
Partial Correlation Estimation by Joint Sparse

Regression Models — Supplemental Material

Part I

In this section, we list properties of the loss function:

L(θ, σ, Y ) =
1

2

p∑
i=1

wi(yi −
∑

j 6=i

√
σjj/σiiρijyj)

2 =
1

2

p∑
i=1

w̃i(ỹi −
∑

j 6=i

ρij ỹj)
2, (S-1)

where Y = (y1, · · · , yp)
T and ỹi =

√
σiiyi,w̃i = wi/σ

ii. These properties are used for

the proof of the main results. Note: throughout the supplementary material, when

evaluation is taken place at σ = σ̄, sometimes we omit the argument σ in the notation

for simplicity. Also we use Y = (y1, · · · , yp)
T to denote a generic sample and use Y

to denote the p× n data matrix consisting of n i.i.d. such samples: Y1, · · · ,Yn, and

define

Ln(θ, σ,Y) :=
1

n

n∑

k=1

L(θ, σ,Yk). (S-2)

A1: for all θ, σ and Y ∈ Rp, L(θ, σ, Y ) ≥ 0.

A2: for any Y ∈ Rp and any σ > 0, L(·, σ, Y ) is convex in θ; and with probability

one, L(·, σ, Y ) is strictly convex.
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A3: for 1 ≤ i < j ≤ p

L
′
ij(θ̄, σ̄) := E(θ̄,σ̄)

(
∂L(θ, σ, Y )

∂ρij

∣∣∣
θ=θ̄,σ=σ̄

)
= 0.

A4: for 1 ≤ i < j ≤ p and 1 ≤ k < l ≤ p,

L
′′

ij,kl(θ, σ) := E(θ,σ)

(
∂2L(θ, σ, Y )

∂ρijρkl

)
=

∂

∂ρkl

[
E(θ,σ)

(
∂L(θ, σ, Y )

∂ρij

)]
,

and L
′′
(θ̄, σ̄) is positive semi-definite.

If assuming C0-C1, then we have

B0 : There exist constants 0 < σ̄0 ≤ σ̄∞ < ∞ such that: 0 < σ̄0 ≤ min{σ̄ii : 1 ≤
i ≤ p} ≤ max{σ̄ii : 1 ≤ i ≤ p} ≤ σ̄∞.

B1 : There exist constants 0 < ΛL
min(θ̄) ≤ ΛL

max(θ̄) < ∞, such that

0 < ΛL
min(θ̄) ≤ λmin(L

′′
(θ̄)) ≤ λmax(L

′′
(θ̄)) ≤ ΛL

max(θ̄) < ∞

B1.1 : There exists a constant K(θ̄) < ∞, such that for all 1 ≤ i < j ≤ p, L
′′
ij,ij(θ̄) ≤

K(θ̄).

B1.2 : There exist constants M1(θ̄), M2(θ̄) < ∞, such that for any 1 ≤ i < j ≤ p

Var(θ̄,σ̄)(L
′
ij(θ̄, σ̄, Y )) ≤ M1(θ̄), Var(θ̄,σ̄)(L

′′
ij,ij(θ̄, σ̄, Y )) ≤ M2(θ̄).

B1.3 : There exists a constant 0 < g(θ̄) < ∞, such that for all (i, j) ∈ A

L
′′
ij,ij(θ̄, σ̄)− L

′′
ij,Aij

(θ̄, σ̄)
[
L
′′
Aij ,Aij

(θ̄, σ̄)
]−1

L
′′
Aij ,ij(θ̄, σ̄) ≥ g(θ̄),
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where Aij = A/{(i, j)}.

B1.4 : There exists a constant M(θ̄) < ∞, such that for any (i, j) ∈ Ac

||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||2 ≤ M(θ̄).

B2 There exists a constant K1(θ̄) < ∞, such that for any 1 ≤ i ≤ j ≤ p,

||Eθ̄(ỹiỹj ỹỹT )|| ≤ K1(θ̄), where ỹ = (ỹ1, · · · , ỹp)
T .

B3 If we further assume that condition D holds for σ̂ and qn ∼ o( n
log n

), we have: for

any η > 0, there exist constants C1,η, C2,η > 0, such that for sufficiently large n

max
1≤i<k≤p

∣∣L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)
∣∣ ≤ C1,η(

√
log n

n
),

max
1≤i<k≤p,1≤t<s≤p

∣∣L′′n,ik,ts(θ̄, σ̄,Y)− L′′n,ik,ts(θ̄, σ̂,Y)
∣∣ ≤ C2,η(

√
log n

n
),

hold with probability at least 1−O(n−η).

B0 follows from C1 immediately. B1.1–B1.4 are direct consequences of B1. B2

follows from B1 and Gaussianity. B3 follows from conditions C0-C1 and D.

proof of A1 : obvious.

proof of A2 : obvious.

proof of A3 : denote the residual for the ith term by

ei(θ, σ) = ỹi −
∑

j 6=i

ρij ỹj.
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Then evaluated at the true parameter values (θ̄, σ̄), we have ei(θ̄, σ̄) uncorrelated with

ỹ(−i) and E(θ̄,σ̄)(ei(θ̄, σ̄)) = 0. It is easy to show

∂L(θ, σ, Y )

∂ρij
= −w̃iei(θ, σ)ỹj − w̃jej(θ, σ)ỹi.

This proves A3.

proof of A4 : see the proof of B1.

proof of B1 : Denote ỹ = (ỹ1, · · · , ỹp)
T , and x̃ = (x̃(1,2), x̃(1,3), · · · , x̃(p−1,p)) with

x̃(i,j) = (0, · · · , 0, ỹj, · · · , ỹi, 0, · · · , 0)T . Then the loss function (S-1) can be written

as L(θ, σ, Y ) = 1
2
||w̃(ỹ − x̃θ)||22, with w̃ = diag(

√
w̃1, · · · ,

√
w̃p). Thus L

′′
(θ, σ) =

E(θ,σ)

[
x̃T w̃2x̃

]
(this proves A4). Let d = p(p − 1)/2, then x̃ is a p by d matrix.

Denote its ith row by xT
i (1 ≤ i ≤ p). Then for any a ∈ Rd, with ||a||2 = 1, we have

aT L
′′
(θ̄)a = Eθ̄(a

T x̃T w̃2x̃a) = Eθ̄

(
p∑

i=1

w̃i(x
T
i a)2

)
.

Index the elements of a by a = (a(1,2), a(1,3), · · · , a(p−1,p))
T , and for each 1 ≤ i ≤ p,

define ai ∈ Rp by ai = (a(1,i), · · · , a(i−1,i), 0, a(i,i+1), · · · , a(i,p))
T . Then by definition

xT
i a = ỹT ai. Also note that

∑p
i=1 ||ai||22 = 2||a||22 = 2. This is because, for i 6= j, the

jth entry of ai appears exactly twice in a. Therefore

aT L
′′
(θ̄)a =

p∑
i=1

w̃iEθ̄

(
aT

i ỹỹT ai

)
=

p∑
i=1

w̃ia
T
i Σ̃ai ≥

p∑
i=1

w̃iλmin(Σ̃)||ai||22 ≥ 2w̃0λmin(Σ̃),

where Σ̃ = Var(ỹ) and w̃0 = w0/σ̄∞. Similarly aT L
′′
(θ̄)a ≤ 2w̃∞λmax(Σ̃), with

w̃∞ = w∞/σ̄0. By C1, Σ̃ has bounded eigenvalues, thus B1 is proved.

proof of B1.1: obvious.
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proof of B1.2: note that Var(θ̄,σ̄)(ei(θ̄, σ̄)) = 1/σ̄ii and Var(θ̄,σ̄)(ỹi) = σ̄ii. Then for any

1 ≤ i < j ≤ p, by Cauchy-Schwartz

Var(θ̄,σ̄)(L
′
n,ij(θ̄, σ̄, Y )) = Var(θ̄,σ̄)(−w̃iei(θ̄, σ̄)ỹj − w̃jej(θ̄, σ̄)ỹi)

≤ E(θ̄,σ̄)(w̃
2
i e

2
i (θ̄, σ̄)ỹ2

j ) + E(θ̄,σ̄)(w̃
2
je

2
j(θ̄, σ̄)ỹ2

i )

+ 2
√

w̃2
i w̃

2
jE(θ̄,σ̄)(e

2
i (θ̄, σ̄)ỹ2

j )E(θ̄,σ̄)(e
2
j(θ̄, σ̄)ỹ2

i )

=
w2

i σ̄
jj

(σ̄ii)3
+

w2
j σ̄

ii

(σ̄jj)3
+ 2

wiwj

σ̄iiσ̄jj
.

The right hand side is bounded because of C0 and B0.

proof of B1.3: for (i, j) ∈ A, denote

D := L
′′
ij,ij(θ̄, σ̄)− L

′′
ij,Aij

(θ̄, σ̄)
[
L
′′
Aij ,Aij

(θ̄, σ̄)
]−1

L
′′
Aij ,ij(θ̄, σ̄).

Then D−1 is the (ij, ij) entry in
[
L
′′
A,A(θ̄)

]−1

. Thus by B1, D−1 is positive and

bounded from above, so D is bounded away from zero.

proof of B1.4: note that ||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||22 ≤ ||L′′ij,A(θ̄)||22λmax([L

′′
AA(θ̄)]−2). By

B1, λmax([L
′′
AA(θ̄)]−2) is bounded from above, thus it suffices to show that ||L′′ij,A(θ̄)||22

is bounded. Since (i, j) ∈ Ac, defineA+ := (i, j)∪A. Then L
′′
ij,ij(θ̄)−L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄)

is the inverse of the (1, 1) entry of L
′′
A+,A+(θ̄). Thus by B1, it is bounded away from

zero. Therefore by B1.1, L
′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄) is bounded from above. Since

L
′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄) ≥ ||L′′ij,A(θ̄)||22λmin([L

′′
AA(θ̄)]−1), and by B1, λmin([L

′′
AA(θ̄)]−1)

is bounded away from zero, we have ||L′′ij,A(θ̄)||22 bounded from above.

proof of B2 : the (k, l)-th entry of the matrix ỹiỹj ỹỹT is ỹiỹj ỹkỹl, for 1 ≤ k < l ≤ p.

Thus, the (k, l)-th entry of the matrix E[ỹiỹj ỹỹT ] is E[ỹiỹj ỹkỹl] = σ̃ijσ̃kl+σ̃ikσ̃jl+σ̃ilσ̃jk.
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Thus, we can write

E[ỹiỹj ỹỹT ] = σ̃ijΣ̃ + σ̃i·σ̃T
j· + σ̃j·σ̃T

i· , (S-3)

where σ̃i· is the p× 1 vector (σ̃ik)
p
k=1. From (S-3), we have

‖ E[ỹiỹj ỹỹT ] ‖ ≤ |σ̃ij| ‖ Σ̃ ‖ +2 ‖ σ̃i· ‖2‖ σ̃j· ‖2, (S-4)

where || · || is the operator norm. By C0-C1, the first term on the right hand side is

uniformly bounded. Now, we also have,

σ̃ii − σ̃T
i· Σ̃

−1
(−i)σ̃i· > 0 (S-5)

where Σ̃(−i) is the submatrix of Σ̃ removing i-th row and column. From this, it follows

that

‖ σ̃i· ‖2 = ‖ Σ̃
1/2
(−i)Σ̃

−1/2
(−i) σ̃i· ‖2

≤ ‖ Σ̃
1/2
(−i) ‖ ‖ Σ̃

−1/2
(−i) σ̃i· ‖2

≤
√
‖ Σ̃ ‖

√
σ̃ii, (S-6)

where the last inequality follows from (S-5), and the fact that Σ̃(−i) is a principal

submatrix of Σ̃. Thus the result follows by applying (S-6) to bound the last term in

(S-4).

proof of B3 :

L′n,ik(θ̄, σ,Y) =
1

n

n∑

l=1

−wi

(
yl

i −
∑

j 6=i

√
σjj

σii
ρijyl

j

)√
σkk

σii
yl

k

−wk

(
yl

k −
∑

j 6=k

√
σjj

σkk
ρkjyl

j

) √
σii

σkk
yl

i.
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Thus,

L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)

= −wi

[
yiyk

(√
σkk

σii
−

√
σ̂kk

σ̂ii

)
−

∑

j 6=i

yjykρ
ij

(√
σjjσkk

σii
−
√

σ̂jjσ̂kk

σ̂ii

)]

−wk

[
yiyk

(√
σii

σkk
−

√
σ̂ii

σ̂kk

)
−

∑

j 6=k

yjyiρ
kj

(√
σjjσii

σkk
−
√

σ̂jjσ̂ii

σ̂kk

)]
,

where for 1 ≤ i, j ≤ p, yiyj := 1
n

∑n
l=1 yl

iy
l
j. Let σij denote the (i, j)-th element of the

true covariance matrix Σ. By C1, {σij : 1 ≤ i, j ≤ p} are bounded from below and

above, thus

max
1≤i,j≤p

|yiyj − σij| = Op(

√
log n

n
).

(Throughout the proof, Op(·) means that for any η > 0, for sufficiently large n, the left

hand side is bounded by the order within Op(·) with probability at least 1−O(n−η).)

Therefore

∑

j 6=i

|yjyk−σjk||ρij| ≤ (
∑

j 6=i

|ρij|) max
1≤i,j≤p

|yiyj−σij| ≤ (

√
qn

∑

j 6=i

(ρij)2) max
1≤i,j≤p

|yiyj−σij| = o(1),

where the last inequality is by Cauchy-Schwartz and the fact that, for fixed i, there

are at most qn non-zero ρij. The last equality is due to the assumption qn ∼ o( n
log n

),

and the fact that
∑

j 6=i(ρ
ij)2 is bounded which is in turn implied by condition C1.

Therefore,

|L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)|

≤ (wi|σik|+ wk|σik|) max
i,k

∣∣∣∣∣

√
σkk

σii
−

√
σ̂kk

σ̂ii

∣∣∣∣∣ + (wiτki + wkτik) max
i,j,k

∣∣∣∣∣

√
σjjσkk

σii
−
√

σ̂jjσ̂kk

σ̂ii

∣∣∣∣∣ + Rn,
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where τki :=
∑

j 6=i |σjkρ
ij|, and the reminder term Rn is of smaller order of the leading

terms. Since C1 implies B0, thus together with condition D, we have

max
1≤i,k≤p

∣∣∣∣∣

√
σii

σkk
−

√
σ̂ii

σ̂kk

∣∣∣∣∣ = Op(

√
log n

n
),

max
1≤i,j,k≤p

∣∣∣∣∣

√
σjjσii

σkk
−
√

σ̂jjσ̂ii

σ̂kk

∣∣∣∣∣ = Op(

√
log n

n
).

Moreover, by Cauchy-Schwartz

τki ≤
√∑

j

(ρij)2

√∑
j

(σjk)2,

and the right hand side is uniformly bounded (over (i, k)) due to condition C1. Thus

by C0,C1 and D, we have showed

max
i,k

|L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)| = Op(

√
log n

n
).

Observe that, for 1 ≤ i < k ≤ p, 1 ≤ t < s ≤ p

L′′n,ik,ts =





1
n

∑n
l=1 wi

σkk

σii yl
k + wk

σii

σkk yl
i , if (i, k) = (t, s)

1
n

∑n
l=1 wi

√
σkkσss

σii yl
sy

l
k, if i = t, k 6= s

1
n

∑n
l=1 wk

√
σttσii

σkk yl
ty

l
i, if i 6= t, k = s

0 if otherwise.

Thus by similar arguments as in the above, it is easy to proof the claim.

Part II

In this section, we proof the main results (Theorems 1–3). We first give a few lemmas.
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Lemma S-1 (Karush-Kuhn-Tucker condition) θ̂ is a solution of the optimization

problem

arg min
θ:θSc=0

Ln(θ, σ̂,Y) + λn||θ||1,

where S is a subset of T := {(i, j) : 1 ≤ i < j ≤ p}, if and only if

L′n,ij(θ̂, σ̂,Y) = λnsign(θ̂ij), if θ̂ij 6= 0

|L′n,ij(θ̂, σ̂,Y)| ≤ λn, if θ̂ij = 0,

for (i, j) ∈ S. Moreover, if the solution is not unique, |L′n,ij(θ̃, σ̂,Y)| < λn for some

specific solution θ̃ and L′n,ij(θ, σ̂,Y) being continuous in θ imply that θ̂ij = 0 for

all solutions θ̂. (Note that optimization problem (9) corresponds to S = T and the

restricted optimization problem (11) corresponds to S = A.)

Lemma S-2 For the loss function defined by (S-2), if conditions C0-C1 hold and

condition D holds for σ̂ and if qn ∼ o( n
log n

), then for any η > 0, there exist constants

c0,η, c1,η, c2,η, c3,η > 0, such that for any u ∈ Rqn the following hold with probability as

least 1−O(n−η) for sufficiently large n:

||L′n,A(θ, σ̂,Y)||2 ≤ c0,η

√
qn log n

n

|uT L′n,A(θ, σ̂,Y)| ≤ c1,η||u||2(
√

qn log n

n
)

|uT L′′n,AA(θ, σ̂,Y)u− uT L
′′
AA(θ)u| ≤ c2,η||u||22(qn

√
log n

n
)

||L′′n,AA(θ, σ̂,Y)u− L
′′
AA(θ)u||2 ≤ c3,η||u||2(qn

√
log n

n
)

proof of Lemma S-2: If we replace σ̂ by σ̄ on the left hand side, then the above

results follow easily from Cauchy-Schwartz and Bernstein’s inequalities by using B1.2.
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Further observe that,

||L′n,A(θ, σ̂,Y)||2 ≤ ||L′n,A(θ, σ̄,Y)||2 + ||L′n,A(θ, σ̄,Y)− L′n,A(θ, σ̂,Y)||2,

and the second term on the right hand side has order
√

qn log n
n

, since there are qn

terms and by B3, they are uniformly bounded by
√

log n
n

. The rest of the lemma can

be proved by similar arguments.

The following two lemmas are used for proving Theorem 1.

Lemma S-3 Assuming the same conditions of Theorem 1. Then there exists a con-

stant C1(θ) > 0, such that for any η > 0, the probability that there exists a local

minima of the restricted problem (11) within the disc:

{θ : ||θ − θ||2 ≤ C1(θ)
√

qnλn}.

is at least 1−O(n−η) for sufficiently large n.

proof of Lemma S-3: Let αn =
√

qnλn, and Qn(θ, σ̂,Y, λn) = Ln(θ, σ̂,Y) + λn||θ||1.
Then for any given constant C > 0 and any vector u ∈ Rp such that uAc = 0 and

||u||2 = C, by the triangle inequality and Cauchy-Schwartz inequality, we have

||θ||1 − ||θ + αnu||1 ≤ αn||u||1 ≤ Cαn
√

qn.

Thus

Qn(θ + αnu, σ̂,Y, λn)−Qn(θ, σ̂,Y, λn)

= {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − λn{||θ||1 − ||θ + αnu||1}

≥ {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − Cαn
√

qnλn

= {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − Cα2
n.
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Thus for any η > 0, there exists c1,η, c2,η > 0, such that, with probability at least

1−O(n−η)

Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y) = αnu
T
AL′n,A(θ, σ̂,Y) +

1

2
α2

nuT
AL′′n,AA(θ, σ̂,Y)uA

=
1

2
α2

nuT
AL

′′
AA(θ)uA + αnu

T
AL′n,A(θ, σ̂,Y) +

1

2
α2

nuT
A

(
L′′n,AA(θ, σ̂,Y)− L

′′
AA(θ)

)
uA

≥ 1

2
α2

nuT
AL

′′
AA(θ)uA − c1,η(αnq1/2

n n−1/2
√

log n)− c2,η(α
2
nqnn

−1/2
√

log n).

In the above, the first equation is because the loss function L(θ, σ, Y ) is quadratic

in θ and uAc = 0. The inequality is due to Lemma S-2 and the union bound. By

the assumption λn

√
n

log n
→∞, we have αnq

1/2
n n−1/2

√
log n = o(αn

√
qnλn) = o(α2

n).

Also by the assumption that qn ∼ o(
√

n/ log n), we have α2
nqnn

−1/2
√

log n = o(α2
n).

Thus, with n sufficiently large

Qn(θ + αnu, σ̂,Y, λn)−Qn(θ, σ̂,Y, λn) ≥ 1

4
α2

nuT
AL

′′
AA(θ)uA − Cα2

n

with probability at least 1 − O(n−η). By B1, uT
AL

′′
AA(θ)uA ≥ ΛL

min(θ̄)||uA||22 =

ΛL
min(θ̄)C

2. Thus, if we choose C = 4/ΛL
min(θ̄) + ε, then for any η > 0, for sufficiently

large n, the following holds

inf
u:uAc=0,||u||2=C

Qn(θ + αnu, σ̂,Y, λn) > Qn(θ, σ̂,Y, λn),

with probability at least 1 − O(n−η). This means that a local minima exists within

the disc {θ : ||θ − θ||2 ≤ Cαn = C
√

qnλn} with probability at least 1−O(n−η).

Lemma S-4 Assuming the same conditions of Theorem 1. Then there exists a con-

stant C2(θ) > 0, such that for any η > 0, for sufficiently large n, the following holds

with probability at least 1−O(n−η): for any θ belongs to the set S = {θ : ||θ− θ||2 ≥
C2(θ)

√
qnλn, θAc = 0}, it has ||L′n,A(θ, σ̂,Y)||2 >

√
qnλn.
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proof of Lemma S-4: Let αn =
√

qnλn. Any θ belongs to S can be written as: θ =

θ + αnu, with uAc = 0 and ||u||2 ≥ C2(θ̄). Note that

L′n,A(θ, σ̂,Y) = L′n,A(θ, σ̂,Y) + αnL
′′
n,AA(θ, σ̂,Y)u

= L′n,A(θ, σ̂,Y) + αn(L′′n,AA(θ, σ̂,Y)− L
′′
AA(θ))u + αnL

′′
AA(θ))u.

By the triangle inequality and Lemma S-2, for any η > 0, there exists constants

c0,η, c3,η > 0, such that

||L′n,A(θ, σ̂,Y)||2 ≥ αn||L′′AA(θ))u||2−c0,η(q
1/2
n n−1/2

√
log n)−c3,η||u||2(αnqnn

−1/2
√

log n)

with probability at least 1−O(n−η). Thus, similar as in Lemma S-3, for n sufficiently

large, ||L′n,A(θ, σ̂,Y)||2 ≥ 1
2
αn||L′′AA(θ))u||2 with probability at least 1 − O(n−η). By

B1, ||L′′AA(θ))u||2 ≥ ΛL
min(θ̄)||u||2. Therefore C2(θ) can be taken as 2/ΛL

min(θ̄) + ε.

The following lemma is used in proving Theorem 2.

Lemma S-5 Assuming conditions C0-C1. Let DAA(θ̄, Y ) = L′′1,AA(θ̄, Y ) − L
′′
AA(θ̄).

Then there exists a constant K2(θ̄) < ∞, such that for any (k, l) ∈ A, λmax(Varθ̄(DA,kl(θ̄, Y ))) ≤
K2(θ̄).

proof of Lemma S-5: Varθ̄(DA,kl(θ̄, Y )) = Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )−L

′′
A,kl(θ̄)L

′′
A,kl(θ̄)

T .

Thus it suffices to show that, there exists a constant K2(θ̄) > 0, such that for all (k, l)

λmax(Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )) ≤ K2(θ̄).

Use the same notations as in the proof of B1. Note that L′′1,A,kl(θ, Y ) = x̃T w̃2x̃(k,l) =

w̃kỹlxk + w̃lỹkxl. Thus

Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T ) = w̃2

kE[ỹ2
l xkx

T
k ] + w̃2

l E[ỹ2
kxlx

T
l ] + w̃kw̃lE[ỹkỹl(xkx

T
l + xlx

T
k )],

12



and for a ∈ Rp(p−1)/2

aT Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )a

= w̃2
ka

T
kE[ỹ2

l ỹỹT ]ak + w̃2
l a

T
l E[ỹ2

kỹỹT ]al + 2w̃kw̃la
T
kE[ỹkỹlỹỹT ]al.

Since
∑p

k=1 ||ak||22 = 2||a||22, and by B2: λmax(E[ỹiỹj ỹỹT ]) ≤ K1(θ̄) for any 1 ≤ i ≤
j ≤ p, the conclusion follows.

proof of Theorem 1: The existence of a solution of (11) follows from Lemma S-3. By

the Karush-Kuhn-Tucker condition (Lemma S-1), for any solution θ̂ of (11), it has

||L′n,A(θ̂, σ̂,Y)||∞ ≤ λn. Thus ||L′n,A(θ̂, σ̂,Y)||2 ≤ √
qn||L′n,A(θ̂, σ̂,Y)||∞ ≤ √

qnλn.

Thus by Lemma S-4, for any η > 0, for n sufficiently large with probability at least

1 − O(n−η), all solutions of (11) are inside the disc {θ : ||θ − θ||2 ≤ C2(θ)
√

qnλn}.
Since sn√

qnλn
→ ∞, for sufficiently large n and (i, j) ∈ A: θij ≥ sn > 2C2(θ)

√
qnλn.

Thus

1−O(n−η) ≤ Pθ

(
||θ̂A,λn − θA||2 ≤ C2(θ)

√
qnλn, θ̄ij > 2C2(θ)

√
qnλn, for all(i, j) ∈ A

)

≤ Pθ̄

(
sign(θ̂A,λn

ij ) = sign(θij), for all(i, j) ∈ A
)

.

proof of Theorem 2: For any given η > 0, let η′ = η + κ. Let En = {sign(θ̂A,λn) =

sign(θ̄)}. Then by Theorem 1, Pθ̄(En) ≥ 1 − O(n−η′) for sufficiently large n. On En,

by the Karush-Kuhn-Tucker condition and the expansion of L′n,A(θ̂A,λn , σ̂,Y) at θ̄

−λnsign(θ̄A) = L′n,A(θ̂A,λn , σ̂,Y) = L′n,A(θ̄, σ̂,Y) + L′′n,AA(θ̄, σ̂,Y)νn

= L
′′
AA(θ̄)νn + L′n,A(θ̄, σ̂,Y) +

(
L′′n,AA(θ̄, σ̂,Y)− L

′′
AA(θ̄)

)
νn,

13



where νn := θ̂A,λn

A − θ̄A. By the above expression

νn = −λn[L
′′
AA(θ̄)]−1sign(θ̄A)− [L

′′
AA(θ̄)]−1[L′n,A(θ̄, σ̂,Y) + Dn,AA(θ̄, σ̂,Y)νn], (S-7)

where Dn,AA(θ̄, σ̂,Y) = L′′n,AA(θ̄, σ̂,Y) − L
′′
AA(θ̄). Next, fix (i, j) ∈ Ac, and consider

the expansion of L′n,ij(θ̂
A,λn , σ̂,Y) around θ̄:

L′n,ij(θ̂
A,λn , σ̂,Y) = L′n,ij(θ̄, σ̂,Y) + L′′n,ij,A(θ̄, σ̂,Y)νn. (S-8)

Then plug in (S-7) into (S-8), we get

L′n,ij(θ̂
A,λn , σ̂,Y) = −λnL

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1sign(θ̄A)− L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L′n,A(θ̄, σ̂,Y)

+ L′n,ij(θ̄, σ̂,Y) +
[
Dn,ij,A(θ̄, σ̂,Y)− L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1Dn,AA(θ̄, σ̂,Y)

]
νn. (S-9)

By condition C2, for any (i, j) ∈ Ac: |L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1sign(θ̄A)| ≤ δ < 1. Thus it

suffices to prove that the remaining terms in (S-9) are all o(λn) with probability at

least 1−O(n−η′) (uniformly for all (i, j) ∈ Ac). Then since |Ac| ≤ p ∼ O(nκ), by the

union bound, the event max(i,j)∈Ac |L′n,ij(θ̂
A,λn , σ̂,Y)| < λn holds with probability at

least 1−O(nκ−η′) = 1−O(n−η), when n is sufficiently large.

By B1.4, for any (i, j) ∈ Ac: ||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||2 ≤ M(θ̄). Therefore by Lemma

S-2, for any η > 0, there exists a constant C1,η > 0, such that

max
(i,j)∈Ac

|L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1L′n,A(θ̄, σ̂,Y)| ≤ C1,η(

√
qn log n

n
) = (o(λn))

with probability at least 1−O(n−η). The claim follows by the assumption
√

qn log n
n

∼
o(λn).

By B1.2, ||Varθ̄(L
′
ij(θ̄, σ̄,Y))||2 ≤ M1(θ̄). Then similarly as in Lemma S-2, for

14



any η > 0, there exists a constant C2,η > 0, such that maxi,j |L′n,ij(θ̄, σ̂,Y)| ≤
C2,η(

√
log n

n
) = (o(λn)), with probability at least 1 − O(n−η). The claims follows

by the assumption that λn

√
n

log n
→∞.

Note that by Theorem 1, for any η > 0, ||νn||2 ≤ C(θ̄)
√

qnλn with probability at

least 1−O(n−η) for large enough n. Thus, similarly as in Lemma S-2, for any η > 0,

there exists a constant C3,η, such |Dn,ij,A(θ̄, σ̂,Y)νn| ≤ C3,η(
√

qn log n
n

√
qnλn)(= o(λn)),

with probability at least 1 − O(n−η). The claims follows from the assumption

qn ∼ o(
√

n
log n

).

Finally, let bT = |L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1. By Cauchy-Schwartz inequality

|bT Dn,AA(θ̄, σ̄,Y)νn| ≤ ||bT Dn,AA(θ̄, σ̄,Y)||2||νn||2 ≤ qnλn max
(k,l)∈A

|bT Dn,A,kl(θ̄, σ̄,Y)|.

In order to show the right hand side is o(λn) with probability at least 1−O(n−η), it

suffices to show max(k,l)∈A |bT Dn,A,kl(θ̄, σ̄,Y)| = O(
√

log n
n

) with probability at least

1−O(n−η), because of the the assumption qn ∼ o(
√

n
log n

). This is implied by

Eθ̄(|bT DA,kl(θ̄, σ̄, Y )|2) ≤ ||b||22λmax(Varθ̄(DA,kl(θ̄, σ̄, Y )))

being bounded, which follows immediately from B1.4 and Lemma S-5. Finally, simi-

larly as in Lemma S-2,

|bT Dn,AA(θ̄, σ̂,Y)νn| ≤ |bT Dn,AA(θ̄, σ̄,Y)νn|+|bT (Dn,AA(θ̄, σ̄,Y)−Dn,AA(θ̄, σ̂,Y))νn|,

where by B3, the second term on the right hand side is bounded by Op(
√

log n
n

)||b||2||νn||2.
Note that ||b||2 ∼ √

qn, thus the second term is also of order o(λn) by the assumption

qn ∼ o(
√

n
log n

). This completes the proof.

proof of Theorem 3: By Theorems 1 and 2 and the Karush-Kuhn-Tucker condition,
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for any η > 0, with probability at least 1 − O(n−η), a solution of the restricted

problem is also a solution of the original problem. On the other hand, by Theorem

2 and the Karush-Kuhn-Tucker condition, with high probability, any solution of the

original problem is a solution of the restricted problem. Therefore, by Theorem 1,

the conclusion follows.

Part III

In this section, we provide details for the implementation of space which takes ad-

vantage of the sparse structure of X . Denote the target loss function as

f(θ) =
1

2
‖Y − X θ‖2 + λ1

∑
i<j

|ρij|. (S-10)

Our goal is to find θ̂ = argminθf(θ) for a given λ1. We will employ active-shooting

algorithm (Section 2.3) to solve this optimization problem.

Without loss of generality, we assume mean(Yi) = 1/n
∑n

k=1 yk
i = 0 for i =

1, . . . , p. Denote ξi = YT
i Yi. We have

X T
(i,j)X(i,j) = ξj

σjj

σii
+ ξi

σii

σjj
;

YTX(i,j) =

√
σjj

σii
YT

i Yj +

√
σii

σjj
YT

j Yi.

Denote ρij = ρ(i,j). We now present details of the initialization step and the updating

steps in the active-shooting algorithm.

1. Initialization
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Let

ρ
(0)
(i,j) =

(|YTX(i,j)|−λ1)
+
·sign(YTX(i,j))

XT
(i,j)

X(i,j)

=

(∣∣∣∣
√

σjj

σii YT
i Yj+

√
σii

σjj YT
j Yi

∣∣∣∣−λ1

)

+

·sign(YT
i Yj)

ξj
σjj

σii +ξi
σii

σjj

.

(S-11)

For j = 1, . . . , p, compute

Ŷ
(0)
j =

(√
σ11

σjj
Y1, ...,

√
σpp

σjj
Yp

)
·




ρ
(0)
(1,j)

...

ρ
(0)
(p,j)




, (S-12)

and

E(0) = Y − Ŷ (0) =
(
(E

(0)
1 )T , ..., (E(0)

p )T
)

, (S-13)

where E
(0)
j = Yj − Ŷ

(0)
j , for 1 ≤ j ≤ p.

2. Update ρ
(0)
(i,j) −→ ρ

(1)
(i,j)

Let

A(i,j) = (E
(0)
j )T ·

√
σii

σjj
Yi, (S-14)

A(j,i) = (E
(0)
i )T ·

√
σjj

σii
Yj. (S-15)

We have

(E(0))TX(i,j) = (E
(0)
i )T ·

√
σjj

σii Yj + (E
(0)
j )T ·

√
σii

σjj Yi

= A(j,i) + A(i,j).
(S-16)

It follows

ρ
(1)
(i,j) = sign

(
(E(0))TX

(i,j)

XT
(i,j)

X(i,j)
+ ρ

(0)
(i,j)

)(∣∣∣∣
(E(0))TX

(i,j)

XT
(i,j)

X(i,j)
+ ρ

(0)
(i,j)

∣∣∣∣− λ1

XT
(i,j)

X(i,j)

)

+

= sign

(
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

)(∣∣∣∣
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.
(S-17)
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3. Update ρ(t) −→ ρ(t+1)

From the previous iteration, we have

• E(t−1): residual in the previous iteration (np× 1 vector).

• (i0, j0): index of coefficient that is updated in the previous iteration.

• ρ
(t)
(i,j) =





ρ
(t−1)
(i,j) if (i, j) 6= (i0, j0), nor (j0, i0)

ρ
(t−1)
(i,j) −∆ if (i, j) = (i0, j0), or (j0, i0)

Then,

E
(t)
k = E

(t−1)
k for k 6= i0, j0;

E
(t)
j0

= E
(t−1)
j0

+ Ŷ
(t−1)
j0

− Ŷ
(t)
j0

= E
(t−1)
j0

+
∑p

i=1

√
σii

σj0j0
Yi(ρ

(t−1)
(i,j0) − ρ

(t)
(i,j0))

= E
(t−1)
j0

+
√

σi0i0

σj0j0
Yi0 ·∆;

E
(t)
i0

= E
(t−1)
i0

+
√

σj0j0

σi0i0
Yj0 ·∆.

(S-18)

Suppose the index of the coefficient we would like to update in this iteration is (i1, j1),

then let

A(i1,j1) = (E
(t)
j1

)T ·
√

σi1i1

σj1j1
Yi1 ,

A(j1,i1) = (E
(t)
i1

)T ·
√

σj1j1

σi1i1
Yj1 .

We have

ρ
(t+1)
(i,j) = sign

(
A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

)

×
(∣∣∣∣

A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.
(S-19)

Using the above steps 1–3, we have implemented the active-shooting algorithm

in c, and the corresponding R package space to fit the space model is available on

cran.
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