Partial Correlation Estimation by Joint Sparse

Regression Models — Supplemental Material

Part 1

In this section, we list properties of the loss function:

L(8,0,Y) sz yi— Yol foiiply;)* = Zp: =g (8D
i=1

JF#i JF#i

where Y = (y1,- -+ ,y,)" and §; = Voliy;,w; = w; /™. These properties are used for
the proof of the main results. Note: throughout the supplementary material, when

evaluation is taken place at ¢ = &, sometimes we omit the argument ¢ in the notation

for simplicity. Also we use Y = (y1,--- ,4,)? to denote a generic sample and use Y
to denote the p x n data matrix consisting of n i.i.d. such samples: Y!,--- Y™ and
define
1 < N
L,(0,0,Y):=— L(0,0,Y"). (S-2)
n
k=1

Al: forall 0,0 and Y € RP, L(0,0,Y) > 0.

A2: for any Y € R? and any o > 0, L(-,0,Y) is convex in 6; and with probability

one, L(-,0,Y) is strictly convex.



A3: for1 <i<j<p

o OL(6,0,Y)
L;;(0,0) :== Egz <—‘9=9,a=a) -

A4d: for1<i<j<pand1<k<l<p,

o 0*L(0,0,Y) 0 OL(0,0,Y)
Li;1(0,0) == Eg o) ( D o ) = o [E((;’U) (T)} ’

and Z"(e‘, ) is positive semi-definite.
If assuming CO-C1, then we have

BO : There exist constants 0 < 6y < 04 < 0o such that: 0 < g < min{c" : 1 <

i <p} <max{s”:1<i<p}< 0.

B1 : There exist constants 0 < AL, (0) < AL (6) < oo, such that

—1, = -, =

(0) < Amin (L7 (0)) < Amax(L(0)) < AL

max

0< Aﬁlin

() < o0

B1.1 : There exists a constant K (f) < oo, such that for all 1 <i < j <p, L;;.;(0) <

K(B).

B1.2 : There exist constants M;(0), My(#) < oo, such that for any 1 <i < j <p

Var(g’&)(L;j(H_,ﬁ,Y)) < Ml(ﬁ_), Val'(g’a_)(L” (9_,5' Y)) < MQ(G_)

igi\" 0 1)) =

B1.3 : There exists a constant 0 < g(f) < oo, such that for all (i,5) € A

- -1

Lyuy(0.0) =Ty, 0,0) [Th, a,(0:0)] Tl ,(0.0) = 9(0),



where Ay = A/{(i, )}

B1.4 : There exists a constant M () < oo, such that for any (i, 7) € A°

1L 4O [La(0)]) 7 ||2 < M(B).

B2 There exists a constant K;(f) < oo, such that for any 1 < i < j < p,
1 E5(3:9;99" )| < K1(0), where § = (g1, , )"

n

foen), we have: for

B3 If we further assume that condition D holds for & and ¢, ~ o

any 1 > 0, there exist constants C ,, Cs,, > 0, such that for sufficiently large n

logn

" (0.5 — L' (0.5 <
1§I£1<876X§p |Ln,zk(‘97 U’Y) Ln,zk<97 O',Y)l = 01,77( n

) 7] 1
max ‘LZ,ik,ts(07 o, Y) - Lx,ik,t5<07 6'\7 Y)| < C27W(W),

1<i<k<p,1<t<s<p

hold with probability at least 1 — O(n™").

B0 follows from C1 immediately. B1.1-B1.4 are direct consequences of B1. B2

follows from B1 and Gaussianity. B3 follows from conditions C0-C1 and D.

proof of Al: obvious.
proof of A2: obvious.

proof of A3: denote the residual for the ith term by

ei(t,0) =14 — Zpijgj-

J#i



Then evaluated at the true parameter values (6, 7), we have e;(6, 5) uncorrelated with

J—iy and E 5 (e;(6,5)) = 0. It is easy to show

OL(0,0,Y)
opid

—wie;(0,0)y; — w;e;(0, o).

This proves A3.

proof of Aj: see the proof of B1.

proof of B1: Denote § = (g1, -+ ,3y)", and & = (Z(1,2), T(13)," " » L(p—1,p)) With
Zi5 = (0,---,0,95,- -+ ,3;,0,--+,0)T. Then the loss function (S-1) can be written
as L(0,0,Y) = Lja(§ — 20)|[3, with @ = diag(v/@0y,--- ,V@,). Thus L'(6,0) =
B [#Tw?Z] (this proves Ad). Let d = p(p — 1)/2, then Z is a p by d matrix.

Denote its ith row by z7 (1 <14 < p). Then for any a € R%, with ||al|, = 1, we have
—// P
a"L (0)a = Ez(a” 30 %a) = Ey (Z Ibi(xiTa)2> :
i=1

Index the elements of a by a = (a@2), a3, ,aE-1p)", and for each 1 < i < p,
define a; € RP by a; = (CL(LZ'), tee 7a(i—1,i)70;a(i,i+1)7 s ,a(@p))T. Then by definition
Ta = g"a;. Also note that Y7, ||a;||3 = 2||al|3 = 2. This is because, for i # j, the

jth entry of a; appears exactly twice in a. Therefore
a"L" (f)a = szEg a; Gy’ a;) sz al'Sa; > sz min(2)]|ai]]3 > 200 Amin(2),

where ¥ = Var(g) and @y = wy/000. Similarly an”(é)a < 211}00)\max(2~3), with

Woo = Weo/0y. By C1, 3 has bounded eigenvalues, thus B1 is proved.

proof of B1.1: obvious.



proof of B1.2: note that Var g, (e;(0,5)) = 1/5" and Var 5)(;) = 6%. Then for any

1 <i < 5 <p, by Cauchy-Schwartz

Varg (L, (0.6,Y)) = Varg 5 (—wie; (0, 0)7; — w;e;(0,5)7;)

n,ij

< Egg(we;(0,6)7;) + Ega (Wi (0,5)3;)

+ 2[R E ) (¢3(0,5)3) Epo) (€30, 0)7)

=3J wiagh a1
wi o w;o w;W;j

()3~ (547)3 oligii’

The right hand side is bounded because of CO and BO.

proof of B1.3: for (i,j) € A, denote

— _ _ _,, N A
D = Lij,ij(970) - Z] A” (9 ) [ Aij, Aij(9’0—>:| LAw ZJ(G U)

S |
Then D~! is the (ij,7j) entry in [L;,A(e)] . Thus by Bl, D! is positive and

bounded from above, so D is bounded away from zero.

proof of B1.4: note that |[Z7; 4(0)[Zaa(@)] 713 < [1Z540)BAmax([Laa(0)] ). By

B, /\max([LAA(G)]* ) is bounded from above, thus it suffices to show that ||ZZ;A(§)||§

1" =\ ~

is bounded. Since (7,7) € A, define A" := (i, j)UA. Then LU 4(0)— EMA(H)[L;A(ﬁ)]_lf;,ij(é)
is the inverse of the (1, 1) entry of ZA+’A+(§)' Thus by B1, it is bounded away from

zero. Therefore by B1.1, EE;A(@_) [EZA(H_)]*ZZW(@) is bounded from above. Since
——// e =, -/ -, - = —// -~

Ly aO) Lo (O] L2 55(0) = (1235403 Amin ([Laa(0)] 1), and by BL, Apin (L (0)] )

is bounded away from zero, we have ||Z;; 4(0)]2 bounded from above.

proof of B2: the (k,)-th entry of the matrix 4;7;99" is §:9;9xU1, for 1 < k <1 < p.

Thus, the (k,)-th entry of the matrix E[g;5,97" ] is E[g;9,0r01] = 60 1+0ik0j1+010 j-



Thus, we can write

El3:9;99") = 652 + 6.6, + 6;.0, , (S-3)

where &;. is the p x 1 vector (G;x)7_,. From (S-3), we have
IEGG957) 1 < 163l | 21 +2 1] 6i lloll 65 |12, (S-4)

where || - || is the operator norm. By CO0-C1, the first term on the right hand side is

uniformly bounded. Now, we also have,
Gii — 6, 3 5i > 0 (S-5)

where f](_i) is the submatrix of ¥ removing i-th row and column. From this, it follows

that

1ol = I S35 |l
< IS5 122 12

< VIZ V6, (S-6)

where the last inequality follows from (S-5), and the fact that 2(_,~) is a principal

submatrix of 3. Thus the result follows by applying (S-6) to bound the last term in
(S-4).

proof of B3:

_ 1 & aii . [ ok
L;'L w(0,0,Y) = o —w; <y£ - ﬁpjyg) o yllc
- —




Thus,

, n,ik
= VI G
JFi
gt 0—11 \/0-]] gt \/8'”8’“
Tk \Yilk \ N\ R T\ Gk - vt oFk  gkk 7
J#k

where for 1 <i,j <p, 5755 ==+ >, yfyé Let 0;; denote the (7, j)-th element of the
true covariance matrix X. By C1, {o/j : 1 <i,j < p} are bounded from below and

above, thus

logn
\max [7i7; — 0yl = Op(y/ —>=)-

(Throughout the proof, O,(-) means that for any n > 0, for sufficiently large n, the left
hand side is bounded by the order within O,(-) with probability at least 1 —O(n™").)

Therefore

gwgyk omllp?] < glp”l max [7i5—0j] < ( qn;(p”)2>1§1?’<‘ 5 —0is] = o(1),
j#i j#i j#i

where the last inequality is by Cauchy-Schwartz and the fact that, for fixed i, there

are at most ¢, non-zero p¥. The last equality is due to the assumption ¢, ~ o(logn)

and the fact that 7., (p")? is bounded which is in turn implied by condition CI.
Therefore,

’L;z,z‘kwv&aY)_ ) (é,&,YH

n,ik

okk Gkk \/O-jjo-kk: \/3]']'3131@

ot ot

< (wi|ow] + welow|) max + (w;Tk; + wyTix) Max

1,5,k

gt ot

+ R,



where 7; ==Y i |ojxp”|, and the reminder term R, is of smaller order of the leading

terms. Since C1 implies B0, thus together with condition D, we have

ot ot logn
max —\/ ==| = O, ),
1<ik<p |\ okk okk n
Valigi  \/Giigi logn
max — — = Oy( ).
1<ijk<p| okFk okk n

Moreover, by Cauchy-Schwartz

o < \/Z<pij>2JZ<ojk>2,

and the right hand side is uniformly bounded (over (i, k)) due to condition C1. Thus
by C0,C1 and D, we have showed

max | L, (6,5, Y) = L}, (0,7, Y)| = O,

Observe that, for 1 <i <k <p,1<t<s<p

(

%27:1 wz%yi +7~Ukﬁyzl alf (Zak) = (ta S)
okk . .
" % Z?:l W; Uo'iiass y'lgy]lg; Zf 1= t’ k ;é S

n,ik,ts
[ 1 n Vottgit [ . . o
n 21:1 Wg—wk — YtYi> if i#FLk=s

0 if  otherwise.

Thus by similar arguments as in the above, it is easy to proof the claim.

Part 11

In this section, we proof the main results (Theorems 1-3). We first give a few lemmas.



Lemma S-1 (Karush-Kuhn-Tucker condition) 0 is a solution of the optimization

problem

arg min L,(0,5,Y)+ \|[0]]1,
0:05c=0

where S is a subset of T :={(i,j) : 1 <i < j <p}, if and only if

L;Lij (0, (/J'\, Y) = )\nsign(ﬁij), if Qij 7£ 0
L, :(0,5,Y)] < A, if 6 =0,

for (i,7) € S. Moreover, if the solution is not unique, |L. (6,5, Y)| < A, for some

n,iJ

specific solution 6 and L, ;:(0,0,Y) being continuous in 0 imply that @j =0 for
all solutions 0. (Note that optimization problem (9) corresponds to S = T and the

restricted optimization problem (11) corresponds to S = A.)

Lemma S-2 For the loss function defined by (S-2), if conditions C0-C1 hold and
condition D holds for ¢ and if q, ~ 0(&), then for any n > 0, there exist constants
Co,m> Cly> C2m, Cay > 0, such that for any u € R the following hold with probability as

least 1 — O(n™") for sufficiently large n:

n = inogn
12, 0.5, Y2 < oy 22

n = inogn
" L, 400,53, Y)| < cyllull(/ =)

- —n - logn
[u" Ly 44(0,5,Y)u—u" Ly, (0)u] < 02,n||u||§(61n\/ - )

. - o~ logn
125,44 (0.7.Y )u = Loa@)ulls < sl [ulla (a0 =)

proof of Lemma S-2: If we replace ¢ by & on the left hand side, then the above

results follow easily from Cauchy-Schwartz and Bernstein’s inequalities by using B1.2.

9



Further observe that,

123,40.8,Y)|2 < |L7, 4(0,7, )|z + [1L7, 4(0,5,Y) — Lj, 4(0,5,Y)]]2,

and the second term on the right hand side has order \/q"l%, since there are ¢,

logn

o The rest of the lemma can

terms and by B3, they are uniformly bounded by

be proved by similar arguments.

The following two lemmas are used for proving Theorem 1.

Lemma S-3 Assuming the same conditions of Theorem 1. Then there exists a con-

stant C1(0) > 0, such that for any n > 0, the probability that there exists a local

minima of the restricted problem (11) within the disc:

{6:110 — 0|2 < C1(0)\/qnAn}-

is at least 1 — O(n~") for sufficiently large n.
proof of Lemma S-3: Let o, = \/quAn, and Qn (0,5, Y, \,) = L,(0,5,Y) + A\, [|0]]1.

Then for any given constant C' > 0 and any vector u € RP such that us. = 0 and

l|ul|a = C, by the triangle inequality and Cauchy-Schwartz inequality, we have

1611 = 110 + cvnuly < aullully < Canv/gn.

Thus

Qn(0 + anu, 5, Y, \y) — Qn(0,5, Y, \,)
= {L,(0 +a,,5,Y)— L,(0,5,Y
> {L,(0+ anu,5,Y) — L,(0,5,Y)} — Cann/Gun

Y

= {L,(0 +ayu,5,Y)— L,(0,5,

10



Thus for any n > 0, there exists ¢ ,,ca, > 0, such that, with probability at least
1-0(n™")

_ — — 1
w0+ ayu,0,Y) — L,(0,0,Y) = anuﬁL;7A(0,5, Y)+ 2a cul L 4 400,50, Y )uy

. 1 _ Yy
i+ Ll 1(0.5.Y) + 52l (L) (0.5, Y) = Tia(0)) ua

=
o
h
N
=
2

a UALAA@)UA -G n(anquz/Q 12

v

L
1
2
; logn) — cay(a2gan=2y/logn).

In the above, the first equation is because the loss function L(6,0,Y") is quadratic
in # and uye = 0. The inequality is due to Lemma S-2 and the union bound. By
the assumption )\n\/% — 00, we have angn/ *n~/2/logn = 0(\/GnAn) = 0(a2).

Also by the assumption that ¢, ~ o(y/n/logn), we have a?q,n~"/?\/logn = o(a?).

Thus, with n sufficiently large

Qn(0+ ayu, 7, Y, \) —Q,(0,5, Y, \,) > o2ulT, Ous — Ca?
n“ A~ AA n

RNy

with probability at least 1 — O(n™"). By B1, v4L (0)uq > AL, (0)|juall? =
AL, (0)C?%. Thus, if we choose C' = 4/AE. (0) + ¢, then for any n > 0, for sufficiently

min

large n, the following holds

inf Qn@ + apu, 0, Y, \,) > Qn@, 7, Y, \n),

uiuge=0,||ul|2=C

with probability at least 1 — O(n~"). This means that a local minima exists within

the disc {0 : |0 — 0||» < Ca,, = C/guAs} with probability at least 1 — O(n™").

Lemma S-4 Assuming the same conditions of Theorem 1. Then there exists a con-
stant Cy(0) > 0, such that for any n > 0, for sufficiently large n, the following holds
with probability at least 1 — O(n™): for any 0 belongs to the set S = {0 : |0 — 0|2 >
Co(0)/@nAn, Oac = 0}, it has ||L], 4(0.5,Y)||2 > /Guhn-

11



proof of Lemma S-4: Let an, = \/quA\,. Any 0 belongs to S can be written as: 0 =

0 + apu, with uge = 0 and ||u||z > Cy(f). Note that

;1,,4(6’ /0-\7 Y) = ;,A(gv 6) Y) + Qp /TIL,.AA(a) /0-\7 )U
= L,4(0.5,Y) + an(L_4u(0,5.Y) ~ Lia(®)u + anLiu(0)u.
By the triangle inequality and Lemma S-2, for any n > 0, there exists constants

oy C3,n > 0, such that

1L, 4(0.5.Y)l2 = anl L4 (0))ulla—co(ay/*n"*/log n) —csy[ulla(angan"/*/log )

with probability at least 1 —O(n~"). Thus, similar as in Lemma S-3, for n sufficiently
large, [|L), 4(6,5,Y)]|2 > Lo, ||L74(8))ul|5 with probability at least 1 — O(n~"). By

B, ||z;A(§))u||2 > AL, (0)]|u|]2. Therefore Cy(0) can be taken as 2/AL. (9) + .

min

The following lemma is used in proving Theorem 2.

Lemma S-5 Assuming conditions C0-C1. Let Daa(0,Y) = L] 44(0,Y) — ZZ‘A(G_).
Then there exists a constant Ko(0) < oo, such that for any (k,1) € A, Aax(Varg(Dau(0,Y))) <
Ky(0).

proof of Lemma S-5: Varg(Daw(0,Y)) = Eg(L} 4,0(0,Y )L} 4 10(0,Y)T) =L 10 (0)L1a(0)".

Thus it suffices to show that, there exists a constant K5(f) > 0, such that for all (k, )

)‘maX(EG_(Llll,A,kl(§> Y)Llll,A,kl(é> Y)T)> < K2(§)

Use the same notations as in the proof of B1. Note that L] 4 w(0,Y) = 710?73, =

WY Tk + W yrx;. Thus

Eg(LY 410, Y)LY 4 10(0,Y)) = WiE[g zpay] + 07 ElGrwia] | + WG (wra] + zia)),

12



and for a € RpP-1)/2

aTEe'( ll,,A,k:l(év Y) lll,A,kl<§v Y)T)a

= Wl Elgr gy ay + wial E[7igy" Ja + 2@pwal B[GnGid " .

Since Y v_, [lax|3 = 2|]all3, and by B2: Apax(E[7:9;997]) < K1(9) for any 1 < i <

J < p, the conclusion follows.

proof of Theorem 1: The existence of a solution of (11) follows from Lemma S-3. By

the Karush-Kuhn-Tucker condition (Lemma S-1), for any solution # of (11), it has
1L7,4(0,3,Y)loo < Aae Thus [|L, 4(8,5,Y)|l> < v/l L, 40,5, Y)llo < Vauha:
Thus by Lemma S-4, for any n > 0, for n sufficiently large with probability at least
1 — O(n™"), all solutions of (11) are inside the disc {6 : ||§ — 8]z < Ca(0)\/quAn}-

Since \/%An — o0, for sufficiently large n and (i,j) € A: 0;; > s, > 2C5(0)\/GnAn-

Thus

1=0() < B (184 = Ball < Co0)v/Guha, Oy > 2C30)y/Gn, for all(i, ) € A)

< B (sign(@?”\") = sign(0;;), for all(i, ) € A) :

proof of Theorem 2: For any given n > 0, let ' = n+ k. Let &, = {sign(@“”\”) =

sign(6)}. Then by Theorem 1, Py(E,) > 1 — O(n™") for sufficiently large n. On &,,

by the Karush-Kuhn-Tucker condition and the expansion of L, A(@\A”\", 7,Y)at 0

Npsign(fa) = Ll 4075, Y) = L, 4(0,5,Y) + L 414(6,5,Y)v,
= Z;A(é)% + L, 4(0,5,Y) + ( naal0,5,Y) — _Z\A(g)) Un,

13



~x,
where v,, 1= Qﬁ’

— #4. By the above expression

v = =MLl (O)] sign(0a) — [Lia(0)) 1L 4(0.3.Y) + Doaa (60,5, Y )], (S-7)

where D,, 44(0,7,Y) = L" AA(@ 7,Y) —EZM(H). Next, fix (i,7) € A, and consider

the expansion of L/, ZJ(QA An 5. Y) around 6:
L, (04 5Y) = L,..(0,5,Y)+ Ll 4(0,5,Y)v,. (S-8)

Then plug in (S-7) into (S-8), we get

nzg(

= = = ~r=" A =

+ L —Lij7A(9)[LAA(Q)]—an,AA(e,3,Y) .

nzg(eﬁa—\?Y) + nzy A(9 )
By condition C2, for any (i,j) € A% EQ;A(é) (L, 4(0)] *sign(f4)| < 6 < 1. Thus it
suffices to prove that the remaining terms in (S-9) are all o(\,) with probability at
least 1 —O(n~"") (uniformly for all (i, ) € A°). Then since |A°| < p ~ O(n*), by the

union bound, the event max; jycac |L; é\A”\”, 7,Y)| < A, holds with probability at

n,ij(
least 1 — O(n"~") =1—O(n™"), when n is sufficiently large.

By B1.4, for any (7,7) € A% HLUA( NI 4(0)]7 ]2 < M(0). Therefore by Lemma

S-2, for any 1 > 0, there exists a constant C', > 0, such that

—n . . qn logn
(ir?)gﬁclLij,A(e)[LM(@)] 'Ly (0,6, Y)| < Cuy(y ) = (0(An))

with probability at least 1—O(n~"). The claim follows by the assumption 4/ q"l% ~
o(A\n).
By B1.2, ||Vars(Li;(0,5,Y))|l> < My(f). Then similarly as in Lemma S-2, for

14

072 5, Y) = ALy 4(O)[La(0)])  sign(8.4) — Lty 4(O)[La(0)) L), 4(8,5,Y)



any n > 0, there exists a constant Cy, > 0, such that max;;|L,,.(0,5,Y)| <

n,ij

Coy(1/ %) = (0(\,)), with probability at least 1 — O(n™"). The claims follows
by the assumption that A\, % — 00.

Note that by Theorem 1, for any n > 0, |[v,||s < C(6),/gn), with probability at
least 1 — O(n~") for large enough n. Thus, similarly as in Lemma S-2, for any n > 0,
there exists a constant Cj ), such 1Dy isa(0,7,Y )| < Cs.( q"l%\/@)\n)(: o(An)),
with probability at least 1 — O(n~"). The claims follows from the assumption

Qn ~ 0(\/ logn)'

Finally, let b7 = |ZZ; A(O)[L)4(0)]7. By Cauchy-Schwartz inequality

|bTDn,AA(§7 5—aY)Vn| S ||bTDn7AA<g7 5‘,Y)||2Hl/n||2 S qn)‘n (ir%)ae)i‘ ‘bTDn,A,kl(éa 5—7Y)|'

In order to show the right hand side is o(),) with probability at least 1 — O(n™"), it

suffices to show max(yyea b7 Dpan(0,5,Y)| = O(y/* ™) with probability at least

1 — O(n™"), because of the the assumption ¢, ~ o(, /). This is implied by

logn

E(Ib" Dawa(8,5,Y)?) < |1b]|3Amax(Varg(Daw(6,5,Y)))

being bounded, which follows immediately from B1.4 and Lemma S-5. Finally, simi-

larly as in Lemma S-2,

|bTDn,.AA<éa 8—7 Y)Vn’ S |bTDn,AA(éa 5—7 Y)Vn’+’bT(Dn,AA(é> 67 Y)_Dn,AA(é7 /0\7 Y))Vn‘a

where by B3, the second term on the right hand side is bounded by O, (4 / lof’l")Hb] l2||n]2-

Note that ||b||2 ~ \/Gn, thus the second term is also of order o(),,) by the assumption

n

qn ~ o( 10gn). This completes the proof.

proof of Theorem 3: By Theorems 1 and 2 and the Karush-Kuhn-Tucker condition,

15



for any n > 0, with probability at least 1 — O(n~"), a solution of the restricted
problem is also a solution of the original problem. On the other hand, by Theorem
2 and the Karush-Kuhn-Tucker condition, with high probability, any solution of the
original problem is a solution of the restricted problem. Therefore, by Theorem 1,

the conclusion follows.

Part 111

In this section, we provide details for the implementation of space which takes ad-

vantage of the sparse structure of X'. Denote the target loss function as

1
FO) =511V = X0I" + X0 Y |, (5-10)
i<j
Our goal is to find h= argmin, f(f) for a given A\;. We will employ active-shooting
algorithm (Section 2.3) to solve this optimization problem.
Without loss of generality, we assume mean(Y;) = 1/nd ;_ y¥ = 0 for i =

1,...,p. Denote & = Y!I'Y;. We have

T B oI s .
X(LJ’)X(LJ') = 53’% + fiﬁ7

T _ ol o
V' Xij) = \/ﬁYi Y; + Uijj Y,;.

Denote p” = p; j. We now present details of the initialization step and the updating

steps in the active-shooting algorithm.

1. Initialization

16



Let

—,\1> -sign(YTY))
+

p(o) B (lyTX(i,j)|_)‘1)+‘Sign(yTX(i,j))
(£.9) Xg,j)X(i,j)
o T A ot T~ .
<'\/U AT AR e
ol ot
fjﬁ-f-fi 077

For j =1,...,p, compute

J

and

where EJ(O) =Y, — SA{](.O), for 1 <j<p.

0 1
2. Update pgi}j) — pgi,)j)
Let
_ gyt 9"
Ay = (B;7) | —55 Y
0 olJ
A(Jﬂ) = (Ez( ))T i J*
o
We have
0 =7 0 ]
(EOY Xy = (B 52+ ()¢
= Aga) + Adig)-
It follows
W . (ED X (BONTX )
— Ay T Ad.5) (0) A,y T AG,5)
e (Ej ey ’)W) < e

17

— — P(1.4)
?(O) - ( U—“Yl, ceey U—Yp> . 5
o

(0)
P(i,j)

(0)

(4,9

(S-11)

(S-12)

(S-13)

(S-14)

(S-15)

(S-16)

(S-17)



3. Update p() — p(t+1)

From the previous iteration, we have
e E®D: residual in the previous iteration (np x 1 vector).

e (ig,jo): index of coefficient that is updated in the previous iteration.

o ) = PE:)D if (4,7) # (o, Jo), nor (jo, 7o)
| A=A () = Gow). or Govio)
Then,
EY = B for k +# ig, jo:
By =B+ Y Y

_ pp(t-1) | _ait (t-1) ) _

- Ejo + Zf:l o030 YZ (p(z’]o) - p(wO)) (S 18)
_ (=1 atoio .

=L+ Y., - A;

0J0Jo

(t) (t=1) adod
EiO = E + 7090 Y]O . A.

0 ot0%0

Suppose the index of the coefficient we would like to update in this iteration is (i1, j1),

then let
_ (T o
A(’ilyjl) - (Ejl ) ' O‘jljl 91
t O'jljl
A(jl,il) = (Ez'(1))T' \/ ijl'
We have

(t+1) : AGrin T A6 (t)
p(ZJ) g 5,0?“_1 +&; o'l + p(Zh]l)
J ot1%1 1 oJ1J1
At Aaan 4 p(t)

PO U (41,51)
& o1t +&ip ¢J171 '

X

olt

odJ
'Ej pTs +&i 537

N )+ | (S-19)

Using the above steps 1-3, we have implemented the active-shooting algorithm
in ¢, and the corresponding R package space to fit the space model is available on

cran.
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