0.51               | 0.02                      | 177.724                          | 177.660 | 177.614 |  |  |  |
| Pro        | 0.31               | 0.03                      | 177.541                          | 177.541 | 177.541 |  |  |  |
| His        | 0.31               | 0.01                      | 177.546                          | 178.546 | 177.509 |  |  |  |

Table 3. Helical propensities assigned from <sup>13</sup>C=O chemical shifts in <sup>t</sup>L-Ala<sub>9</sub>-Xxx-Ala<sub>9</sub>-tL at 60°C.

Table 4. Relative free energies with standard deviations for the twenty naturally occurring amino acids plus norleucine and norvaline measured in <sup>t</sup>L-Ala<sub>9</sub>-Xxx-Ala<sub>9</sub>-<sup>t</sup>L, covering the temperature range of 2, 25, and 60°C.

| Amino | T =  | 2°C  | T = 2 | 25 <i>°</i> C | T = 6 | 50 <i>°</i> C |
|-------|------|------|-------|---------------|-------|---------------|
| Acid  | ΔΔG  | SD   | ΔΔG   | SD            | ΔΔG   | SD            |
| Ala   | 0.00 | 0.00 | 0.00  | 0.00          | 0.00  | 0.00          |
| Nle   | 0.02 | 0.02 | 0.01  | 0.03          | -0.04 | 0.02          |
| Nva   | 0.03 | 0.02 | 0.09  | 0.03          | 0.02  | 0.02          |
| Glu   | 0.14 | 0.09 | 0.19  | 0.04          | 0.08  | 0.00          |
| Leu   | 0.19 | 0.09 | 0.11  | 0.05          | -0.03 | 0.03          |
| Arg   | 0.32 | 0.03 | 0.33  | 0.03          | 0.34  | 0.03          |
| Met   | 0.32 | 0.04 | 0.26  | 0.02          | 0.11  | 0.03          |
| lle   | 0.38 | 0.02 | 0.32  | 0.02          | 0.12  | 0.04          |
| Gln   | 0.45 | 0.06 | 0.39  | 0.03          | 0.20  | 0.03          |
| Lys   | 0.46 | 0.05 | 0.50  | 0.03          | 0.37  | 0.02          |
| Asp   | 0.56 | 0.04 | 0.56  | 0.04          | 0.15  | 0.02          |
| Val   | 0.57 | 0.02 | 0.57  | 0.03          | 0.26  | 0.04          |
| Trp   | 0.59 | 0.08 | 0.46  | 0.06          | 0.16  | 0.05          |
| Phe   | 0.60 | 0.08 | 0.60  | 0.05          | 0.33  | 0.06          |
| Tyr   | 0.63 | 0.10 | 0.60  | 0.05          | 0.30  | 0.06          |
| Ser   | 0.69 | 0.09 | 0.59  | 0.04          | 0.23  | 0.02          |
| Asn   | 0.79 | 0.07 | 0.69  | 0.03          | 0.29  | 0.05          |
| Cys   | 0.78 | 0.03 | 0.79  | 0.02          | 0.46  | 0.06          |
| Thr   | 0.79 | 0.06 | 0.74  | 0.06          | 0.33  | 0.04          |
| His   | 1.17 | 0.06 | 1.16  | 0.06          | 0.88  | 0.02          |
| Gly   | 1.22 | 0.06 | 1.10  | 0.05          | 0.55  | 0.04          |
| Pro   | 2.63 | 0.18 | 2.03  | 0.13          | 0.85  | 0.09          |

| Site $^{13}C_{-}O$ |         | Che           | emical shift  | (ppm) mea | asured at ti  | he Indicate   | d Tempera | nture         |               |  |
|--------------------|---------|---------------|---------------|-----------|---------------|---------------|-----------|---------------|---------------|--|
| Jahol              |         | Ala           |               |           | Nva           |               | Val       |               |               |  |
| Laber              | 2°C     | 25 <i>°</i> C | 60 <i>°</i> C | 2°C       | 25 <i>°</i> C | 60 <i>°</i> C | 2°C       | 25 <i>°</i> C | 60 <i>°</i> C |  |
| 1                  | 178.109 | 177.656       | 176.969       | 178.091   | 177.619       | 176.928       | 178.013   | 177.500       | 176.910       |  |
| 2                  | 179.597 | 178.722       | 177.560       | 179.580   | 178.640       | 177.514       | 179.221   | 178.278       | 177.408       |  |
| 3                  | 179.817 | 178.960       | 177.697       | 179.859   | 178.878       | 177.669       | 179.441   | 178.452       | 177.518       |  |
| 4                  | 180.224 | 179.258       | 177.862       | 180.151   | 179.121       | 177.775       | 179.743   | 178.649       | 177.614       |  |
| 5                  | 180.499 | 179.537       | 177.999       | 180.385   | 179.372       | 177.917       | 179.899   | 178.773       | 177.651       |  |
| 6                  | 180.590 | 179.675       | 178.086       | 180.325   | 179.372       | 177.949       | 179.569   | 178.645       | 177.660       |  |
| 7                  | 180.654 | 179.771       | 178.168       | 180.710   | 179.752       | 178.159       | 180.384   | 179.153       | 177.766       |  |
| 8                  | 180.709 | 179.844       | 178.210       | 180.499   | 179.643       | 178.127       | 179.977   | 178.970       | 177.729       |  |
| 9                  | 180.723 | 179.885       | 178.242       | 180.755   | 179.913       | 178.315       | 180.650   | 179.459       | 178.063       |  |
| 10                 | 180.705 | 179.881       | 178.228       | 180.302   | 180.421       | -             | 180.302   | 179.176       | 177.802       |  |
| 11                 | 180.673 | 179.821       | 178.223       | 180.242   | 180.316       | Table 3       | 180.242   | 179.162       | 177.894       |  |
| 12                 | 180.576 | 179.734       | 178.159       | 180.045   | 180.132       | -             | 180.045   | 179.038       | 177.871       |  |
| 14                 | 180.261 | 179.391       | 177.999       | 179.981   | 180.004       | Table 3       | 179.981   | 178.970       | 177.834       |  |
| 15                 | 179.995 | 179.144       | 177.857       | 179.757   | 179.739       | Table 3       | 179.757   | 178.764       | 177.734       |  |
| 17                 | 178.384 | 177.903       | 177.267       | 179.359   | 179.327       | -             | 179.359   | 178.471       | 177.587       |  |
| 18                 | 177.702 | 177.473       | 177.088       | 178.301   | 178.237       | -             | 178.301   | 177.775       | 177.221       |  |
| 19                 | 177.477 | 177.340       | 177.051       | 177.683   | 177.633       | -             | 177.683   | 177.418       | 177.065       |  |

Table 5. Chemical Shift Scan at 2, 25, and 60°C for the Series of Hydrophobic Guests in Ala<sub>19</sub>: W-K<sub>6</sub>-<sup>t</sup>L<sub>3</sub>-A<sub>9</sub>-*Xxx*-A<sub>9</sub>-<sup>t</sup>L<sub>3</sub>-K<sub>6</sub>-NH<sub>2</sub>; *Xxx* = Ala, Nva, Val

| Site $^{13}C_{-}O$ |         | Che           | emical shift  | (ppm) mea | asured at ti  | he Indicate   | d Tempera | nture         |               |  |
|--------------------|---------|---------------|---------------|-----------|---------------|---------------|-----------|---------------|---------------|--|
| Jahol              |         | Leu           |               |           | Nle           |               | lle       |               |               |  |
| Laber              | 2°C     | 25 <i>°</i> C | 60 <i>°</i> C | 2°C       | 25 <i>°</i> C | 60 <i>°</i> C | 2°C       | 25 <i>°</i> C | 60 <i>°</i> C |  |
| 1                  | 178.095 | 177.628       | 176.960       | 178.114   | 177.656       | 176.969       | 177.990   | 177.518       | 176.891       |  |
| 2                  | 179.473 | 178.594       | 177.509       | 179.542   | 178.658       | 177.523       | 179.272   | 178.420       | 177.431       |  |
| 3                  | 179.743 | 178.823       | 177.665       | 179.807   | 178.906       | 177.697       | 179.510   | 178.567       | 177.540       |  |
| 4                  | 180.087 | 179.116       | 177.834       | 180.183   | 179.208       | 177.848       | 179.826   | 178.809       | 177.656       |  |
| 5                  | 180.279 | 179.295       | 177.930       | 180.407   | 179.441       | 177.976       | 180.018   | 179.020       | 177.756       |  |
| 6                  | 180.206 | 179.258       | 177.949       | 180.384   | 179.423       | 177.990       | 179.858   | 178.864       | 177.729       |  |
| 7                  | 180.728 | 179.844       | 178.297       | 180.696   | 179.826       | 178.232       | 180.522   | 179.459       | 177.917       |  |
| 8                  | 180.467 | 179.638       | 178.205       | 180.549   | 179.716       | 178.182       | 180.160   | 179.263       | 177.875       |  |
| 9                  | 180.934 | 180.027       | 178.406       | 180.810   | 180.027       | 178.411       | 180.824   | 179.748       | 178.168       |  |
| 10                 | 180.609 | 179.720       | 178.168       | 180.663   | 179.784       | 178.173       | 180.430   | 179.455       | 177.917       |  |
| 11                 | 180.448 | 179.597       | 178.159       | 180.563   | 179.707       | 178.178       | 180.389   | 179.418       | 178.017       |  |
| 12                 | 180.302 | 179.464       | 178.100       | 180.375   | 179.546       | 178.113       | 180.174   | 179.276       | 177.985       |  |
| 14                 | 180.229 | 179.354       | 178.022       | 180.261   | 179.405       | 178.026       | 180.087   | 179.176       | 177.917       |  |
| 15                 | 179.926 | 179.079       | 177.885       | 179.986   | 179.139       | 177.889       | 179.858   | 178.956       | 177.811       |  |
| 17                 | 179.519 | 178.718       | 177.701       | 179.583   | 178.777       | 177.701       | 179.492   | 178.635       | 177.642       |  |
| 18                 | 178.356 | 177.894       | 177.276       | 178.393   | 177.917       | 177.280       | 178.338   | 177.853       | 177.253       |  |
| 19                 | 177.702 | 177.473       | 177.102       | 177.711   | 177.477       | 177.097       | 177.702   | 177.459       | 177.083       |  |

Table 6. Chemical Shift Scan at 2, 25, and 60°C for the Series of Hydrophobic Guests in Ala<sub>19</sub>: W-K<sub>6</sub>-<sup>t</sup>L<sub>3</sub>-A<sub>9</sub>-*Xxx*-A<sub>9</sub>-<sup>t</sup>L<sub>3</sub>-K<sub>6</sub>-NH<sub>2</sub>; *Xxx* = Leu, Nle, Ile

## Table 7. <sup>13</sup>C=O Labeling and Mass Spec Data for <sup>t</sup>L<sub>3</sub>-A<sub>9</sub>-Xxx-A<sub>9</sub>-<sup>t</sup>L<sub>3</sub>; Xxx = 20 Natural Amino Acids plus Nle, Nva

| Peptide                                                                                                                          | Site                    | Percent                 | Average MW |        | [m+zH]/z Expected |        |        |        |        | [m+zH]/z Observed |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------|--------|-------------------|--------|--------|--------|--------|-------------------|--------|--------|--------|
| Sequence                                                                                                                         | <sup>13</sup> C=O Label | <sup>13</sup> C=O Label | (Da)       | 4      | 5                 | 6      | 7      | 8      | 4      | 5                 | 6      | 7      | 8      |
| Xxx = 20 Natural Am                                                                                                              | nino Acids plus l       | Vle, Nva                |            |        |                   |        |        |        |        | •                 |        |        |        |
| $W-K_{6}-{}^{t}L_{3}-A_{9}-A-A_{9}-{}^{t}L_{3}-K_{6}$                                                                            | 12,14,15                | 100/75/50               | 3772.78    | 943.62 | 755.10            | 629.42 | 539.64 | 472.31 | 944.00 | 756.00            | 630.00 | 540.00 | 472.00 |
| $W-K_6-tL_3-A_9-C-A_9-tL_3-K_6$                                                                                                  | 12,14,15                | 100/75/50               | 3804.84    | 951.61 | 761.49            | 634.74 | 544.21 | 476.31 | 952.00 | 762.00            | 635.00 | 544.00 | 476.00 |
| $W-K_6-^{t}L_3-A_9-D-A_9-^{t}L_3-K_6$                                                                                            | 12,14,15                | 100/75/50               | 3816.79    | 954.62 | 763.90            | 636.75 | 545.93 | 477.81 | 955.00 | 764.00            | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -E-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3830.81    | 958.12 | 766.70            | 639.08 | 547.93 | 479.56 | 959.00 | 767.00            | 639.00 | 548.00 | 480.00 |
| $W-K_{6}-{}^{t}L_{3}-A_{9}-F-A_{9}-{}^{t}L_{3}-K_{6}$                                                                            | 12,14,15                | 100/75/50               | 3848.87    | 962.63 | 770.30            | 642.09 | 550.51 | 481.82 | 963.00 | 771.00            | 643.00 | 551.00 | 482.00 |
| $W-K_6-tL_3-A_9-G-A_9-tL_3-K_6$                                                                                                  | 12,14,15                | 100/75/50               | 3758.75    | 940.12 | 752.29            | 627.08 | 537.64 | 470.56 | 940.00 | 753.00            | 627.00 | 538.00 | 471.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -H-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3838.84    | 960.13 | 768.30            | 640.42 | 549.08 | 480.57 | 961.00 | 768.00            | 641.00 | 550.00 | 481.00 |
| $W-K_{6}-^{t}L_{3}-A_{9}-I-A_{9}-^{t}L_{3}-K_{6}$                                                                                | 12,14,15                | 100/75/50               | 3814.86    | 954.13 | 763.51            | 636.42 | 545.65 | 477.57 | 955.00 | 764.00            | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -K-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3829.87    | 957.88 | 766.51            | 683.93 | 547.79 | 479.45 | 958.00 | 767.00            | 640.00 | 548.00 | 480.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3814.86    | 954.13 | 763.51            | 636.42 | 545.65 | 477.57 | 954.00 | 764.00            | 636.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -M-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3832.90    | 958.62 | 767.10            | 639.42 | 548.22 | 479.81 | 959.00 | 767.00            | 640.00 | 549.00 | 480.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -N-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3815.80    | 954.37 | 763.70            | 636.58 | 545.79 | 477.69 | 955.00 | 764.00            | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -P-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3798.81    | 950.12 | 760.30            | 633.75 | 543.36 | 475.57 | 951.00 | 761.00            | 634.00 | 544.00 | 476.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -Q-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3829.83    | 957.88 | 766.50            | 638.92 | 547.79 | 479.44 | 958.00 | 767.00            | 639.00 | 548.00 | 479.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -R-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3857.88    | 964.89 | 772.11            | 643.59 | 551.80 | 482.95 | 965.00 | 772.00            | 644.00 | 552.00 | 483.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -S-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3788.78    | 947.62 | 758.30            | 632.08 | 541.93 | 474.31 | 948.00 | 758.00            | 632.00 | 542.00 | 475.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -T-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,16                | 100/75/50               | 3802.80    | 951.12 | 761.10            | 634.42 | 543.93 | 476.07 | 951.00 | 761.00            | 635.00 | 544.00 | 477.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -V-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3800.83    | 950.63 | 760.70            | 634.09 | 543.65 | 475.82 | 951.00 | 761.00            | 634.00 | 544.00 | 476.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -W-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,14,15                | 100/75/50               | 3887.91    | 972.38 | 778.11            | 648.59 | 556.08 | 486.69 | 972.00 | 778.00            | 649.00 | 556.00 | 487.00 |
| $W-K_6-tL_3-A_9-Y-A_9-tL_3-K_6$                                                                                                  | 12,14,15                | 100/75/50               | 3864.87    | 966.63 | 773.50            | 644.75 | 552.79 | 483.82 | 967.00 | 774.00            | 645.00 | 553.00 | 484.00 |
| $W-K_{6}^{-t}L_{3}-A_{9}-Nle-A_{9}^{-t}L_{3}-K_{6}$                                                                              | 12,14,15                | 100/75/50               | 3814.86    | 954.13 | 763.51            | 636.42 | 545.65 | 477.57 | 955.00 | 764.00            | 637.00 | 545.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -Nva-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 12,14,15                | 100/75/50               | 3800.83    | 950.63 | 760.70            | 634.09 | 543.65 | 475.82 | 951.00 | 761.00            | 635.00 | 544.00 | 476.00 |

Note: Every peptide synthesized in this study was C-terminally amidated.

# Table 8. <sup>13</sup>C=O Labeling and Mass Spec Data for Chemical Shift Scans of <sup>t</sup>L<sub>3</sub>-A<sub>9</sub>-Xxx-A<sub>9</sub>-<sup>t</sup>L<sub>3</sub>; Xxx = Ala, Ile

| Peptide                                                                                                                        | Site                    | Percent                 | Average MW |        | [m+2   | zH]/z Expe | ected  |        | [m+zH]/z Observed |        |        |        |        |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------|--------|--------|------------|--------|--------|-------------------|--------|--------|--------|--------|
| Sequence                                                                                                                       | <sup>13</sup> C=O Label | <sup>13</sup> C=O Label | (Da)       | 4      | 5      | 6          | 7      | 8      | 4                 | 5      | 6      | 7      | 8      |
| Xxx = Ala                                                                                                                      |                         |                         |            |        | -      | -          |        |        |                   |        |        |        |        |
| $W-K_6^{-t}L_3-A_9-A-A_9^{-t}L_3-K_6$                                                                                          | 1,4,7                   | 100/80/60               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 2,5,8                   | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 3,6,9                   | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 3,10,19                 | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 11,14,17                | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 12,15,18                | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -A-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 13,15,17                | 25/50/100               | 3772.78    | 943.62 | 755.10 | 629.42     | 539.64 | 472.31 | 944.00            | 756.00 | 630.00 | 540.00 | 472.00 |
| Xxx = lle                                                                                                                      |                         |                         |            |        |        |            |        |        |                   |        |        |        |        |
| $W-K_6-tL_3-A_9-I-A_9-tL_3-K_6$                                                                                                | 1,4,7                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -I-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 2,5,8                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| $W-K_6-tL_3-A_9-I-A_9-tL_3-K_6$                                                                                                | 3,6,9                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| $W-K_6-tL_3-A_9-I-A_9-tL_3-K_6$                                                                                                | 11,14,17                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| $W-K_6-tL_3-A_9-I-A_9-tL_3-K_6$                                                                                                | 12,15,18                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| $W-K_{6}-t_{3}-A_{9}-I-A_{9}-t_{3}-K_{6}$                                                                                      | 13,16,19                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |

Note: Every peptide synthesized in this study was C-terminally amidated.

## Table 9. <sup>13</sup>C=O Labeling and Mass Spec Data for Chemical Shift Scans of <sup>t</sup>L<sub>3</sub>-A<sub>9</sub>-Xxx-A<sub>9</sub>-<sup>t</sup>L<sub>3</sub>; Xxx = Leu, Nle, Nva, Val

| Peptide                                                                                                                          | Site                    | Percent                 | Average MW |        | [m+2   | zH]/z Expe | ected  |        | [m+zH]/z Observed |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------|--------|--------|------------|--------|--------|-------------------|--------|--------|--------|--------|
| Sequence                                                                                                                         | <sup>13</sup> C=O Label | <sup>13</sup> C=O Label | (Da)       | 4      | 5      | 6          | 7      | 8      | 4                 | 5      | 6      | 7      | 8      |
| Xxx = Leu                                                                                                                        |                         |                         |            |        |        |            |        |        |                   |        |        |        |        |
| $W-K_{6}^{-t}L_{3}-A_{9}-L-A_{9}-tL_{3}-K_{6}$                                                                                   | 1,4,7                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 2,5,8                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 3,6,9                   | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 11,14,17                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 12,15,18                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -L-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub>   | 13,16,19                | 25/50/100               | 3814.86    | 954.13 | 763.51 | 636.42     | 545.65 | 477.57 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| Xxx = Nle                                                                                                                        | Xxx = Nle               |                         |            |        |        |            |        |        |                   |        |        |        |        |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -NIe-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 1,3,5,7,9               | 20/40/60/80/100         | 3816.86    | 954.63 | 763.91 | 636.76     | 545.94 | 477.82 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -NIe-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 2,4,6,8                 | 25/50/75/100            | 3815.85    | 954.38 | 763.71 | 636.59     | 545.79 | 477.70 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -NIe-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 12,14,16,18             | 25/50/75/100            | 3815.85    | 954.38 | 763.71 | 636.59     | 545.79 | 477.70 | 954.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| W-K <sub>6</sub> - <sup>t</sup> L <sub>3</sub> -A <sub>9</sub> -NIe-A <sub>9</sub> - <sup>t</sup> L <sub>3</sub> -K <sub>6</sub> | 11,13,15,17,19          | 20/40/60/80/100         | 3816.86    | 954.63 | 763.91 | 636.76     | 545.94 | 477.82 | 955.00            | 764.00 | 637.00 | 546.00 | 478.00 |
| Xxx = Nva                                                                                                                        |                         |                         |            |        |        |            |        |        |                   |        |        |        |        |
| $W-K_{6}-{}^{t}L_{3}-A_{9}-Nva-A_{9}-{}^{t}L_{3}-K_{6}$                                                                          | 1,4,9                   | 25/50/100               | 3800.83    | 950.63 | 760.70 | 634.09     | 543.65 | 475.82 | 951.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}-tL_{3}-A_{9}-Nva-A_{9}-tL_{3}-K_{6}$                                                                                    | 2,4,6,8                 | 25/50/75/100            | 3801.83    | 950.88 | 760.90 | 634.26     | 543.79 | 475.94 | 951.00            | 761.00 | 635.00 | 544.00 | 476.00 |
| $W-K_{6}-{}^{t}L_{3}-A_{9}-Nva-A_{9}-{}^{t}L_{3}-K_{6}$                                                                          | 2,3,5,6,7               | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}-tL_{3}-A_{9}-Nva-A_{9}-tL_{3}-K_{6}$                                                                                    | 8,12,14,16,18           | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}-{}^{t}L_{3}-A_{9}-Nva-A_{9}-{}^{t}L_{3}-K_{6}$                                                                          | 11,13,15,17,19          | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| Xxx = Val                                                                                                                        |                         |                         |            |        |        |            |        |        |                   |        |        |        |        |
| $W-K_{6}-tL_{3}-A_{9}-V-A_{9}-tL_{3}-K_{6}$                                                                                      | 1,4,9                   | 25/50/100               | 3800.83    | 950.63 | 760.70 | 634.09     | 543.65 | 475.82 | 951.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}^{-t}L_{3}-A_{9}-V-A_{9}^{-t}L_{3}-K_{6}$                                                                                | 2,4,6,8                 | 25/50/75/100            | 3801.83    | 950.88 | 760.90 | 634.26     | 543.79 | 475.94 | 951.00            | 761.00 | 635.00 | 544.00 | 476.00 |
| $W-K_{6}^{-t}L_{3}-A_{9}-V-A_{9}^{-t}L_{3}-K_{6}$                                                                                | 2,3,5,6,7               | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}^{-t}L_{3}-A_{9}-V-A_{9}^{-t}L_{3}-K_{6}$                                                                                | 8,12,14,16,18           | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |
| $W-K_{6}^{-t}L_{3}-A_{9}-V-A_{9}^{-t}L_{3}-K_{6}$                                                                                | 11,13,15,17,19          | 20/40/60/80/100         | 3802.84    | 951.13 | 761.11 | 634.42     | 543.93 | 476.07 | 952.00            | 761.00 | 634.00 | 544.00 | 476.00 |

Note: Every peptide synthesized in this study was C-terminally amidated.

### **IV. CD ellipticities, which have corroborative value, are unsuited as primary tools for the** assignment of helical propensities from host-guest mutants.

A. Experimental circular dichroism characterization of helix-coil peptide equilibria; variability of helical structure; structural-dependences of the helical circular dichroism ellipticity  $[\theta]_{222,H,n,T}$ 

For a typical peptide the proximity-coupled  $\pi \rightarrow \pi^*$  and  $n \rightarrow \pi^*$  electronic and magnetic transitions of its backbone amides define the major CD chromophores within the wavelength region of 185 to 250 nm. Mean values of  $\phi$  and  $\psi$  dihedral angles, which fall within Ramachandran-allowed regions, define the signs and intensities of these transitions,<sup>1</sup> and for peptides in solution, CD ellipticities thus provide a unique tool for conformational assignments. The distinctive signature of the  $\alpha$ -helical conformation is an intense positive ellipticity maximum near 290 nm, and a pair of intense negative ellipticity minima at 208 and 222 nm.

$$[\theta]_{222,\text{Exper},n,T} = \text{FH} [\theta]_{222,\text{H},n,T} + (1 - \text{FH}) [\theta]_{222,\text{C},n,T} \text{ Y FH} [\theta]_{222,\text{H},n,T}$$
(1)  
 
$$[\theta]_{222,\text{H},n,T} = [\theta]_{222,\text{H},\infty,T} (1 - X/n) \qquad 0 \le X \le 1.0$$
(2)

With increasing temperature, a helical peptide in water that is unassociated and lacks stabilization from tertiary packing undergoes reversible helix-coil melting, characterized by a decrease in the mole fraction FH of its helical residues and a proportionate increase in the mole fraction (1 - FH)of residues that assume coil conformations. Given Equation (1) parameter values, one can to a good approximation characterize helix-coil melting from the experimental temperature dependence of the 222 nm molar per-residue ellipticity  $[\theta]_{222,Exper,n,T}$ , and the accuracy of this two-state model can be confirmed for a particular peptide by ellipticities at 203 nm, at which coil and helix values are equal.<sup>2</sup> *The model is confirmed if the T-dependent CD spectra share a 203 nm isodichroic point.*<sup>3</sup> At one or more fixed temperatures, Eequation (1) is also universally used to assign FH changes induced by a series of guest residue substitutions within a host helical peptide. However the single reported 203 nm test of the valididity of this use failed to yield consistent isodichroic behavior.<sup>4</sup>

For either FH calculation, accurate assignments for the helicity parameters are essential, and the major issue explored in this supplement section is their accuracy when applied to host-guest data. Although the  $[\theta]_{222,H,n,T}$  and  $[\theta]_{222,H,\infty,T}$  parameters resemble UV-vis spectroscopic extinction coefficients, they differ in two fundamental respects: their intensities reflect the local structural environment, and they are temperature-sensitive.<sup>3,5,6</sup>

The structural variability of the  $\alpha$ -helix itself accounts for much of this sensitivity. An  $\alpha$ -helical conformation is defined by a contiguous sequence of backbone C=O to H-N amide hydrogen bonds of the 3.6<sub>13</sub> type, and modeling as well as examples from the PDB show this structural condition to be met provided the average of sums of  $\alpha$ -carbon  $\phi$ ,  $\psi$  pairs within the sequence lies close to  $-105^{\circ}$ .<sup>7</sup> However, within this constraint,  $\phi$  ranges from -25 to  $-95^{\circ}$ , with corresponding  $\psi$  values of -80 to  $-10^{\circ}$ .<sup>7</sup> Molecular modeling of polyalanines reveals the Ramachandran helical region as an extended  $\phi$ ,  $\psi$  trough, with shallow local minima, that spans these  $\phi$ ,  $\psi$  ranges.<sup>8</sup> Moreover ab initio CD modeling shows that this  $\alpha$ -helical  $\phi$ -angle variation results in a substantial intensity change for  $[\theta]_{222,H,, \emptyset, T}$  of PDB  $\alpha$ -helices, which have a mean  $\phi$  of  $-63^{\circ}$ ,<sup>10</sup> fall within the range,  $-37x10^3$  to  $-44x10^3$  deg cm<sup>2</sup> dm<sup>-1</sup>, also consistent with length extrapolations from alanine-rich heteropeptide CD data.<sup>6</sup> A different picture emerges from our NMR and CD studies of core regions of N- and C-capped, fully helical polyalanine cores.<sup>11</sup> Their  $\phi$  is  $-51 \pm 2^{\circ}$ , close to an average of values for the classic fiber-diffraction structure and the Pauling  $\alpha$ -helix, and their  $[\theta]_{222,H, \infty, T}$  is  $-(60.5 \pm 1.3)x10^3$  deg cm<sup>2</sup> dm<sup>-1</sup>, confirmed by low temperature CD spectra of a winter flounder protein with a 70 % Ala content).<sup>12</sup>

The  $3_{10}$  helix, frequently detected within short helical regions of PDB globular proteins, is more tightly helical than the  $\alpha$ , with  $\phi = -49^{\circ}$ ,  $\psi = -25^{\circ}$ ,<sup>13</sup> and novel ESR<sup>14</sup> and NMR<sup>15</sup> structural methods, applied to a range of test peptides, demonstrate hybrid  $3_{10}$ - $\alpha$  character that is most pronounced within end regions. Peptides with pure  $3_{10}$  structure are characterized by exceptionally weak intensities for  $[\theta]_{222,H}$ , although shorter wavelength CD maxima and minima have nearly normal intensities.<sup>16</sup> Doubt clearly compromises compromises accuracy for FH values assigned from  $[\theta]_{222,Exper}$  values of peptides that, like these, assume hybrid  $3_{10}$ - $\alpha$  structures.

B. Evidence for significant perturbations of the intensity of  $[\theta]_{222,H}$ : The end-region correction of Equation (2). Plausible corrections in  $[\theta]_{222,H,\infty,T}$  from <sup>13</sup>C=O NMR chemical shift data of mutants **1** and  $[\theta]_{\lambda,Exper,n,T}$  data of mutants **2**; Tests of the validity of the two-state assumption of Equation (1) from  $[\theta]_{203}$  data. In the accompanying manuscript we report a set of temperature-dependent relative helical propensities  $w_{Xxx}/w_{Ala}$  assigned from  $[\theta]_{222,Exper,n,T}$  data for a mutant series **2** and a second propensity set assigned from  ${}^{13}C=O$  NMR chemical shifts for a mutant series **1**. Although statistical tests yield satisfactory correlations for this  $w_{Xxx}/w_{Ala}$  pair, the magnitudes for many of the ellipticityderived  $w_{Xxx}/w_{Ala}$  are smaller than those derived from shifts. We now make the case that the likely cause is a reduction in the intensity of  $[\theta]_{222,H,\infty,T}$ , caused by central (Ala  $\rightarrow$  Guest) replacements that perturb local helical structure.

A special problem potentially compromises accuracy for helical propensities derived from ellipticity data. For a sequence that contains *n* alanine residues and a single central guest, the fractional helicity FH is a global parameter that equals the average of n + 1 site helicities FH<sub>i</sub>. We have previously shown that as measures of helix-coil sequence equilibria, the FH and any of the FH<sub>i</sub> are fully equivalent,<sup>17</sup> but practically speaking, the FH<sub>i</sub> are much more versatile. From a full list of FH<sub>i</sub> one can exclude the FH<sub>i</sub> that correspond to sites most susceptible to spurious perturbations, and as shown in the main text, these include sites within end regions as well as sites locally N-terminal to the guest. For a given peptide, a single  $[\theta]_{222}$  is measurable, and it yields only one FH value.

A structure- and solvation-induced ellipticity perturbation is clearly embodied in the empirically characterized parameter *X* that appears in Equation (2), which is universally used to assign a length-dependence to  $[\theta]_{222,H,n,T}$  from the length-independent core ellipticity  $[\theta]_{222,H,\infty,T}$ . Since *X* invariably has a positive value, inspection of Equation (2) shows that a residue at or near an N- or C-terminus must contributes less to  $[\theta]_{222,H,n,T}$  than a core residue.<sup>18</sup>

We have clarified these issues experimentally.<sup>11</sup> For a tailored length series,  $10 \le n \le 23$ , of spaced, solubilized polyalanines with exceptional helicities, the <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts of the helical backbone residues of the two sets of four N- and C-terminal residues are strongly site-dependent, but backbone shifts for the remaining (n - 8) core residues have fixed values, independent of site or length n, and their FH values<sup>19</sup> exceed 0.99.

$$[\theta]_{\lambda,H,n,T} = ([\theta]_{\lambda,H,\text{ core,Molar}} + [\theta]_{\lambda,H,\text{ caps, Molar}})/n = ([\theta]_{\lambda,H,\infty,T}(n-k) + [\theta]_{\lambda,H,\infty,T}(k-X))/n$$
(2a)  

$$[\theta]_{222,H,\text{caps},T}/[\theta]_{222,H,\infty,T} = (k-X)/k$$
(3)

It is conceptually useful to define a new parameter *k* as the number of non-core residues within a helical peptide, incorporating it into Equation (2a). (Inspection shows this to be a full equivalent of Equation (2).) For our polyalanine series, *k* equals 8. For each series member, the intensity of  $[\theta]_{\lambda,\text{Exper},n,T}$  was measured and expressed in molar units. Their length regressions proved to be strictly linear at all wavelengths, within measurement error, the resulting  $\lambda$ -dependent slopes equal the core per-residue molar ellipticities  $[\theta]_{\lambda,\text{H},\infty,T}$ , and multiplication by the core length (n - k) yields molar ellipticities that correspond to the first term of Equation (2a). The second term is  $[\theta]_{\lambda,\text{H},\infty,T}(k - X)$ , which equals  $[\theta]_{\lambda,\text{H}, \text{ caps}}$ , Molar = k  $[\theta]_{\lambda,\text{H},\text{ caps}}$ . This is defined experimentally as the intercepts of the

regression. If one divides the value of the intercept at 222 nm by k and regroups terms, Equation (3) results.

This equation expresses the relative decrease of per-residue ellipticity within non-core regions as a simple function of *X* and *k*. From three assigned *X* values,<sup>5,11,20</sup> we calculate the range at 2 °C for  $[\theta]_{222,H,caps,T}/[\theta]_{222,H,\infty,T}$  as 0.7 to 0.3. Expressed as a penalty percentage, it corresponds to the decrease in  $[\theta]_{222}$  intensity that results if one imagines that one completely helical alanine from the core is transferred to an average site within the end regions. This decrease lies between 30 and 70 % of the core value; it is strongly sensitive to cap structure.<sup>21</sup>



**Figure 1** Value axis squares show experimental values of  $[\theta]_{222,Exper,n,T}$  for mutants <sup>t</sup>L-Ala<sub>9</sub>Xxx Ala<sub>9</sub>-<sup>t</sup>L at 2 °C (a) and 25 °C (b). These are plotted parametrically vs.  $[\theta]_{222,n,T}$  values that are Lifson-Roig calculated from relative helical propensities  $w_{Xxx}/w_{Ala}$  assigned in the accompanying report from <sup>13</sup>C=O chemical shifts. The dotted lines in each graph correspond to  $[\theta]_{222,n,T}$  values from a series of calculations using the helical propensity as an independent variable with the range 0.05 to 1.0; for the series, the value of  $[\theta]_{222,H,\infty,T}$  (Equation 2) was multiplied by an attenuating factor within the range 0.97 to 0.85. The red lines show correlations for identical  $w_{Xxx}/w_{Ala}$  sets.

What fractional reductions in the value of  $[\theta]_{222,H,\infty,T}$  would be required to generate consistent  $w_{Xxx}/w_{Ala}$  sets from both shift and ellipticity data of Figure 5 of the main text? Figure 1 addresses this question. The vertical displacements of the black squares correspond to the  $[\theta]_{222,Exper,n,T}$  data measured at 2 °C and 25 °C for guests Xxx that yield deviant  $w_{Xxx}/w_{Ala}$  values. The horizontal

displacements of the squares correspond to  $[\theta]_{222}$  values modeled from propensities assigned from <sup>13</sup>C=O chemical shift data, as described in the accompanying text, using the host-derived value of  $[\theta]_{222,H,\infty,T}$ . The dotted black lines show modeled values of  $[\theta]_{222}$  calculated from  $[\theta]_{222,H,\infty,T}$ , attenuated by successive factors 0.97, 0.95, 0,90, or 0.85. Inspection shows that with the exception of Xxx = Gly, all ellipticity data can be modeled attenuations within this plausible range. The glycine result deserves comment. Previously reported relative helical propensities for glycine span a fifteen-fold range, and assignments from ellipticity data cluster at the lower end.<sup>22</sup> The Ramachandran permissiveness of a Gly residue strongly suggests that, within a peptide sequence, glycine may be uniquely tolerant of  $3_{10}$  structure, implying that the appropriate values of  $[\theta]_{222,H,\infty,T}$  for helicity data of glycine mutants must be lower than normal, with a corresponding underestimation of the glycine propensity.<sup>23</sup>



**Figure 2** CD spectra, 190 to 250 nm, at 2, 25, and 60 °C, for the host peptide <sup>t</sup>L-Ala<sub>19</sub>-<sup>t</sup>L and for mutants <sup>t</sup>L-Ala<sub>9</sub>XxxAla<sub>9</sub>-<sup>t</sup>L, Xxx  $\equiv$  Nle (norleucine), Nva (norvaline), and Abu ( $\alpha$ -aminobutyric acid). A well-defined isodichroic point is evident at 202.5 °C with [ $\theta$ ]<sub>2025,Exper</sub> = (-15 ± 1)x10<sup>3</sup> deg cm<sup>2</sup> dm<sup>-1</sup>, consistent with values reported by Holtzer and Holtzer.<sup>2</sup> The two error assignments lie within precision limits.

An independent test for accuracy examines mutant ellipticities measured at 203 nm. The guestdependent, corrected values  $[\theta]_{222,H,\infty,T}$  that appear in Figure 1 were assigned under the assumption that a wrong choice for this parameter is wholly responsible for the deviations that appear within Figure 5 of the main text. If this assumption is correct, corresponding guest-dependent deviations should appear if one compares mutant values for  $[\theta]_{203}$ . (The data points of Figure 1 show only the deviant values; no deviations were detected for mutants derived from the non-natural residues Nva and Nle, which bear straight-chain alkyl side chains.) Figure 2 shows superimposed CD spectra measured at 2, 25, and 60 °C for the host peptide <sup>t</sup>L-Ala<sub>9</sub>XxxAla<sub>9</sub>-<sup>t</sup>L, Xxx  $\equiv$  Ala for a homologous series of three mutants containing site 10 Abu,<sup>24</sup> Nva, or Nle residues. The twelve CD spectra of Figure 2 exhibit a well-defined isodichroic point at 202.5 nm, with an ellipticity intensity of -15 x10<sup>3</sup> deg cm<sup>2</sup> dm<sup>-1</sup>, fully consistent with an authoritative literature assignment.<sup>2</sup>

A different picture results if includes in Figure 2 the 2, 25, and 60 °C CD spectra of mutants derived from guests Val, Ile, Met, and Phe. The limits of curve intersections broaden to a wavelength range of 201 to 205 nm, and at 202.5 nm, the error in the ellipticity increases to  $\pm 3 \times 10^3$  deg cm<sup>2</sup> dm<sup>-1</sup>, corresponding to a  $\pm 20$  % relative error, which lies outside data precision limits. A plot of 2, 25, and 60 °C CD spectra of mutants derived from guests Gln, Asn, Ser, Met, Thr, Tyr, Asp, and Glu yields curve intersections that expand to a wavelength range of 200 to 209 nm, and at 202.5 nm, the error in the ellipticity increased to  $\pm 5 \times 10^3$  deg cm<sup>2</sup> dm<sup>-1</sup>, corresponding to a  $\pm 33$  % relative error. These findings definitively validate our conclusion that guest-induced ellipticity perturbations are large enough to explain the accuracies seen in Figure 1. For a majority of the natural amino acid residues, we have proved that CD measurements are unsuitable tools for assigning primary values for host-guest derived helical propensities.

Useful supporting information is also provided by comparisons with double mutant sets as seen in the following table.

**Table I0.** Correlations Between Paired  $w_{Xxx}/w_{Ala}$  Sets. Xxx = A, L, M, I, Q, V, F, Y, S, N, T, G Set A:  $w_{Xxx}/w_{Ala}$  Assigned from <sup>13</sup>C=O Chemical Shifts at Site 14 of Mutants **1**. Set B:  $w_{Xxx}/w_{Ala}$ Assigned from  $[\theta]_{222}$  Values of Mutants **2**. Set C:  $w_{Xxx}/w_{Ala}$  Assigned from  $[\theta]_{222}$  Values of Mutant **2** analogs that contain Two Xxx guests at Sites 10 & 11.

| T, °C | Paired Sets | Slope | Intercept | Fit (SD) | CC   | Mean $\Delta$ % |
|-------|-------------|-------|-----------|----------|------|-----------------|
| 2     | A - B       | 1.01  | - 0.15    | 0.08     | 0.95 | + 41            |
| 2     | A - C       | 0.99  | - 0.11    | 0.06     | 0.97 | + 30            |
| 2     | C - B       | 0.95  | + 0.05    | 0.03     | 0.99 | + 11            |
| 25    | A – B       | 0.96  | - 0.09    | 0.06     | 0.97 | + 25            |
| 25    | A – C       | 0.83  | + 0.01    | 0.07     | 0.95 | + 11            |
| 25    | C – B       | 0.87  | + 0.08    | 0.03     | 0.99 | + 14            |
| 60    | A – B       | 0.99  | + 0.06    | 0.08     | 0.89 | - 8             |
| 60    | A – C       | 0.81  | + 0.18    | 0.04     | 0.96 | - 8             |
| 60    | C – B       | 0.64  | + 0.27    | 0.07     | 0.84 | + 0.6           |

#### V. References

- (1) Yang. J. T.; Wu, C.-S. C.; Martinez, H. M. Methods Enzymol. 1986, 130, 208-269.
- (2) Holtzer, M. E.; Holtzer, A. Biopolymers 1992, 32, 1675-1677.
- (3) Wallimann, P., Kennedy, R. J., Miller, J. S., Shalongo, W., Kemp, D. S. *J. Am. Chem. Soc.* **2002**, *125*, 1203—1220.
- (4) Lyu, P. C.; Liff, M. I.; Marky, L. A.; Kallenbach, N. R. Science 1990, 250, 669-673.
- (5) Job, G. E.; Kennedy, R. S.; Heitmann, B.; Miller, J. S.; Walker, S. M.; Kemp, D. S. *J. Am. Chem. Soc.* **2006**, *128*, 8227–8233.
- (6) Luo, P.; Baldwin, Biochemistry 1997, 36, 8422-8421.
- (7) Besley, N. A.; Hirst, J. D. J. Am. Chem. Soc. 1999, 121, 9636-9644.
- (8) Mahadevan, J.; Lee, K.-H.; Kuczera, K. J. Phys. Chem. B 2001, 105, 1863-1976.
- (9) Woody, R.W.; Sreerama, N. J. Chem. Phys. 1999, 111, 2844—2845. Manning, M. C.; Woody, R.W. Biopolymers 1991, 31, 569—586.
- (10) Barlow, D. J.; Thornton, J. M. J. Mol. Biol. 1988, 201, 601-619.
- (11) Heitmann, B.; Job, G. E.; Kennedy, R. S.; Miller, J. S.; Walker, S. M.; Kemp, D. S. J. Am. *Chem. Soc.* **2005**, *127*, 1690—1704.
- (12) Marshall, C. B., Chakrabartty, A., Davies, P. L. J. Biol. Chem. 2005, 280, 17920-17929.
- (13) Creighton, T. R. "Proteins: Structure and Molecular Properties", W. H. Freeman and Co., New York, 1983, p 171.
- (14) Bolin, K. A.; Millhauser, G. L. Acc. Chem. Res. 1999, 32, 1027-1033.

(15) (a) Millhauser, G. L.; Stenland, C. J.; Hansen, P.; Bolin, K. A.; van de Ven, F. J. M. J. Mol. Biol. 1997, 267, 963—974; (b) Long, H. W.; Tycko, R. J. Am. Chem. Soc. 1998, 120, 7039—7048.

(16) Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J.; *J. Am. Chem. Soc.* **1996**, *118*, 2744—2745.

(17) Nasr, K. A.; Schubert, C. R.; Török, M.; Kennedy, R. J.; Kemp, D. S. *Biopolymers* **2009**, *91*, 311–320.

(18) A rigorous distinction between core and ends is justified by the rigid cylindrical structure of a peptide helix. Since for an unaggregated homopeptide sequence of sufficient length, energy perturbations are plausibly all local, and a core must exist in which all residues have the same structure, helix-coil energetics, and per-residue ellipticities. This convergence defines  $[\theta]_{\lambda,H,\infty,T}$ . (19) Assigned from NH  $\rightarrow$  ND kinetics at 2 °C.<sup>11</sup>

(20) Walker, S. M; Kemp, D. S. unpublished observations.

(21) For the cap-stabilized polyalanines of reference 11, X = 2.5; for the peptides 1, which contain bulky, hydrophobic <sup>t</sup>L spacing regions, X = 6 to 7, and X = 4 to 5 for corresponding peptides containing alanine and D-alanine spacers, Kennedy, R. S.; Miller, J. S.; Walker, S. M.; Kemp, D. S. J. Am. Chem. Soc. **2005**, *127*, 16961—16968.

(22) Luo, P.; Baldwin, R. L.; Proc, Natl. Acad. Sci. USA 1999, 96, 4930-4935.

(23) Lee, J.; Kemp, D. S. unpublished observations.

(24) The required synthetic facilities and personnel were no longer available to us for synthesis of a mutant **1** that contains <sup>13</sup>C=O reporters and a site 10 Abu =  $\alpha$ -aminobutyric acid guest.