Partial Correlation Estimation by Joint Sparse Regression Models — Supplemental Material

Part I

In this section, we list properties of the loss function:

$$
L(\theta, \sigma, Y) = \frac{1}{2} \sum_{i=1}^{p} w_i (y_i - \sum_{j \neq i} \sqrt{\sigma^{jj} / \sigma^{jj}} \rho^{ij} y_j)^2 = \frac{1}{2} \sum_{i=1}^{p} \tilde{w}_i (\tilde{y}_i - \sum_{j \neq i} \rho^{ij} \tilde{y}_j)^2, \quad (S-1)
$$

where $Y = (y_1, \dots, y_p)^T$ and $\tilde{y}_i =$ √ $\overline{\sigma^{ii}}y_i, \tilde{w}_i = w_i/\sigma^{ii}$. These properties are used for the proof of the main results. Note: throughout the supplementary material, when evaluation is taken place at $\sigma = \bar{\sigma}$, sometimes we omit the argument σ in the notation for simplicity. Also we use $Y = (y_1, \dots, y_p)^T$ to denote a generic sample and use Y to denote the $p \times n$ data matrix consisting of n i.i.d. such samples: Y^1, \dots, Y^n , and define

$$
L_n(\theta, \sigma, \mathbf{Y}) := \frac{1}{n} \sum_{k=1}^n L(\theta, \sigma, \mathbf{Y}^k).
$$
 (S-2)

A1: for all θ , σ and $Y \in \mathcal{R}^p$, $L(\theta, \sigma, Y) \geq 0$.

A2: for any $Y \in \mathcal{R}^p$ and any $\sigma > 0$, $L(\cdot, \sigma, Y)$ is convex in θ ; and with probability one, $L(\cdot, \sigma, Y)$ is strictly convex.

A3: for $1 \leq i < j \leq p$

$$
\overline{L}'_{ij}(\bar{\theta},\bar{\sigma}) := E_{(\bar{\theta},\bar{\sigma})} \left(\frac{\partial L(\theta,\sigma,Y)}{\partial \rho^{ij}} \Big|_{\theta=\bar{\theta},\sigma=\bar{\sigma}} \right) = 0.
$$

A4: for $1 \leq i < j \leq p$ and $1 \leq k < l \leq p$,

$$
\overline{L}_{ij,kl}''(\theta,\sigma) := E_{(\theta,\sigma)}\left(\frac{\partial^2 L(\theta,\sigma,Y)}{\partial \rho^{ij} \rho^{kl}}\right) = \frac{\partial}{\partial \rho^{kl}}\left[E_{(\theta,\sigma)}\left(\frac{\partial L(\theta,\sigma,Y)}{\partial \rho^{ij}}\right)\right],
$$

and $\overline{L}''(\overline{\theta}, \overline{\sigma})$ is positive semi-definite.

If assuming C0-C1, then we have

- **B0**: There exist constants $0 < \bar{\sigma}_0 \le \bar{\sigma}_{\infty} < \infty$ such that: $0 < \bar{\sigma}_0 \le \min\{\bar{\sigma}^{ii} : 1 \le$ $i \leq p$ } \leq max $\{\bar{\sigma}^{ii} : 1 \leq i \leq p\} \leq \bar{\sigma}_{\infty}$.
- **B1**: There exist constants $0 < \Lambda_{\min}^L(\bar{\theta}) \leq \Lambda_{\max}^L(\bar{\theta}) < \infty$, such that

$$
0<\Lambda_{\min}^L(\bar{\theta})\leq\lambda_{min}(\overline{L}''(\bar{\theta}))\leq\lambda_{\max}(\overline{L}''(\bar{\theta}))\leq\Lambda_{\max}^L(\bar{\theta})<\infty
$$

- **B1.1** : There exists a constant $K(\bar{\theta}) < \infty$, such that for all $1 \leq i < j \leq p$, $\overline{L}_{ij,ij}''(\bar{\theta}) \leq$ $K(\bar{\theta})$.
- **B1.2**: There exist constants $M_1(\bar{\theta}), M_2(\bar{\theta}) < \infty$, such that for any $1 \leq i < j \leq p$

$$
\text{Var}_{(\bar{\theta},\bar{\sigma})}(L'_{ij}(\bar{\theta},\bar{\sigma},Y)) \leq M_1(\bar{\theta}), \ \text{Var}_{(\bar{\theta},\bar{\sigma})}(L''_{ij,ij}(\bar{\theta},\bar{\sigma},Y)) \leq M_2(\bar{\theta}).
$$

B1.3 : There exists a constant $0 < g(\bar{\theta}) < \infty$, such that for all $(i, j) \in \mathcal{A}$

$$
\overline{L}_{ij,ij}''(\bar{\theta},\bar{\sigma}) - \overline{L}_{ij,A_{ij}}''(\bar{\theta},\bar{\sigma}) \left[\overline{L}_{A_{ij},A_{ij}}''(\bar{\theta},\bar{\sigma}) \right]^{-1} \overline{L}_{A_{ij},ij}''(\bar{\theta},\bar{\sigma}) \ge g(\bar{\theta}),
$$

where $\mathcal{A}_{ij} = \mathcal{A}/\{(i,j)\}.$

B1.4 : There exists a constant $M(\bar{\theta}) < \infty$, such that for any $(i, j) \in \mathcal{A}^c$

$$
||\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}||_2 \leq M(\overline{\theta}).
$$

- **B2** There exists a constant $K_1(\bar{\theta}) < \infty$, such that for any $1 \leq i \leq j \leq p$, $||E_{\bar{\theta}}(\tilde{y}_i \tilde{y}_j \tilde{y}^T)|| \leq K_1(\bar{\theta}), \text{ where } \tilde{y} = (\tilde{y}_1, \cdots, \tilde{y}_p)^T.$
- **B3** If we further assume that condition D holds for $\hat{\sigma}$ and $q_n \sim o(\frac{n}{\log n})$ $\frac{n}{\log n}$, we have: for any $\eta > 0$, there exist constants $C_{1,\eta}$, $C_{2,\eta} > 0$, such that for sufficiently large n

$$
\max_{1 \leq i < k \leq p} \left| L'_{n,ik}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - L'_{n,ik}(\bar{\theta}, \hat{\sigma}, \mathbf{Y}) \right| \leq C_{1,\eta}(\sqrt{\frac{\log n}{n}}),
$$
\n
$$
\max_{1 \leq i < k \leq p, 1 \leq t < s \leq p} \left| L''_{n,ik,ts}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - L''_{n,ik,ts}(\bar{\theta}, \hat{\sigma}, \mathbf{Y}) \right| \leq C_{2,\eta}(\sqrt{\frac{\log n}{n}}),
$$

hold with probability at least $1 - O(n^{-\eta})$.

B0 follows from C1 immediately. B1.1–B1.4 are direct consequences of B1. B2 follows from B1 and Gaussianity. B3 follows from conditions C0-C1 and D.

proof of $A1$: obvious.

proof of A2: obvious.

proof of $A3$: denote the residual for the ith term by

$$
e_i(\theta, \sigma) = \tilde{y}_i - \sum_{j \neq i} \rho^{ij} \tilde{y}_j.
$$

Then evaluated at the true parameter values $(\bar{\theta}, \bar{\sigma})$, we have $e_i(\bar{\theta}, \bar{\sigma})$ uncorrelated with $\tilde{y}_{(-i)}$ and $E_{(\bar{\theta},\bar{\sigma})}(e_i(\bar{\theta},\bar{\sigma}))=0$. It is easy to show

$$
\frac{\partial L(\theta, \sigma, Y)}{\partial \rho^{ij}} = -\tilde{w}_i e_i(\theta, \sigma) \tilde{y}_j - \tilde{w}_j e_j(\theta, \sigma) \tilde{y}_i.
$$

This proves A3.

proof of A4: see the proof of B1.

proof of B1: Denote $\tilde{y} = (\tilde{y}_1, \dots, \tilde{y}_p)^T$, and $\tilde{x} = (\tilde{x}_{(1,2)}, \tilde{x}_{(1,3)}, \dots, \tilde{x}_{(p-1,p)})$ with $\tilde{x}_{(i,j)} = (0, \dots, 0, \tilde{y}_j, \dots, \tilde{y}_i, 0, \dots, 0)^T$. Then the loss function (S-1) can be written as $L(\theta, \sigma, Y) = \frac{1}{2} ||\tilde{w}(\tilde{y} - \tilde{x}\theta)||_2^2$, with $\tilde{w} = diag($ √ $\tilde{w}_1, \cdots,$ √ $\overline{\tilde{w}}_p$). Thus $\overline{L}''(\theta, \sigma) =$ $E_{(\theta,\sigma)}$ £ $\tilde{x}^T \tilde{w}^2 \tilde{x}$ l
E (this proves A4). Let $d = p(p-1)/2$, then \tilde{x} is a p by d matrix. Denote its *i*th row by x_i^T $(1 \le i \le p)$. Then for any $a \in \mathcal{R}^d$, with $||a||_2 = 1$, we have

$$
a^T \overline{L}''(\overline{\theta})a = E_{\overline{\theta}}(a^T \tilde{x}^T \tilde{w}^2 \tilde{x}a) = E_{\overline{\theta}}\left(\sum_{i=1}^p \tilde{w}_i (x_i^T a)^2\right).
$$

Index the elements of a by $a = (a_{(1,2)}, a_{(1,3)}, \cdots, a_{(p-1,p)})^T$, and for each $1 \leq i \leq p$, define $a_i \in \mathcal{R}^p$ by $a_i = (a_{(1,i)}, \cdots, a_{(i-1,i)}, 0, a_{(i,i+1)}, \cdots, a_{(i,p)})^T$. Then by definition $x_i^T a = \tilde{y}^T a_i$. Also note that $\sum_{i=1}^p ||a_i||_2^2 = 2||a||_2^2 = 2$. This is because, for $i \neq j$, the *jth* entry of a_i appears exactly twice in a . Therefore

$$
a^T \overline{L}''(\overline{\theta})a = \sum_{i=1}^p \tilde{w}_i E_{\overline{\theta}} \left(a_i^T \tilde{y} \tilde{y}^T a_i \right) = \sum_{i=1}^p \tilde{w}_i a_i^T \tilde{\Sigma} a_i \ge \sum_{i=1}^p \tilde{w}_i \lambda_{\min}(\tilde{\Sigma}) ||a_i||_2^2 \ge 2 \tilde{w}_0 \lambda_{\min}(\tilde{\Sigma}),
$$

where $\tilde{\Sigma} = \text{Var}(\tilde{y})$ and $\tilde{w}_0 = w_0/\bar{\sigma}_{\infty}$. Similarly $a^T \overline{L}''(\bar{\theta})a \leq 2\tilde{w}_{\infty}\lambda_{\max}(\tilde{\Sigma})$, with $\tilde{w}_{\infty} = w_{\infty}/\bar{\sigma}_0$. By C1, $\tilde{\Sigma}$ has bounded eigenvalues, thus B1 is proved.

proof of B1.1: obvious.

proof of B1.2: note that $\text{Var}_{(\bar{\theta},\bar{\sigma})}(e_i(\bar{\theta},\bar{\sigma})) = 1/\bar{\sigma}^{ii}$ and $\text{Var}_{(\bar{\theta},\bar{\sigma})}(\tilde{y}_i) = \bar{\sigma}^{ii}$. Then for any $1 \leq i < j \leq p$, by Cauchy-Schwartz

$$
\begin{split}\n\text{Var}_{(\bar{\theta},\bar{\sigma})}(L'_{n,ij}(\bar{\theta},\bar{\sigma},Y)) &= \text{Var}_{(\bar{\theta},\bar{\sigma})}(-\tilde{w}_i e_i(\bar{\theta},\bar{\sigma})\tilde{y}_j - \tilde{w}_j e_j(\bar{\theta},\bar{\sigma})\tilde{y}_i) \\
&\leq E_{(\bar{\theta},\bar{\sigma})}(\tilde{w}_i^2 e_i^2(\bar{\theta},\bar{\sigma})\tilde{y}_j^2) + E_{(\bar{\theta},\bar{\sigma})}(\tilde{w}_j^2 e_j^2(\bar{\theta},\bar{\sigma})\tilde{y}_i^2) \\
&+ 2\sqrt{\tilde{w}_i^2 \tilde{w}_j^2 E_{(\bar{\theta},\bar{\sigma})}(e_i^2(\bar{\theta},\bar{\sigma})\tilde{y}_j^2) E_{(\bar{\theta},\bar{\sigma})}(e_j^2(\bar{\theta},\bar{\sigma})\tilde{y}_i^2)} \\
&= \frac{w_i^2 \bar{\sigma}^{jj}}{(\bar{\sigma}^{ii})^3} + \frac{w_j^2 \bar{\sigma}^{ii}}{(\bar{\sigma}^{jj})^3} + 2\frac{w_i w_j}{\bar{\sigma}^{ii} \bar{\sigma}^{jj}}.\n\end{split}
$$

The right hand side is bounded because of C0 and B0.

proof of B1.3: for $(i, j) \in \mathcal{A}$, denote

$$
D := \overline{L}_{ij,ij}''(\bar{\theta}, \bar{\sigma}) - \overline{L}_{ij,A_{ij}}''(\bar{\theta}, \bar{\sigma}) \left[\overline{L}_{A_{ij},A_{ij}}''(\bar{\theta}, \bar{\sigma}) \right]^{-1} \overline{L}_{A_{ij},ij}''(\bar{\theta}, \bar{\sigma}).
$$

Then D^{-1} is the (ij, ij) entry in $\left[\overline{L}_{\mathcal{A},\mathcal{A}}^{"}(\overline{\theta})\right]$ $\overline{1}$ −1 . Thus by B1, D^{-1} is positive and bounded from above, so D is bounded away from zero.

proof of B1.4: note that $\|\overline{L}_{ij,A}''(\overline{\theta})[\overline{L}_{\mathcal{AA}}''(\overline{\theta})]^{-1}\|^2_2 \leq \|\overline{L}_{ij,A}''(\overline{\theta})\|^2_2 \lambda_{\max}([\overline{L}_{\mathcal{AA}}''(\overline{\theta})]^{-2})$. By B1, $\lambda_{\max}([\overline{L}_{\mathcal{A}\mathcal{A}}''(\overline{\theta})]^{-2})$ is bounded from above, thus it suffices to show that $||\overline{L}_{ij,\mathcal{A}}''(\overline{\theta})||_2^2$ is bounded. Since $(i, j) \in \mathcal{A}^c$, define $\mathcal{A}^+ := (i, j) \cup \mathcal{A}$. Then $\overline{L}''_{ij, ij}(\overline{\theta}) - \overline{L}''_{ij, \mathcal{A}}(\overline{\theta}) [\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1} \overline{L}''_{\mathcal{A}, ij}(\overline{\theta})$ is the inverse of the (1, 1) entry of $\overline{L}''_{\mathcal{A}^+,\mathcal{A}^+}(\overline{\theta})$. Thus by B1, it is bounded away from zero. Therefore by B1.1, $\overline{L}_{i,j,A}''(\bar{\theta})[\overline{L}_{\mathcal{A}\mathcal{A}}''(\bar{\theta})]^{-1}\overline{L}_{\mathcal{A},ij}''(\bar{\theta})$ is bounded from above. Since $\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}\overline{L}''_{\mathcal{A},ij}(\overline{\theta}) \geq ||\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})||_2^2\lambda_{\min}([\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}),$ and by B1, $\lambda_{\min}([\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1})$ is bounded away from zero, we have $\|\overline{L}_{i,j,\mathcal{A}}^{"}(\overline{\theta})\|_{2}^{2}$ bounded from above.

proof of B2: the (k, l) -th entry of the matrix $\tilde{y}_i \tilde{y}_j \tilde{y} \tilde{y}^T$ is $\tilde{y}_i \tilde{y}_j \tilde{y}_k \tilde{y}_l$, for $1 \leq k < l \leq p$. Thus, the (k, l) -th entry of the matrix $\mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{y} \tilde{y}^T]$ is $\mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{y}_k \tilde{y}_l] = \tilde{\sigma}_{ij} \tilde{\sigma}_{kl} + \tilde{\sigma}_{ik} \tilde{\sigma}_{jl} + \tilde{\sigma}_{il} \tilde{\sigma}_{jk}$. Thus, we can write

$$
\mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{y} \tilde{y}^T] = \tilde{\sigma}_{ij} \tilde{\Sigma} + \tilde{\sigma}_i \tilde{\sigma}_{j.}^T + \tilde{\sigma}_j \tilde{\sigma}_{i.}^T, \qquad (S-3)
$$

where $\tilde{\sigma}_i$ is the $p \times 1$ vector $(\tilde{\sigma}_{ik})_{k=1}^p$. From (S-3), we have

$$
\| \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{y} \tilde{y}^T] \| \leq \|\tilde{\sigma}_{ij}\| \|\tilde{\Sigma}\| + 2 \|\tilde{\sigma}_{i\cdot}\|_2 \|\tilde{\sigma}_{j\cdot}\|_2, \tag{S-4}
$$

where $|| \cdot ||$ is the operator norm. By C0-C1, the first term on the right hand side is uniformly bounded. Now, we also have,

$$
\tilde{\sigma}_{ii} - \tilde{\sigma}_i^T \tilde{\Sigma}_{(-i)}^{-1} \tilde{\sigma}_{i.} > 0 \tag{S-5}
$$

where $\tilde{\Sigma}_{(-i)}$ is the submatrix of $\tilde{\Sigma}$ removing *i*-th row and column. From this, it follows that

$$
\|\tilde{\sigma}_{i\cdot}\|_2 = \|\tilde{\Sigma}_{(-i)}^{1/2} \tilde{\Sigma}_{(-i)}^{-1/2} \tilde{\sigma}_{i\cdot}\|_2
$$

\n
$$
\leq \|\tilde{\Sigma}_{(-i)}^{1/2}\| \|\tilde{\Sigma}_{(-i)}^{-1/2} \tilde{\sigma}_{i\cdot}\|_2
$$

\n
$$
\leq \sqrt{\|\tilde{\Sigma}\|} \sqrt{\tilde{\sigma}_{ii}}, \qquad (S-6)
$$

where the last inequality follows from (S-5), and the fact that $\tilde{\Sigma}_{(-i)}$ is a principal submatrix of Σ . Thus the result follows by applying (S-6) to bound the last term in $(S-4)$.

proof of B3:

$$
L'_{n,ik}(\bar{\theta}, \sigma, \mathbf{Y}) = \frac{1}{n} \sum_{l=1}^{n} -w_i \left(y_i^l - \sum_{j \neq i} \sqrt{\frac{\sigma^{jj}}{\sigma^{ii}} \rho^{ij} y_j^l} \right) \sqrt{\frac{\sigma^{kk}}{\sigma^{ii}}} y_k^l
$$

$$
-w_k \left(y_k^l - \sum_{j \neq k} \sqrt{\frac{\sigma^{jj}}{\sigma^{kk}} \rho^{kj} y_j^l} \right) \sqrt{\frac{\sigma^{ii}}{\sigma^{kk}}} y_i^l.
$$

Thus,

$$
L'_{n,ik}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - L'_{n,ik}(\bar{\theta}, \hat{\sigma}, \mathbf{Y})
$$

=
$$
-w_i \left[\overline{y_i y_k} \left(\sqrt{\frac{\sigma^{kk}}{\sigma^{ii}}} - \sqrt{\frac{\hat{\sigma}^{kk}}{\hat{\sigma}^{ii}}} \right) - \sum_{j \neq i} \overline{y_j y_k} \rho^{ij} \left(\frac{\sqrt{\sigma^{jj} \sigma^{kk}}}{\sigma^{ii}} - \frac{\sqrt{\hat{\sigma}^{jj} \hat{\sigma}^{kk}}}{\hat{\sigma}^{ii}} \right) \right]
$$

$$
-w_k \left[\overline{y_i y_k} \left(\sqrt{\frac{\sigma^{ii}}{\sigma^{kk}}} - \sqrt{\frac{\hat{\sigma}^{ii}}{\hat{\sigma}^{kk}}} \right) - \sum_{j \neq k} \overline{y_j y_i} \rho^{kj} \left(\frac{\sqrt{\sigma^{jj} \sigma^{ii}}}{\sigma^{kk}} - \frac{\sqrt{\hat{\sigma}^{jj} \hat{\sigma}^{ii}}}{\hat{\sigma}^{kk}} \right) \right],
$$

where for $1 \leq i, j \leq p$, $\overline{y_i y_j} := \frac{1}{n}$ \sum_{n} $\sum_{l=1}^{n} y_i^l y_j^l$. Let σ_{ij} denote the (i, j) -th element of the true covariance matrix $\overline{\Sigma}$. By C1, $\{\sigma_{ij} : 1 \le i, j \le p\}$ are bounded from below and above, thus r

$$
\max_{1 \le i,j \le p} |\overline{y_i y_j} - \sigma_{ij}| = O_p(\sqrt{\frac{\log n}{n}}).
$$

(Throughout the proof, $O_p(\cdot)$ means that for any $\eta > 0$, for sufficiently large n, the left hand side is bounded by the order within $O_p(\cdot)$ with probability at least $1 - O(n^{-\eta})$.) Therefore

$$
\sum_{j\neq i} |\overline{y_jy_k}-\sigma_{jk}||\rho^{ij}| \leq (\sum_{j\neq i} |\rho^{ij}|) \max_{1\leq i,j\leq p} |\overline{y_iy_j}-\sigma_{ij}| \leq (\sqrt{q_n \sum_{j\neq i} (\rho^{ij})^2}) \max_{1\leq i,j\leq p} |\overline{y_iy_j}-\sigma_{ij}| = o(1),
$$

where the last inequality is by Cauchy-Schwartz and the fact that, for fixed i , there are at most q_n non-zero ρ^{ij} . The last equality is due to the assumption $q_n \sim o(\frac{n}{\log n})$ $\frac{n}{\log n}$), and the fact that $\sum_{j\neq i}(\rho^{ij})^2$ is bounded which is in turn implied by condition C1. Therefore,

$$
|L'_{n,ik}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - L'_{n,ik}(\bar{\theta}, \hat{\sigma}, \mathbf{Y})|
$$

\n
$$
\leq (w_i|\sigma_{ik}| + w_k|\sigma_{ik}|) \max_{i,k} \left| \sqrt{\frac{\sigma^{kk}}{\sigma^{ii}}} - \sqrt{\frac{\hat{\sigma}^{kk}}{\hat{\sigma}^{ii}}} \right| + (w_i \tau_{ki} + w_k \tau_{ik}) \max_{i,j,k} \left| \frac{\sqrt{\sigma^{jj} \sigma^{kk}}}{\sigma^{ii}} - \frac{\sqrt{\hat{\sigma}^{jj} \hat{\sigma}^{kk}}}{\hat{\sigma}^{ii}} \right| + R_n,
$$

where $\tau_{ki} := \sum_{j \neq i} |\sigma_{jk}\rho^{ij}|$, and the reminder term R_n is of smaller order of the leading terms. Since C1 implies B0, thus together with condition D, we have

$$
\max_{1 \le i,k \le p} \left| \sqrt{\frac{\sigma^{ii}}{\sigma^{kk}}} - \sqrt{\frac{\widehat{\sigma}^{ii}}{\widehat{\sigma}^{kk}}} \right| = O_p(\sqrt{\frac{\log n}{n}}),
$$

$$
\max_{1 \le i,j,k \le p} \left| \frac{\sqrt{\sigma^{jj} \sigma^{ii}}}{\sigma^{kk}} - \frac{\sqrt{\hat{\sigma}^{jj} \hat{\sigma}^{ii}}}{\hat{\sigma}^{kk}} \right| = O_p(\sqrt{\frac{\log n}{n}}).
$$

Moreover, by Cauchy-Schwartz

$$
\tau_{ki} \leq \sqrt{\sum_j (\rho^{ij})^2} \sqrt{\sum_j (\sigma_{jk})^2},
$$

and the right hand side is uniformly bounded (over (i, k)) due to condition C1. Thus by C0,C1 and D, we have showed

$$
\max_{i,k} |L'_{n,ik}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - L'_{n,ik}(\bar{\theta}, \hat{\sigma}, \mathbf{Y})| = O_p(\sqrt{\frac{\log n}{n}}).
$$

Observe that, for $1\leq i < k \leq p, 1\leq t < s \leq p$

$$
L''_{n,ik,ts} = \begin{cases} \frac{1}{n} \sum_{l=1}^{n} w_i \frac{\sigma^{kk}}{\sigma^{ii}} y_k^l + w_k \frac{\sigma^{ii}}{\sigma^{kk}} y_i^l & , if & (i,k) = (t,s) \\ \frac{1}{n} \sum_{l=1}^{n} w_i \frac{\sqrt{\sigma^{kk}}{\sigma^{ii}} y_s^l y_k^l}{y_i^l y_i^l}, & if & i = t, k \neq s \\ \frac{1}{n} \sum_{l=1}^{n} w_k \frac{\sqrt{\sigma^{tt}}{\sigma^{ik}} y_t^l y_i^l}{y_i^l y_i^l}, & if & i \neq t, k = s \\ 0 & if & otherwise. \end{cases}
$$

Thus by similar arguments as in the above, it is easy to proof the claim.

Part II

In this section, we proof the main results (Theorems 1–3). We first give a few lemmas.

Lemma S-1 (Karush-Kuhn-Tucker condition) $\hat{\theta}$ is a solution of the optimization problem

$$
\arg\min_{\theta:\theta_{\mathcal{S}^c}=0} L_n(\theta,\widehat{\sigma},\mathbf{Y})+\lambda_n||\theta||_1,
$$

where S is a subset of $\mathcal{T} := \{(i, j) : 1 \leq i < j \leq p\}$, if and only if

$$
L'_{n,ij}(\widehat{\theta}, \widehat{\sigma}, \mathbf{Y}) = \lambda_n \text{sign}(\widehat{\theta}_{ij}), \text{ if } \widehat{\theta}_{ij} \neq 0
$$

$$
|L'_{n,ij}(\widehat{\theta}, \widehat{\sigma}, \mathbf{Y})| \leq \lambda_n, \text{ if } \widehat{\theta}_{ij} = 0,
$$

for $(i, j) \in S$. Moreover, if the solution is not unique, $|L'_{n, ij}(\tilde{\theta}, \hat{\sigma}, Y)| < \lambda_n$ for some specific solution $\tilde{\theta}$ and $L'_{n,ij}(\theta,\widehat{\sigma},\mathbf{Y})$ being continuous in θ imply that $\widehat{\theta}_{ij} = 0$ for all solutions $\widehat{\theta}$. (Note that optimization problem (9) corresponds to $S = T$ and the restricted optimization problem (11) corresponds to $S = A$.)

Lemma S-2 For the loss function defined by $(S-2)$, if conditions C0-C1 hold and condition D holds for $\hat{\sigma}$ and if $q_n \sim o(\frac{n}{\log n})$ $\frac{n}{\log n}$, then for any $\eta > 0$, there exist constants $c_{0,\eta}, c_{1,\eta}, c_{2,\eta}, c_{3,\eta} > 0$, such that for any $u \in R^{q_n}$ the following hold with probability as least $1 - O(n^{-\eta})$ for sufficiently large n:

$$
||L'_{n,\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})||_2 \le c_{0,\eta} \sqrt{\frac{q_n \log n}{n}}
$$

\n
$$
|u^T L'_{n,\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})| \le c_{1,\eta} ||u||_2 (\sqrt{\frac{q_n \log n}{n}})
$$

\n
$$
|u^T L''_{n,\mathcal{A}\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})u - u^T \overline{L''}_{\mathcal{A}\mathcal{A}}(\overline{\theta})u| \le c_{2,\eta} ||u||_2^2 (q_n \sqrt{\frac{\log n}{n}})
$$

\n
$$
||L''_{n,\mathcal{A}\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})u - \overline{L''}_{\mathcal{A}\mathcal{A}}(\overline{\theta})u||_2 \le c_{3,\eta} ||u||_2 (q_n \sqrt{\frac{\log n}{n}})
$$

proof of Lemma S-2: If we replace $\hat{\sigma}$ by $\bar{\sigma}$ on the left hand side, then the above results follow easily from Cauchy-Schwartz and Bernstein's inequalities by using B1.2. Further observe that,

$$
||L'_{n,\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y})||_2\leq ||L'_{n,\mathcal{A}}(\overline{\theta},\bar{\sigma},\mathbf{Y})||_2+||L'_{n,\mathcal{A}}(\overline{\theta},\bar{\sigma},\mathbf{Y})-L'_{n,\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y})||_2,
$$

and the second term on the right hand side has order $\sqrt{\frac{q_n \log n}{n}}$, since there are q_n terms and by B3, they are uniformly bounded by $\sqrt{\frac{\log n}{n}}$. The rest of the lemma can be proved by similar arguments.

The following two lemmas are used for proving Theorem 1.

Lemma S-3 Assuming the same conditions of Theorem 1. Then there exists a constant $C_1(\overline{\theta}) > 0$, such that for any $\eta > 0$, the probability that there exists a local minima of the restricted problem (11) within the disc:

$$
\{\theta: ||\theta - \overline{\theta}||_2 \le C_1(\overline{\theta})\sqrt{q_n}\lambda_n\}.
$$

is at least $1 - O(n^{-\eta})$ for sufficiently large n.

proof of Lemma S-3: Let $\alpha_n = \sqrt{q_n} \lambda_n$, and $Q_n(\theta, \widehat{\sigma}, \mathbf{Y}, \lambda_n) = L_n(\theta, \widehat{\sigma}, \mathbf{Y}) + \lambda_n ||\theta||_1$. Then for any given constant $C > 0$ and any vector $u \in R^p$ such that $u_{\mathcal{A}^c} = 0$ and $||u||_2 = C$, by the triangle inequality and Cauchy-Schwartz inequality, we have

$$
||\overline{\theta}||_1 - ||\overline{\theta} + \alpha_n u||_1 \leq \alpha_n ||u||_1 \leq C \alpha_n \sqrt{q_n}.
$$

Thus

$$
Q_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}, \lambda_n) - Q_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}, \lambda_n)
$$

=
$$
\{L_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}) - L_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})\} - \lambda_n \{||\overline{\theta}||_1 - ||\overline{\theta} + \alpha_n u||_1\}
$$

$$
\geq \{L_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}) - L_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})\} - C\alpha_n \sqrt{q_n} \lambda_n
$$

=
$$
\{L_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}) - L_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})\} - C\alpha_n^2.
$$

Thus for any $\eta > 0$, there exists $c_{1,\eta}, c_{2,\eta} > 0$, such that, with probability at least $1 - O(n^{-\eta})$

$$
L_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}) - L_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) = \alpha_n u_A^T L'_{n, \mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) + \frac{1}{2} \alpha_n^2 u_A^T L''_{n, \mathcal{A} \mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) u_{\mathcal{A}}
$$

=
$$
\frac{1}{2} \alpha_n^2 u_A^T \overline{L}''_{\mathcal{A} \mathcal{A}}(\overline{\theta}) u_{\mathcal{A}} + \alpha_n u_A^T L'_{n, \mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) + \frac{1}{2} \alpha_n^2 u_A^T \left(L''_{n, \mathcal{A} \mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) - \overline{L}''_{\mathcal{A} \mathcal{A}}(\overline{\theta}) \right) u_{\mathcal{A}}
$$

$$
\geq \frac{1}{2} \alpha_n^2 u_A^T \overline{L}''_{\mathcal{A} \mathcal{A}}(\overline{\theta}) u_{\mathcal{A}} - c_{1, \eta} (\alpha_n q_n^{1/2} n^{-1/2} \sqrt{\log n}) - c_{2, \eta} (\alpha_n^2 q_n n^{-1/2} \sqrt{\log n}).
$$

In the above, the first equation is because the loss function $L(\theta, \sigma, Y)$ is quadratic in θ and $u_{A^c} = 0$. The inequality is due to Lemma S-2 and the union bound. By the assumption $\lambda_{n} \sqrt{\frac{n}{\log n}}$ $\frac{n}{\log n} \to \infty$, we have $\alpha_n q_n^{1/2} n^{-1/2} \sqrt{\log n} = o(\alpha_n \sqrt{q_n} \lambda_n) = o(\alpha_n^2)$. Also by the **assumption that** $q_n \sim o(q)$ p $\overline{n/\log n}$, we have $\alpha_n^2 q_n n^{-1/2} \sqrt{\log n} = o(\alpha_n^2)$. Thus, with n sufficiently large

$$
Q_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}, \lambda_n) - Q_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}, \lambda_n) \ge \frac{1}{4} \alpha_n^2 u_A^T \overline{L}_{\mathcal{A}\mathcal{A}}''(\overline{\theta}) u_{\mathcal{A}} - C \alpha_n^2
$$

with probability at least $1 - O(n^{-\eta})$. By B1, $u_{\mathcal{A}}^T \overline{L}_{\mathcal{A} \mathcal{A}}''(\overline{\theta}) u_{\mathcal{A}} \geq \Lambda_{\min}^L(\overline{\theta}) ||u_{\mathcal{A}}||_2^2 =$ $\Lambda_{\min}^L(\bar{\theta})C^2$. Thus, if we choose $C = 4/\Lambda_{\min}^L(\bar{\theta}) + \epsilon$, then for any $\eta > 0$, for sufficiently large n , the following holds

$$
\inf_{u: u_{\mathcal{A}^c} = 0, ||u||_2 = C} Q_n(\overline{\theta} + \alpha_n u, \widehat{\sigma}, \mathbf{Y}, \lambda_n) > Q_n(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}, \lambda_n),
$$

with probability at least $1 - O(n^{-\eta})$. This means that a local minima exists within the disc $\{\theta : ||\theta - \overline{\theta}||_2 \leq C\alpha_n = C\sqrt{q_n}\lambda_n\}$ with probability at least $1 - O(n^{-\eta})$.

Lemma S-4 Assuming the same conditions of Theorem 1. Then there exists a constant $C_2(\overline{\theta}) > 0$, such that for any $\eta > 0$, for sufficiently large n, the following holds with probability at least $1 - O(n^{-\eta})$: for any θ belongs to the set $S = {\theta : ||\theta - \overline{\theta}||_2 \ge \theta}$ $C_2(\overline{\theta})\sqrt{q_n}\lambda_n, \theta_{\mathcal{A}^c}=0\},\; it\; has\; ||L'_{n,\mathcal{A}}(\theta,\widehat{\sigma},\mathbf{Y})||_2>\sqrt{q_n}\lambda_n.$

proof of Lemma S-4: Let $\alpha_n = \sqrt{q_n} \lambda_n$. Any θ belongs to S can be written as: $\theta =$ $\overline{\theta} + \alpha_n u$, with $u_{\mathcal{A}^c} = 0$ and $||u||_2 \geq C_2(\overline{\theta})$. Note that

$$
L'_{n,\mathcal{A}}(\theta,\widehat{\sigma},\mathbf{Y}) = L'_{n,\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y}) + \alpha_n L''_{n,\mathcal{A}\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y})u
$$

= $L'_{n,\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y}) + \alpha_n (L''_{n,\mathcal{A}\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y}) - \overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta}))u + \alpha_n \overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta}))u.$

By the triangle inequality and Lemma S-2, for any $\eta > 0$, there exists constants $c_{0,\eta}, c_{3,\eta} > 0$, such that

$$
||L'_{n,\mathcal{A}}(\theta,\widehat{\sigma},\mathbf{Y})||_2 \ge \alpha_n ||\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta}))u||_2 - c_{0,\eta}(q_n^{1/2}n^{-1/2}\sqrt{\log n}) - c_{3,\eta}||u||_2(\alpha_n q_n n^{-1/2}\sqrt{\log n})
$$

with probability at least $1-O(n^{-\eta})$. Thus, similar as in Lemma S-3, for *n* sufficiently large, $||L'_{n,\mathcal{A}}(\theta,\widehat{\sigma},\mathbf{Y})||_2 \geq \frac{1}{2}$ $\frac{1}{2}\alpha_n||\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta}))u||_2$ with probability at least $1-O(n^{-\eta})$. By B1, $||\overline{L}_{\mathcal{A}\mathcal{A}}''(\overline{\theta}))u||_2 \geq \Lambda_{\min}^L(\overline{\theta})||u||_2$. Therefore $C_2(\overline{\theta})$ can be taken as $2/\Lambda_{\min}^L(\overline{\theta}) + \epsilon$.

The following lemma is used in proving Theorem 2.

Lemma S-5 Assuming conditions C0-C1. Let $D_{\mathcal{A}\mathcal{A}}(\bar{\theta}, Y) = L''_{1, \mathcal{A}\mathcal{A}}(\bar{\theta}, Y) - \overline{L}''_{\mathcal{A}\mathcal{A}}(\bar{\theta}).$ Then there exists a constant $K_2(\bar{\theta}) < \infty$, such that for any $(k, l) \in \mathcal{A}$, $\lambda_{\max}(\text{Var}_{\bar{\theta}}(D_{\mathcal{A}, kl}(\bar{\theta}, Y))) \leq$ $K_2(\bar{\theta})$.

proof of Lemma S-5: $\text{Var}_{\bar{\theta}}(D_{\mathcal{A},kl}(\bar{\theta}, Y)) = E_{\bar{\theta}}(L''_{1,\mathcal{A},kl}(\bar{\theta}, Y)L''_{1,\mathcal{A},kl}(\bar{\theta}, Y)^{T}) - \overline{L}''_{\mathcal{A},kl}(\bar{\theta})\overline{L}''_{\mathcal{A},kl}(\bar{\theta})^{T}.$ Thus it suffices to show that, there exists a constant $K_2(\bar{\theta}) > 0$, such that for all (k, l)

$$
\lambda_{\max}(E_{\bar{\theta}}(L''_{1,\mathcal{A},kl}(\bar{\theta},Y)L''_{1,\mathcal{A},kl}(\bar{\theta},Y)^T)) \leq K_2(\bar{\theta}).
$$

Use the same notations as in the proof of B1. Note that $L''_{1,A,kl}(\overline{\theta}, Y) = \tilde{x}^T \tilde{w}^2 \tilde{x}_{(k,l)} =$ $\tilde{w}_k \tilde{y}_l x_k + \tilde{w}_l \tilde{y}_k x_l$. Thus

$$
E_{\bar{\theta}}(L''_{1,\mathcal{A},kl}(\bar{\theta},Y)L''_{1,\mathcal{A},kl}(\bar{\theta},Y)^T) = \tilde{w}_k^2 \mathbb{E}[\tilde{y}_l^2 x_k x_k^T] + \tilde{w}_l^2 \mathbb{E}[\tilde{y}_k^2 x_l x_l^T] + \tilde{w}_k \tilde{w}_l \mathbb{E}[\tilde{y}_k \tilde{y}_l (x_k x_l^T + x_l x_k^T)],
$$

and for $a \in \mathcal{R}^{p(p-1)/2}$

$$
a^T E_{\bar{\theta}} (L''_{1, A, kl}(\bar{\theta}, Y) L''_{1, A, kl}(\bar{\theta}, Y)^T) a
$$

= $\tilde{w}_k^2 a_k^T \mathbb{E} [\tilde{y}_l^2 \tilde{y} \tilde{y}^T] a_k + \tilde{w}_l^2 a_l^T \mathbb{E} [\tilde{y}_k^2 \tilde{y} \tilde{y}^T] a_l + 2 \tilde{w}_k \tilde{w}_l a_k^T \mathbb{E} [\tilde{y}_k \tilde{y}_l \tilde{y} \tilde{y}^T] a_l.$

Since $\sum_{k=1}^p ||a_k||_2^2 = 2||a||_2^2$, and by B2: $\lambda_{\max}(\mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{y} \tilde{y}^T]) \le K_1(\bar{\theta})$ for any $1 \le i \le n$ $j \leq p$, the conclusion follows.

proof of Theorem 1: The existence of a solution of (11) follows from Lemma S-3. By the Karush-Kuhn-Tucker condition (Lemma S-1), for any solution $\hat{\theta}$ of (11), it has $||L'_{n,\mathcal{A}}(\widehat{\theta},\widehat{\sigma},\mathbf{Y})||_{\infty} \leq \lambda_n$. Thus $||L'_{n,\mathcal{A}}(\widehat{\theta},\widehat{\sigma},\mathbf{Y})||_2 \leq \sqrt{q_n}||L'_{n,\mathcal{A}}(\widehat{\theta},\widehat{\sigma},\mathbf{Y})||_{\infty} \leq \sqrt{q_n}\lambda_n$. Thus by Lemma S-4, for any $\eta > 0$, for *n* sufficiently large with probability at least $1 - O(n^{-\eta})$, all solutions of (11) are inside the disc $\{\theta : ||\theta - \overline{\theta}||_2 \leq C_2(\overline{\theta})\sqrt{q_n}\lambda_n\}.$ Since $\frac{s_n}{\sqrt{q_n}\lambda_n} \to \infty$, for sufficiently large n and $(i, j) \in \mathcal{A}$: $\overline{\theta}_{ij} \ge s_n > 2C_2(\overline{\theta})\sqrt{q_n}\lambda_n$. Thus

$$
1 - O(n^{-\eta}) \le P_{\overline{\theta}} \left(||\widehat{\theta}^{A,\lambda_n} - \overline{\theta}_A||_2 \le C_2(\overline{\theta})\sqrt{q_n}\lambda_n, \overline{\theta}_{ij} > 2C_2(\overline{\theta})\sqrt{q_n}\lambda_n, \text{ for all}(i,j) \in \mathcal{A} \right)
$$

$$
\le P_{\overline{\theta}} \left(\text{sign}(\widehat{\theta}_{ij}^{A,\lambda_n}) = \text{sign}(\overline{\theta}_{ij}), \text{ for all}(i,j) \in \mathcal{A} \right).
$$

proof of Theorem 2: For any given $\eta > 0$, let $\eta' = \eta + \kappa$. Let $\mathcal{E}_n = {\text{sign}(\widehat{\theta}^{A,\lambda_n})} =$ sign($\bar{\theta}$)}. Then by Theorem 1, $P_{\bar{\theta}}(\mathcal{E}_n) \geq 1 - O(n^{-\eta'})$ for sufficiently large n. On \mathcal{E}_n , by the Karush-Kuhn-Tucker condition and the expansion of $L'_{n,\mathcal{A}}(\widehat{\theta}^{\mathcal{A},\lambda_n},\widehat{\sigma},\mathbf{Y})$ at $\bar{\theta}$

$$
-\lambda_n \text{sign}(\bar{\theta}_{\mathcal{A}}) = L'_{n,\mathcal{A}}(\widehat{\theta}^{\mathcal{A},\lambda_n}, \widehat{\sigma}, \mathbf{Y}) = L'_{n,\mathcal{A}}(\bar{\theta}, \widehat{\sigma}, \mathbf{Y}) + L''_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \widehat{\sigma}, \mathbf{Y})\nu_n
$$

$$
= \overline{L}''_{\mathcal{A}\mathcal{A}}(\bar{\theta})\nu_n + L'_{n,\mathcal{A}}(\bar{\theta}, \widehat{\sigma}, \mathbf{Y}) + \left(L''_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \widehat{\sigma}, \mathbf{Y}) - \overline{L}''_{\mathcal{A}\mathcal{A}}(\bar{\theta})\right)\nu_n,
$$

where $\nu_n := \widehat{\theta}_{\mathcal{A}}^{\mathcal{A},\lambda_n} - \bar{\theta}_{\mathcal{A}}$. By the above expression

$$
\nu_n = -\lambda_n [\overline{L}_{\mathcal{A}\mathcal{A}}''(\overline{\theta})]^{-1} \text{sign}(\overline{\theta}_{\mathcal{A}}) - [\overline{L}_{\mathcal{A}\mathcal{A}}''(\overline{\theta})]^{-1} [L_{n,\mathcal{A}}'(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) + D_{n,\mathcal{A}\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})\nu_n], (S-7)
$$

where $D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta},\widehat{\sigma},\mathbf{Y})=L''_{n,\mathcal{A}\mathcal{A}}(\bar{\theta},\widehat{\sigma},\mathbf{Y})-\overline{L}''_{\mathcal{A}\mathcal{A}}(\bar{\theta})$. Next, fix $(i,j)\in\mathcal{A}^c$, and consider the expansion of $L'_{n,ij}(\widehat{\theta}^{\mathcal{A},\lambda_n}, \widehat{\sigma}, \mathbf{Y})$ around $\overline{\theta}$:

$$
L'_{n,ij}(\widehat{\theta}^{\mathcal{A},\lambda_n}, \widehat{\sigma}, \mathbf{Y}) = L'_{n,ij}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) + L''_{n,ij,\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})\nu_n.
$$
 (S-8)

Then plug in (S-7) into (S-8), we get

$$
L'_{n,ij}(\widehat{\theta}^{\mathcal{A},\lambda_n}, \widehat{\sigma}, \mathbf{Y}) = -\lambda_n \overline{L}''_{ij,\mathcal{A}}(\overline{\theta}) [\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1} \text{sign}(\overline{\theta}_{\mathcal{A}}) - \overline{L}''_{ij,\mathcal{A}}(\overline{\theta}) [\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1} L'_{n,\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y})
$$

+ $L'_{n,ij}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) + \left[D_{n,ij,\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) - \overline{L}''_{ij,\mathcal{A}}(\overline{\theta}) [\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1} D_{n, \mathcal{A}\mathcal{A}}(\overline{\theta}, \widehat{\sigma}, \mathbf{Y}) \right] \nu_n.$ (S-9)

By condition C2, for any $(i, j) \in \mathcal{A}^c$: $|\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}$ sign $(\overline{\theta}_{\mathcal{A}})| \leq \delta < 1$. Thus it suffices to prove that the remaining terms in (S-9) are all $o(\lambda_n)$ with probability at least $1-O(n^{-\eta'})$ (uniformly for all $(i, j) \in \mathcal{A}^c$). Then since $|\mathcal{A}^c| \leq p \sim O(n^{\kappa})$, by the union bound, the event $\max_{(i,j)\in\mathcal{A}^c} |L'_{n,ij}(\widehat{\theta}^{\mathcal{A},\lambda_n}, \widehat{\sigma}, \mathbf{Y})| < \lambda_n$ holds with probability at least $1 - O(n^{\kappa - \eta'}) = 1 - O(n^{-\eta})$, when *n* is sufficiently large.

By B1.4, for any $(i, j) \in \mathcal{A}^c$: $||\overline{L}''_{ij, \mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}||_2 \leq M(\overline{\theta})$. Therefore by Lemma S-2, for any $\eta > 0$, there exists a constant $C_{1,\eta} > 0$, such that

$$
\max_{(i,j)\in\mathcal{A}^c}|\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}L'_{n,\mathcal{A}}(\overline{\theta},\widehat{\sigma},\mathbf{Y})|\leq C_{1,\eta}(\sqrt{\frac{q_n\log n}{n}})=(o(\lambda_n))
$$

with probability at least $1-O(n^{-\eta})$. The claim follows by the **assumption** $\sqrt{\frac{q_n \log n}{n}} \sim$ $o(\lambda_n)$.

By B1.2, $||\text{Var}_{\bar{\theta}}(L'_{ij}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}))||_2 \leq M_1(\bar{\theta})$. Then similarly as in Lemma S-2, for

any $\eta > 0$, there exists a constant $C_{2,\eta} > 0$, such that $\max_{i,j} |L'_{n,ij}(\bar{\theta}, \hat{\sigma}, Y)| \leq$ $C_{2,\eta}(\sqrt{\frac{\log n}{n}})$ \mathbf{q} $\frac{g_n}{n}$ = $(o(\lambda_n))$, with probability at least 1 – $O(n^{-\eta})$. The claims follows by the assumption that $\lambda_{n} \sqrt{\frac{n}{\log n}}$ $\frac{n}{\log n} \to \infty$.

Note that by Theorem 1, for any $\eta > 0$, $||\nu_n||_2 \leq C(\bar{\theta})\sqrt{q_n}\lambda_n$ with probability at least $1 - O(n^{-\eta})$ for large enough n. Thus, similarly as in Lemma S-2, for any $\eta > 0$, there exists a constant $C_{3,\eta}$, such $|D_{n,ij,\mathcal{A}}(\bar{\theta},\hat{\sigma},\mathbf{Y})\nu_n| \leq C_{3,\eta}(\sqrt{\frac{q_n \log n}{n}})$ $\overline{}$ $\overline{\frac{\log n}{n}}\sqrt{q_n}\lambda_n) (=o(\lambda_n)),$ with probability at least $1 - O(n^{-\eta})$. The claims follows from the assumption $q_n \sim o(\sqrt{\frac{n}{\log n}})$ $\frac{n}{\log n}$.

Finally, let $b^T = |\overline{L}''_{ij,\mathcal{A}}(\overline{\theta})[\overline{L}''_{\mathcal{A}\mathcal{A}}(\overline{\theta})]^{-1}$. By Cauchy-Schwartz inequality

$$
|b^T D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \bar{\sigma}, \mathbf{Y})\nu_n| \leq ||b^T D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \bar{\sigma}, \mathbf{Y})||_2||\nu_n||_2 \leq q_n \lambda_n \max_{(k,l)\in\mathcal{A}} |b^T D_{n,\mathcal{A},kl}(\bar{\theta}, \bar{\sigma}, \mathbf{Y})|.
$$

In order to show the right hand side is $o(\lambda_n)$ with probability at least $1 - O(n^{-\eta})$, it suffices to show $\max_{(k,l)\in\mathcal{A}}|b^T D_{n,\mathcal{A},kl}(\bar{\theta},\bar{\sigma},\mathbf{Y})|=O(\sqrt{\frac{\log n}{n}})$ $\mathcal{L}_{\mathcal{A}}$ $\frac{g n}{n}$) with probability at least $1 - O(n^{-\eta})$, because of the **the assumption** $q_n \sim o(\sqrt{\frac{n}{\log n}})$ $\frac{n}{\log n}$). This is implied by

$$
E_{\bar{\theta}}(|b^T D_{\mathcal{A},kl}(\bar{\theta},\bar{\sigma},Y)|^2) \leq ||b||_2^2 \lambda_{\max} (\text{Var}_{\bar{\theta}}(D_{\mathcal{A},kl}(\bar{\theta},\bar{\sigma},Y)))
$$

being bounded, which follows immediately from B1.4 and Lemma S-5. Finally, similarly as in Lemma S-2,

$$
|b^T D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \hat{\sigma}, \mathbf{Y})\nu_n| \leq |b^T D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \bar{\sigma}, \mathbf{Y})\nu_n| + |b^T (D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \bar{\sigma}, \mathbf{Y}) - D_{n,\mathcal{A}\mathcal{A}}(\bar{\theta}, \hat{\sigma}, \mathbf{Y}))\nu_n|,
$$

where by B3, the second term on the right hand side is bounded by $O_p($ \mathcal{L} $\log n$ $\frac{\log n}{n}$)|| $b||_2||\nu_n||_2.$ Note that $||b||_2 \sim \sqrt{q_n}$, thus the second term is also of order $o(\lambda_n)$ by the assumption $q_n \sim o(\sqrt{\frac{n}{\log n}})$ $\frac{n}{\log n}$). This completes the proof.

proof of Theorem 3: By Theorems 1 and 2 and the Karush-Kuhn-Tucker condition,

for any $\eta > 0$, with probability at least $1 - O(n^{-\eta})$, a solution of the restricted problem is also a solution of the original problem. On the other hand, by Theorem 2 and the Karush-Kuhn-Tucker condition, with high probability, any solution of the original problem is a solution of the restricted problem. Therefore, by Theorem 1, the conclusion follows.

Part III

In this section, we provide details for the implementation of space which takes advantage of the sparse structure of X . Denote the target loss function as

$$
f(\theta) = \frac{1}{2} \left\| \mathcal{Y} - \mathcal{X}\theta \right\|^2 + \lambda_1 \sum_{i < j} |\rho^{ij}|. \tag{S-10}
$$

Our goal is to find $\widehat{\theta} = \operatorname{argmin}_{\theta} f(\theta)$ for a given λ_1 . We will employ active-shooting algorithm (Section 2.3) to solve this optimization problem.

Without loss of generality, we assume mean $(\mathbf{Y}_i) = 1/n \sum_{k=1}^n y_i^k = 0$ for $i =$ $1, \ldots, p$. Denote $\xi_i = \mathbf{Y}_i^T \mathbf{Y}_i$. We have

$$
\mathcal{X}_{(i,j)}^T \mathcal{X}_{(i,j)} = \xi_j \frac{\sigma^{jj}}{\sigma^{ii}} + \xi_i \frac{\sigma^{ii}}{\sigma^{jj}};
$$

$$
\mathcal{Y}^T \mathcal{X}_{(i,j)} = \sqrt{\frac{\sigma^{jj}}{\sigma^{ii}}} \mathbf{Y}_i^T \mathbf{Y}_j + \sqrt{\frac{\sigma^{ii}}{\sigma^{jj}}} \mathbf{Y}_j^T \mathbf{Y}_i.
$$

Denote $\rho^{ij} = \rho_{(i,j)}$. We now present details of the initialization step and the updating steps in the active-shooting algorithm.

1. Initialization

Let

$$
\rho_{(i,j)}^{(0)} = \frac{(\mathbf{y}^T \mathcal{X}_{(i,j)} | - \lambda_1) + \text{sign}(\mathbf{y}^T \mathcal{X}_{(i,j)})}{\mathcal{X}_{(i,j)}^T \mathbf{Y}_{(i,j)} \mathcal{X}_{(i,j)}}
$$
\n
$$
= \frac{(\sqrt{\frac{\sigma^{jj}}{\sigma^{ii}}} \mathbf{Y}_i^T \mathbf{Y}_j + \sqrt{\frac{\sigma^{ii}}{\sigma^{jj}}} \mathbf{Y}_j^T \mathbf{Y}_i | - \lambda_1)}{\xi_j \frac{\sigma^{jj}}{\sigma^{ii}} + \xi_i \frac{\sigma^{ii}}{\sigma^{jj}}}
$$
\n(S-11)

For $j = 1, \ldots, p$, compute

$$
\widehat{\mathbf{Y}}_{j}^{(0)} = \left(\sqrt{\frac{\sigma^{11}}{\sigma^{jj}}}\mathbf{Y}_{1}, \dots, \sqrt{\frac{\sigma^{pp}}{\sigma^{jj}}}\mathbf{Y}_{p}\right) \cdot \begin{pmatrix} \rho_{(1,j)}^{(0)} \\ \vdots \\ \rho_{(p,j)}^{(0)} \end{pmatrix}, \tag{S-12}
$$

and

$$
E^{(0)} = \mathcal{Y} - \widehat{\mathcal{Y}}^{(0)} = \left((E_1^{(0)})^T, ..., (E_p^{(0)})^T \right), \tag{S-13}
$$

where $E_j^{(0)} = \mathbf{Y}_j - \widehat{\mathbf{Y}}_j^{(0)}$, for $1 \le j \le p$.

2. Update
$$
\rho_{(i,j)}^{(0)} \longrightarrow \rho_{(i,j)}^{(1)}
$$

Let

$$
A_{(i,j)} = (F^{(0)})^T \cdot \sqrt{\sigma^{ii}} \mathbf{V}.
$$

$$
A_{(i,j)} = (E_j^{(0)})^T \cdot \sqrt{\frac{\sigma^{ii}}{\sigma^{jj}} \mathbf{Y}_i},\tag{S-14}
$$

$$
A_{(j,i)} = (E_i^{(0)})^T \cdot \sqrt{\frac{\sigma^{jj}}{\sigma^{ii}}} \mathbf{Y}_j.
$$
 (S-15)

We have

$$
(E^{(0)})^T \mathcal{X}_{(i,j)} = (E_i^{(0)})^T \cdot \sqrt{\frac{\sigma^{jj}}{\sigma^{ii}}} \mathbf{Y}_j + (E_j^{(0)})^T \cdot \sqrt{\frac{\sigma^{ii}}{\sigma^{jj}}} \mathbf{Y}_i
$$

= $A_{(j,i)} + A_{(i,j)}$. (S-16)

It follows

$$
\rho_{(i,j)}^{(1)} = \text{sign}\left(\frac{(E^{(0)})^T \mathcal{X}_{(i,j)}}{\mathcal{X}_{(i,j)}^T \mathcal{X}_{(i,j)}} + \rho_{(i,j)}^{(0)}\right) \left(\left|\frac{(E^{(0)})^T \mathcal{X}_{(i,j)}}{\mathcal{X}_{(i,j)}^T \mathcal{X}_{(i,j)}} + \rho_{(i,j)}^{(0)}\right| - \frac{\lambda_1}{\mathcal{X}_{(i,j)}^T \mathcal{X}_{(i,j)}}\right) + \text{sign}\left(\frac{A_{(j,i)} + A_{(i,j)}}{\xi_j \frac{\sigma^{jj}}{\sigma^{ii}} + \xi_i \frac{\sigma^{ii}}{\sigma^{jj}}} + \rho_{(i,j)}^{(0)}\right) \left(\left|\frac{A_{(j,i)} + A_{(i,j)}}{\xi_j \frac{\sigma^{jj}}{\sigma^{ii}} + \xi_i \frac{\sigma^{ii}}{\sigma^{jj}}} + \rho_{(i,j)}^{(0)}\right| - \frac{\lambda_1}{\xi_j \frac{\sigma^{jj}}{\sigma^{ii}} + \xi_i \frac{\sigma^{ii}}{\sigma^{jj}}}\right)_{+} \tag{S-17}
$$

3. Update $\rho^{(t)} \longrightarrow \rho^{(t+1)}$

From the previous iteration, we have

- $E^{(t-1)}$: residual in the previous iteration $(np \times 1 \text{ vector})$.
- (i_0, j_0) : index of coefficient that is updated in the previous iteration.

•
$$
\rho_{(i,j)}^{(t)} = \begin{cases} \rho_{(i,j)}^{(t-1)} & \text{if } (i,j) \neq (i_0, j_0), \text{ nor } (j_0, i_0) \\ \rho_{(i,j)}^{(t-1)} - \Delta & \text{if } (i,j) = (i_0, j_0), \text{ or } (j_0, i_0) \end{cases}
$$

Then,

$$
E_k^{(t)} = E_k^{(t-1)} \text{ for } k \neq i_0, j_0; \nE_{j_0}^{(t)} = E_{j_0}^{(t-1)} + \hat{Y}_{j_0}^{(t-1)} - \hat{Y}_{j_0}^{(t)} \n= E_{j_0}^{(t-1)} + \sum_{i=1}^p \sqrt{\frac{\sigma^{ii}}{\sigma^{j_0 j_0}}} Y_i (\rho_{(i,j_0)}^{(t-1)} - \rho_{(i,j_0)}^{(t)}) \n= E_{j_0}^{(t-1)} + \sqrt{\frac{\sigma^{i_0 i_0}}{\sigma^{j_0 j_0}}} Y_{i_0} \cdot \Delta; \nE_{i_0}^{(t)} = E_{i_0}^{(t-1)} + \sqrt{\frac{\sigma^{j_0 j_0}}{\sigma^{j_0 j_0}}} Y_{j_0} \cdot \Delta.
$$
\n(S-18)

Suppose the index of the coefficient we would like to update in this iteration is (i_1, j_1) , then let r

$$
A_{(i_1,j_1)} = (E_{j_1}^{(t)})^T \cdot \sqrt{\frac{\sigma^{i_1 i_1}}{\sigma^{j_1 j_1}}} \mathbf{Y}_{i_1},
$$

$$
A_{(j_1,i_1)} = (E_{i_1}^{(t)})^T \cdot \sqrt{\frac{\sigma^{j_1 j_1}}{\sigma^{i_1 i_1}}} \mathbf{Y}_{j_1}.
$$

We have

$$
\rho_{(i,j)}^{(t+1)} = \operatorname{sign}\left(\frac{A_{(j_1,i_1)} + A_{(i_1,j_1)}}{\xi_j \frac{\sigma^{j_1 j_1}}{\sigma^{j_1 i_1}} + \xi_{i_1} \frac{\sigma^{i_1 i_1}}{\sigma^{j_1 j_1}}} + \rho_{(i_1,j_1)}^{(t)}\right) \times \left(\left|\frac{A_{(j_1,i_1)} + A_{(i_1,j_1)}}{\xi_j \frac{\sigma^{j_1 j_1}}{\sigma^{j_1 i_1}} + \xi_{i_1} \frac{\sigma^{i_1 i_1}}{\sigma^{j_1 j_1}}} + \rho_{(i_1,j_1)}^{(t)}\right| - \frac{\lambda_1}{\xi_j \frac{\sigma^{j_1 j_1}}{\sigma^{i_1}} + \xi_i \frac{\sigma^{i_1 i_1}}{\sigma^{j_1 j_1}}} \right)_{+} \tag{S-19}
$$

Using the above steps 1–3, we have implemented the active-shooting algorithm in c, and the corresponding R package space to fit the space model is available on cran.