### Table S1. Summary of gene expression changes in ess1 mutants

Α

| Experiment                  |            | # genes (>2   | 2-fold change      | )    |
|-----------------------------|------------|---------------|--------------------|------|
|                             | (24        | 4°C)          | (34)               | °C)  |
| ess1 <sup>H164R</sup>       | up         | down          | up                 | down |
| vs. wild-type               | 43         | 117           | 253                | 378  |
|                             |            |               |                    |      |
|                             | unin       | duced         | indu               | ced  |
| pGAL-H164R                  | unin       | duced         | indu<br>(+100 nm β |      |
| pGAL-H164R<br>vs. pGAL-ESS1 | unin<br>up | duced<br>down |                    |      |

### В

| ORF     | gene<br>name | rank order<br>in ess1<br>mutants | fold increase<br>in ess1<br>mutants | fold increase<br>in <i>ssu72</i><br>mutants <sup>a</sup> | upstream<br>snoRNA |
|---------|--------------|----------------------------------|-------------------------------------|----------------------------------------------------------|--------------------|
| YDR042C |              | 1                                | 42.3                                | 12.1*                                                    | Snr47              |
| YHR157W | REC104       | 2                                | 34.0                                | 11.2*                                                    | Snr71              |
| YCRO15C |              | 3                                | 29.0                                | 28.9                                                     | Snr33              |
| YOR278W | HEM4         | 6                                | 12.5                                | n.a.                                                     | Snr5               |
| YGL098W | USE1         | 9                                | 11.0                                | n.a.                                                     | Snr82              |
| YCR014C | POL4         | 14                               | 7.20                                | 5.0                                                      | Snr33              |
| YIL134W | FLX1         | 16                               | 6.76                                | 25.2                                                     | Snr68              |
| YPR091C |              | 17                               | 6.53                                | 11.4                                                     | Snr41              |
| YKL006C | SFT1         | 19                               | 6.06                                | n.a.                                                     | Snr87              |
| YJL048C | UBX6         | 25                               | 5.19                                | 5.5*                                                     | Snr60              |
| YDR472W | TRS31        | 29                               | 4.66                                | 5.7                                                      | Snr13              |
| YOL034W | SMC5         | 36                               | 4.39                                | 4.1                                                      | Snr50              |
| YLR105C | SEN2         | 51                               | 3.51                                | 10.0                                                     | Snr79              |

<sup>a</sup> Data from Ganem *et al*.,(2003) and (\*) Nedea *et al*., (2003) n.a. not available

## Top 50 up-regulated genes ess1-ts vs. wild type

| Unicene   Is vs. wt   ts vs. wt   Unicene                                                             |                |         |           |           |          |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-----------|-----------|----------|------------------------------------------|
| 1   VDR042C   2   32.12   38.87   Hypothetical ORF     2   YHR079C   SAE3   17.36   28.80   22.36   Protein involved in DNA repair     3   YHR157W   REC104   34.04   14.26   22.03   meiosis-specific protein     4   YCR015C   NA   6.02   13.54   19.82   Hypothetical ORF     5   YCL007C   NA   6.02   17.34   10.22   NA     6   YOR278W   HEM4   12.47   8.10   10.02   trains in sansket     7   YCL098W   USE1   10.95   7.96   9.36   Usetpi is a SNARE*I trains in sonsketon     9   YBR119W   NA   4.63   17.51   9.01   Req. for survival at high temperature     9   YBR119W   NA   5.25   7.96   6.46   Hypothetical ORF     12   YOL154W   2PS1   9.33   5.95   Fortein of unknown function   1.5     13   YPL192C   PRM3   7.32   4.83   5.62                                                                                                                                          | l do ostifio a | UniGene | ts vs. wt | ts vs. wt | Combined |                                          |
| 2   YHR079C   SAE3   17.36   28.80   22.36   Protein involved in DNA repair     3   YHR157W   REC104   34.04   14.26   22.03   meiosis-specific protein     4   YCR015C   NA   29.02   13.54   19.24   NA     5   YCL007C   NA   6.02   17.34   10.22   NA     6   YOR278W   HEM4   12.47   8.10   10.55   uroporphyrinogen III synthase     7   YGL098W   USE1   10.95   7.99   9.36   Use1p is a SNARE / trafficing Golgi to ER     8   YMR107W   NA   4.63   17.51   9.01   Req. for survival at high temperature     9   YBR119W   MUD1   6.88   8.33   7.57   U1 snRNP A protein     10   YOR37W   NA   5.25   7.96   6.44   9.59   Pheromone-regulated, req. for karyogamy     14   YUL042C   NA   6.51   5.61   Hyothetical ORF     12   YUL042C   NA   5.31                                                                                                                                     |                | Symbol  |           |           |          |                                          |
| 3 YHR157W   REC104   34.04   14.26   22.03   meiosis-specific protein     4 YCR015C   NA   29.02   13.54   19.82   Hypothetical ORF     5 YCL007C   NA   6.02   17.34   10.25   NA     6 YOR278W   HEM4   12.47   8.10   10.05   uroporphrinogen III synthase     7 YSL098W   USE1   10.95   7.99   0.81   userp is a SNARE / trafficking Golgi to ER     9 YBR119W   MUD0   6.88   8.33   7.57   Ul snRNP A protein     10 YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11 YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12 YOL154W   ZPS1   9.33   3.93   6.05   Forein of unknown function     13 YPL192C   PRM3   HUG1   11.16   2.86   5.65   Involved In Mectp-mediated checkpoint     14 YL036C   NA   5.91   5.31   5.01   Hypothetical ORF     71 YL024C   NA <t< td=""><td></td><td>SVE3</td><td></td><td></td><td></td><td>•••</td></t<> |                | SVE3    |           |           |          | •••                                      |
| 4 YCR015C   NA   29.02   113.54   19.82   Hypothetical ORF     5 YCL007C   NA   6.02   17.34   10.22   NA     6 YORZ78W   HEM4   12.47   8.10   10.05   uroporphyrinogen III synthase     7 YGL098W   USE1   10.95   7.99   9.36   Uset p is a SNARE / trafficing Golgi to ER     8 YMR107W   NA   4.63   17.51   9.01   Rec, for survival at high temperature     9 YBR119W   MUD1   6.88   8.33   7.57   U1 snRNP A protein     10 YOR237W   HES1   14.22   3.3   3.93   6.05   Putative GPL-anchored protein     13 YEL192C   PRM   7.32   4.83   5.05   Phrotemore-regulated, req. for karyogamy     14 YJL048C   UBX6   5.19   6.62   5.86   Protein of unknown function     15 YHL058W   HUG1   11.16   2.86   5.65   Involved IN Papir, moitor creambination     19 YLL03C   NA   4.51   5.31   15.00   Hypothetical ORF     17 VL024C<                                                          |                |         |           |           |          | -                                        |
| 5 YQL007C   NA   6.02   17.34   10.25   Vic     6 YOR278W   HEM4   12.47   8.10   10.05   uroporphyrinogen III synthase     7 YGL098W   USE1   10.95   7.99   9.36   Usetp is a SNARE / trafficking Golgi to ER     8 YMR107W   NA   4.63   17.51   9.01   Req, for survival at high temperature     9 YBR119W   MUD0   6.88   8.33   7.57   Ui snRNP A protein     10 YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11 YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12 YOL154W   ZPS1   9.33   3.93   6.05   Protein of unknown function     13 YPL192C   PRM3   7.32   4.83   5.65   Involved in Mectp-mediated checkpoint     15 YML045W   HUG1   11.16   2.86   5.65   Involved in Mectp-mediated checkpoint     16 YPR091C   NA   5.31   5.60   Hypothetical ORF   18     17 YL04CR   NA<                                                      |                |         |           |           |          |                                          |
| 6 YOR278W   HEM4   12.47   8.10   10.05   uroporphyrinogen III synthase     7 YGL098W   USE1   10.95   7.99   9.36   Uset pis a SNARE / trafficking Golgi to ER     8 YMR107W   NA   4.63   17.51   9.01   Req. for survival at high temperature     9 YBR119W   MUD1   6.88   8.33   7.57   U1 snRNP A protein     10 YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11 YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12 YOL154W   ZPS1   9.33   6.05   Protein of unknown function   15     13 YPL192C   PRM3   7.32   4.83   5.62   Hypothetical ORF   11.16     15 YML085W   HUG1   11.16   2.48   5.60   Hyothetical ORF   12.11     17 YIL024C   NA   5.31   10.04   RA4   5.19   v-SNARE     20 YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria                                                                              |                |         |           |           |          |                                          |
| 7 YGL098W   USE1   10.95   7.99   9.36   Use1p is a SNARE / trafficking Golgi to ER     8 YMR107W   NA   4.63   17.51   9.01   Req. for survival at high temperature     9 YBR119W   MUD1   6.88   8.33   7.57   U's nRNP A protein     10 YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11 YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12 YOL154W   ZPS1   9.33   3.93   6.05   Putative GPI-anchored protein     13 YPL192C   PRM3   7.32   4.83   5.95   Protein of unknown function     14 YIL048C   USX6   5.19   6.56   Involved in Mec1p-mediated checkpoint     15 YML058W   HUG1   11.16   2.86   5.65   Involved DNA repair, meditc recombination     17 YL024C   NA   6.51   5.31   Involved DNA repair, meditc recombination     19 YML038C   NA   11.57   2.43   5.30   Hypothetical ORF     20 YLR202C                               |                |         |           |           |          |                                          |
| 8   YMR107W   NA   4.63   17.51   9.01   Reg_for survival at high temperature     9   YBR119W   MUD1   6.83   7.57   U1 snRNP A protein     10   YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11   YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12   YOL154W   ZPS1   9.33   3.93   6.05   Phatome Ordencine     13   YEL192C   PRM3   7.32   4.83   5.95   Phoreonone-regulated, req. for karyogamy     14   YJL048C   UBX6   5.19   6.62   5.86   Involved In Mec1p-mediated checkpoint     15   YML080W   HUG1   11.16   2.86   5.65   Involved In Mec1p-mediated checkpoint     14   YHL080W   NA   5.31   5.60   Hypothetical ORF     15   YHL083C   NA   11.57   2.43   5.30   Hypothetical ORF     20   YLR202C   NA   4.44                                                                                                                 |                |         |           |           |          |                                          |
| 9 YBR119W   MUD1   6.88   8.33   7.57   U1 snRNP A protein     10 YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11 YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12 YOL154W   ZPS1   9.33   3.93   6.05   Putative GPI-anchored protein     13 YPL192C   PRM3   7.32   4.83   5.95   Pheromone-regulated, req. for karyogamy     14 YJL048C   UBX6   5.19   6.62   5.86   Protein of unknown function     15 YML058W   HUG1   11.16   2.86   5.65   Involved in Mec1p-mediated checkpoint     16 YPR091C   NA   6.53   4.83   5.62   Hypothetical ORF     17 YIL024C   NA   5.31   5.00   Hypothetical ORF   1.00ked DNA repair, meditor recombination     19 YLR030C   NA   11.57   2.43   5.30   Involved DNA repair, meditor recombination     21 YLR202C   NA   11.57   2.43   5.19   hypothetical ORF                                           |                |         |           |           |          |                                          |
| 10   YOR237W   HES1   14.22   3.20   6.75   similar to human oxysterol binding protein     11   YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12   YOL154W   ZPS1   9.33   9.95   Phattive GPI-anchored protein     13   YPL192C   PRM3   7.32   4.83   5.95   Pheromone-regulated, req. for karyogamy     14   YJL048C   UBX6   5.19   6.62   5.66   Protein of unknown function     15   YML058W   HUG1   11.16   2.86   5.62   Hypothetical ORF     17   YIL024C   NA   5.91   5.31   Involved DNA repair, meiotic recombination     19   YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     21   YKL080C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HX16   6.76   3.77   5.05   FAO carrier protein     24   YPL23C   GRE1   2.55   9.61                                                                                                                            |                |         |           |           |          |                                          |
| 11   YKL037W   NA   5.25   7.96   6.46   Hypothetical ORF     12   YOL154W   ZPS1   9.33   3.93   6.05   Putative GPI-anchored protein     13   YPL192C   PRM3   7.32   4.83   5.95   Pheromone-regulated, req, for karyogamy     14   YJL048C   UBX6   5.19   6.62   5.66   Protein of unknown function     15   YML058W   HUG1   1.16   2.86   5.61   Involved in Mec1p-mediated checkpoint     16   YPR091C   NA   6.53   4.83   5.62   Hypothetical ORF     17   YIL024C   NA   1.157   2.43   5.30   Hypothetical ORF     19   YML063C   NA   1.157   2.43   5.30   Hypothetical ORF     20   YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21   YKL06C   SFT1   6.06   4.44   5.19   v-SNARE     23   YL158W   HXT16 /// F   2.47                                                                                                                                         |                |         |           |           |          |                                          |
| 12 YOL154W ZPS1 9.33 3.93 6.05 Pitative GPI-anchored protein   13 YPL192C PRM3 7.32 4.83 5.95 Pheromone-regulated, req. for karyogamy   14 YLL048C UBX6 5.19 6.62 5.86 Involved in Mectp-mediated checkpoint   15 YML058W HUG1 11.16 2.86 5.65 Involved in Mectp-mediated checkpoint   16 YPR091C NA 6.53 4.83 5.62 Hypothetical ORF   17 YLL024C NA 5.91 5.31 Involved INA repair, meiotic recombination   19 YML083C NA 11.57 2.43 5.30 Hypothetical ORF   20 YLR202C NA 4.84 5.60 5.21 Localized to the mitochondria   21 YKL006C SFT1 6.06 4.44 5.19 -SNARE   22 YJR158W HXT16 /// F 2.97 8.01 4.85 Hydrophilin unknown function; stress induced   25 YDR472W TRS31 4.66 5.10 4.88 TRAPP component, ER to Golgi taffic   26 YHR096C HXT5 2.40 9.81 4.80 NA 190 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                          |                |         |           |           |          |                                          |
| 13 YPL192C PRM3 7.32 4.83 5.95 Pheromone-regulated, reg. for karyogamy   14 YJL048C UBX6 5.19 6.62 5.86 Protein of unknown function   15 YML058W HUG1 1.16 2.86 5.61 Provedie in Mec1p-mediated checkpoint   16 YPR091C NA 6.53 4.83 5.62 Hypothetical ORF   17 YIL024C NA 5.91 5.31 1solved DNA repair, meiotic recombination   19 YML083C NA 11.57 2.43 5.30 Hypothetical ORF   20 YLR202C NA 4.84 5.60 5.21 Localized to the mitochondria   21 YKL006C SFT1 6.06 4.44 5.19 v-SNARE   22 YJR158W HXT16 /// F 2.97 8.71 5.09 hexose permease /// hexose transporter   23 YIL134W FLX1 6.76 3.77 5.05 FAD carrier protein   24 YPR175W TRS1 2.40 9.81 4.85 hexose transporter   27 Y                                                                                                                                                                                                                    |                |         |           |           |          |                                          |
| 14   YJL048C   UBX6   5.19   6.62   5.86   Protein of unknown function     15   YML058W   HUG1   11.16   2.86   5.85   Involved in Mecton-mediated checkpoint     16   YPR091C   NA   6.53   4.83   5.62   Hypothetical ORF     17   YIL024C   NA   5.91   5.31   5.60   Hypothetical ORF     18   YHR079C   SAE3   4.66   6.09   5.33   Involved DNA repair, meiotic recombination     19   YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     21   YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HX11   6.76   3.77   5.05   FAD carrier protein     24   YPL223C   GRE1   2.55   9.61   4.95   heydrophilin unknown function; stress induced     25   YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26   YHR096C   HX1                                                                                                                   |                |         |           |           |          |                                          |
| 15 YML058W   HUG1   11.16   2.86   5.65   Involved in Mec1p-mediated checkpoint     16 YPR091C   NA   6.53   4.83   5.62   Hypothetical ORF     17 YIL024C   NA   5.91   5.31   5.60   Hypothetical ORF     18 YHR079C   SAE3   4.66   6.09   5.33   Involved DNA repair, meiotic recombination     19 YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     20 YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21 YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22 YJR158W   HXT16 /// L   2.97   8.71   5.05   FAD carrier protein     24 YPL23C   GRE1   2.55   9.61   4.85   hexose transporter     25 YDR472W   TRS31   4.66   5.10   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28 YCR014C   POL4   7.20   3.00                                                                                               |                |         |           |           |          |                                          |
| 16   YPR091C   NA   6.53   4.83   5.62   Hypothetical ORF     17   YIL024C   NA   5.91   5.31   5.60   Hypothetical ORF     18   YHR079C   SAE3   4.66   6.09   5.33   Involved DNA repair, meiotic recombination     19   YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     20   YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21   YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HXT16 /// F   2.97   8.71   5.05   FAD carrier protein     24   YPL232C   GRE1   2.55   9.61   4.95   hydrophilin unknown function; stress induced     25   YDR472W   TRS31   4.66   5.10   4.85   hexose transporter     27   YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     29   YOL162W   NA   7.76   2.                                                                                                                                      |                |         |           |           |          |                                          |
| 17 YIL024C NA 5.91 5.31 5.60 Hypothetical ORF   18 YHR079C SAE3 4.66 6.09 5.33 Involved DNA repair, meiotic recombination   19 YML083C NA 11.57 2.43 5.30 Hypothetical ORF   20 YLR202C NA 4.84 5.60 5.21 Localized to the mitochondria   21 YKL006C SFT1 6.06 4.44 5.19 v-SNARE   22 YJR158W HXT16 /// H 2.97 8.71 5.05 FAD carrier protein   24 YPL223C GRE1 2.55 9.61 4.95 Hydrophilin unknown function; stress induced   25 YDR472W TRS31 4.66 5.10 4.88 TRAPP component, ER to Golgi traffic   26 YHR096C HXT5 2.40 9.81 4.85 hexose transporter   27 YMR175W SIP18 3.11 7.78 2.40 9.81 hace   28 YCR014C POL4 7.20 3.00 4.65 DNA polymerase IV 9   29 YOL162W NA 7.76 2.63 4.52 NA 11   31 YDR0                                                                                                                                                                                                   |                |         |           |           |          |                                          |
| 18   YHR079C   SAE3   4.66   6.09   5.33   Involved DNA repair, meiotic recombination     19   YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     20   YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21   YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HXT16/// I   2.97   8.71   5.09   hexose permease /// hexose transporter     23   YIL134W   FLX1   6.76   3.77   5.05   FAD carrier protein     24   YPL223C   GRE1   2.55   9.61   4.88   TRAPP component, ER to Golgi traffic     26   YHR75W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28   YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29   YOL162W   NA   7.76   2.63   4.52   NA     31   YDR070C   NA   5.49   3.1                                                                                                                                       |                |         |           |           |          | •••                                      |
| 19   YML083C   NA   11.57   2.43   5.30   Hypothetical ORF     20   YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21   YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HXT16 /// I   2.97   8.71   5.05   FAD carrier protein     24   YPL223C   GRE1   2.55   9.61   4.95   Hydrophilin unknown function; stress induced     25   YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26   YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27   YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     26   YHR096C   HXT5   2.40   9.81   4.52   NA     29   YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30   YBR070C   NA   2.67 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                   |                |         |           |           |          |                                          |
| 20 YLR202C   NA   4.84   5.60   5.21   Localized to the mitochondria     21 YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22 YJR158W   HXT16 /// F   2.97   8.71   5.09   hexose permease /// hexose transporter     23 YIL134W   FLX1   6.76   3.77   5.05   FAD carrier protein     24 YPL223C   GRE1   2.55   9.61   4.95   Hydrophilin unknown function; stress induced     25 YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26 YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   3.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.400   NA   Map kinase     35 YOR055W   NA                                                                            |                |         |           |           |          | -                                        |
| 21   YKL006C   SFT1   6.06   4.44   5.19   v-SNARE     22   YJR158W   HXT16 /// I   2.97   8.71   5.09   hexose permease /// hexose transporter     23   YIL134W   FLX1   6.76   3.77   5.05   FAD carrier protein     24   YPL23C   GRE1   2.55   9.61   4.98   Hydrophilin unknown function; stress induced     25   YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26   YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27   YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28   YCR014C   POL4   7.20   3.00   A.65   DNA polymerase IV     29   YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30   YBL065W   NA   7.76   2.63   4.52   NA     31   YDR070C   NA   5.49                                                                                                                                 |                |         |           |           |          |                                          |
| 22 YJR158W   HXT16 /// I   2.97   8.71   5.09   hexose permease /// hexose transporter     23 YIL134W   FLX1   6.76   3.77   5.05   FAD carrier protein     24 YPL223C   GRE1   2.55   9.61   4.95   Hydrophilin unknown function; stress induced     25 YDR472W   TRS31   4.66   5.10   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28 YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92                                                                                     |                |         |           |           |          |                                          |
| 23 YIL134W   FLX1   6.76   3.77   5.05   FAD carrier protein     24 YPL223C   GRE1   2.55   9.61   4.95   Hydrophilin unknown function; stress induced     25 YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26 YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28 YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   MAP   Map     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92                                                                                              |                |         |           |           |          |                                          |
| 24 YPL223C   GRE1   2.55   9.61   4.95   Hydrophilin unknown function; stress induced     25 YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26 YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28 YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     37 YBL109W   NA   4.08   3.74   3.91 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                      |                |         |           |           |          |                                          |
| 25 YDR472W   TRS31   4.66   5.10   4.88   TRAPP component, ER to Golgi traffic     26 YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27 YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28 YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.00   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase                                                                                                                             |                |         |           |           |          | •                                        |
| 26   YHR096C   HXT5   2.40   9.81   4.85   hexose transporter     27   YMR175W   SIP18   3.11   7.38   4.79   Salt-Induced Protein     28   YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29   YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30   YBL065W   NA   7.76   2.63   4.52   NA     31   YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32   YJL105W   SET4   7.78   2.40   4.32   NA     33   YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34   YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35   YOR055W   NA   4.90   3.26   4.00   NA     36   YIL099W   SGA1   4.34   3.65   3.98   glucoanylase                                                                                                                                                                                          |                |         |           |           |          |                                          |
| 27 YMR175W SIP18 3.11 7.38 4.79 Salt-Induced Protein   28 YCR014C POL4 7.20 3.00 4.65 DNA polymerase IV   29 YOL162W NA 4.42 4.79 4.60 ORF, member of the Dal5p subfamily   30 YBL065W NA 7.76 2.63 4.52 NA   31 YDR070C NA 2.67 7.07 4.34 Localized to the mitochondria   32 YJL105W SET4 7.78 2.40 4.32 NA   33 YMR040W NA 5.49 3.17 4.17 homolog of mammalian BAP31   34 YPR054W SMK1 4.12 3.92 4.02 MAP kinase   35 YOR055W NA 4.90 3.26 4.00 NA   36 YIL099W SGA1 4.34 3.65 3.98 glucoamylase   37 YBL109W NA 4.08 3.74 3.91 Function unknown   38 YIL072W HOP1 6.09 2.50 3.90 DNA binding protein   39 YOL034W SMC5 4.39 3.32 3.82 Structural maintenance of chromos                                                                                                                                                                                                                              |                |         |           |           |          |                                          |
| 28 YCR014C   POL4   7.20   3.00   4.65   DNA polymerase IV     29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)                                                                                                                             |                |         |           |           |          | •                                        |
| 29 YOL162W   NA   4.42   4.79   4.60   ORF, member of the Dal5p subfamily     30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.00   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                        |                |         |           |           |          |                                          |
| 30 YBL065W   NA   7.76   2.63   4.52   NA     31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     <                                                                                                                                    |                |         |           |           |          |                                          |
| 31 YDR070C   NA   2.67   7.07   4.34   Localized to the mitochondria     32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     <                                                                                                                                    |                |         |           |           |          |                                          |
| 32 YJL105W   SET4   7.78   2.40   4.32   NA     33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C                                                                                                                                        |                |         |           |           |          |                                          |
| 33 YMR040W   NA   5.49   3.17   4.17   homolog of mammalian BAP31     34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C   DIA3   4.55   2.93   3.65   Involved in vasive and pseudohyphal growth <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                   |                |         |           |           |          |                                          |
| 34 YPR054W   SMK1   4.12   3.92   4.02   MAP kinase     35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C   DIA3   4.55   2.93   3.65   Involved in vasive and pseudohyphal growth     45 YGR236C   NA   2.77   4.81   3.65   Required for survival at high                                                                                                            |                |         |           |           |          |                                          |
| 35 YOR055W   NA   4.90   3.26   4.00   NA     36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C   DIA3   4.55   2.93   3.65   Involved invasive and pseudohyphal growth     45 YGR236C   NA   2.77   4.81   3.65   Required for survival at high temperature     46 YLR312C   NA   2.21   5.91   3.62 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>                                       |                |         |           |           |          | -                                        |
| 36 YIL099W   SGA1   4.34   3.65   3.98   glucoamylase     37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C   DIA3   4.55   2.93   3.65   Involved invasive and pseudohyphal growth     45 YGR236C   NA   2.77   4.81   3.65   Required for survival at high temperature     46 YLR312C   NA   2.21   5.91   3.62   Hypothetical ORF     47 YAR050W   FLO1   3.96   3.12   3.52<                                                                                               |                |         |           |           |          |                                          |
| 37 YBL109W   NA   4.08   3.74   3.91   Function unknown     38 YIL072W   HOP1   6.09   2.50   3.90   DNA binding protein     39 YOL034W   SMC5   4.39   3.32   3.82   Structural maintenance of chromosomes (SMC)     40 YOL037C   NA   4.59   3.15   3.81   NA     41 YKL093W   MBR1   2.73   5.22   3.78   Involved in mitochondrial biogenesis     42 YDR048C   NA   3.65   3.83   3.74   NA     43 YBR284W   NA   3.42   3.97   3.68   Hypothetical ORF     44 YDL024C   DIA3   4.55   2.93   3.65   Involved invasive and pseudohyphal growth     45 YGR236C   NA   2.77   4.81   3.65   Required for survival at high temperature     46 YLR312C   NA   2.21   5.91   3.62   Hypothetical ORF     47 YAR050W   FLO1   3.96   3.12   3.52   Lectin-like protein involved in flocculation     48 YLR174W   IDP2   3.36                                                                              |                |         |           |           |          |                                          |
| 38 YIL072WHOP16.092.503.90DNA binding protein39 YOL034WSMC54.393.323.82Structural maintenance of chromosomes (SMC)40 YOL037CNA4.593.153.81NA41 YKL093WMBR12.735.223.78Involved in mitochondrial biogenesis42 YDR048CNA3.653.833.74NA43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                     |                |         |           |           |          |                                          |
| 39 YOL034WSMC54.393.323.82Structural maintenance of chromosomes (SMC)40 YOL037CNA4.593.153.81NA41 YKL093WMBR12.735.223.78Involved in mitochondrial biogenesis42 YDR048CNA3.653.833.74NA43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                  |                |         |           |           |          |                                          |
| 40 YOL037CNA4.593.153.81NA41 YKL093WMBR12.735.223.78Involved in mitochondrial biogenesis42 YDR048CNA3.653.833.74NA43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                       |                |         |           |           |          |                                          |
| 41 YKL093WMBR12.735.223.78Involved in mitochondrial biogenesis42 YDR048CNA3.653.833.74NA43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                 |                |         |           |           |          |                                          |
| 42 YDR048CNA3.653.833.74NA43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |           |           |          |                                          |
| 43 YBR284WNA3.423.973.68Hypothetical ORF44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |           |           |          | C C                                      |
| 44 YDL024CDIA34.552.933.65Involved invasive and pseudohyphal growth45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |         |           |           |          |                                          |
| 45 YGR236CNA2.774.813.65Required for survival at high temperature46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |         |           |           |          |                                          |
| 46 YLR312CNA2.215.913.62Hypothetical ORF47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |         |           |           |          |                                          |
| 47 YAR050WFLO13.963.123.52Lectin-like protein involved in flocculation48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |         |           |           |          |                                          |
| 48 YLR174WIDP23.363.683.51NADP-dependent isocitrate dehydrogenase49 YER150WSPI12.125.753.50Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |         |           |           |          |                                          |
| 49 YER150W SPI1 2.12 5.75 3.50 Strongly expressed during stationary phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |         |           |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |         |           |           |          |                                          |
| SU YOLU84W PHIMI 2.47 4.89 3.48 UNKNOWN function, regulated by phosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |           |           |          |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5U YULU84W     | PHM/    | 2.47      | 4.89      | 3.48     | Unknown function, regulated by phosphate |

# Top 50 down-regulated genes ess1-ts vs. wild type

| <u> </u>   | <u>ga</u> g. | ts vs. | <i>ts</i> vs. wt |         |                                       |
|------------|--------------|--------|------------------|---------|---------------------------------------|
|            | UniGene      | wt at  | 0-               | Combine |                                       |
| Identifier | Symbol       | 34°C   | estradiol        | d       | UniGene Name                          |
| 1 YER089C  | PTC2         | -5.93  | -6.47            | -6.19   | protein phosphatase type 2C           |
| 2 YAR031W  | PRM9         | -5.59  | -6.85            | -6.19   | Pheromone-regulated protein           |
| 3 YGR203W  | NA           | -4.84  | -3.45            |         | Probable tyrosine phosphatase         |
| 4 YBR032W  | NA           | -4.47  | -3.53            |         | NA                                    |
| 5 YDL198C  | GGC1         | -3.45  | -4.55            |         | Mitochondrial GTP/GDP transporter     |
| 6 YDL037C  | BSC1         | -3.06  | -4.79            |         | ORF w/high stop codon bypass          |
| 7 YGL209W  | MIG2         | -2.64  | -5.18            |         | zinc fingers similar to Mig1p         |
| 8 YNL300W  | NA           | -2.21  | -6.18            |         | Hypothetical ORF                      |
| 9 YIL016W  | SNL1         | -4.66  | -2.54            |         | 18.3 kDa integral membrane protein    |
| 10 YJR025C | BNA1         | -4.34  | -2.65            |         | 3-hydroxyanthranilic acid dioxygenase |
| 11 YNL168C | NA           | -3.48  | -3.14            |         | Localized to mitochondria             |
| 12 YBR205W | KTR3         | -2.82  | -3.77            |         | alpha-1,2-mannosyltransferase (?)     |
| 13 YER175C | TMT1         | -2.56  | -3.86            |         | Trans-aconitate Methyltransferase 1   |
| 14 YHR013C | ARD1         | -3.81  | -2.44            |         | N alpha-acetyltransferase subunit     |
| 15 YNL134C | NA           | -3.45  | -2.69            |         | NA                                    |
| 16 YHR201C | PPX1         | -3.08  | -2.91            | -2.99   | exopolyphosphatase                    |
| 17 YJR031C | GEA1         | -3.72  | -2.31            |         | GDP/GTP exchange factor               |
| 18 YBR053C | NA           | -3.51  | -2.39            |         | Hypothetical ORF                      |
| 19 YIL034C | CAP2         | -2.57  | -2.47            |         |                                       |
|            |              |        |                  |         | capping protein beta subunit<br>NA    |
| 20 YBR206W | NA<br>DCE4   | -2.44  | -3.36            | -2.86   |                                       |
| 21 YNR067C | DSE4         | -2.34  | -3.50            |         | Daughter cell-specific secreted       |
| 22 YPL274W | SAM3         | -2.36  | -3.45            |         | high affinity SAM permease            |
| 23 YKL029C | MAE1         | -2.87  | -2.78            |         | malic enzyme                          |
| 24 YBR261C | NA           | -2.78  | -2.81            | -2.80   | Putative SAM-dep. methyltransferase   |
| 25 YDR248C | NA           | -2.80  | -2.79            | -2.79   | Hypothetical ORF                      |
| 26 YMR138W | CIN4         | -2.56  | -2.87            |         | GTP-binding protein                   |
| 27 YNL062C | GCD10        | -2.67  | -2.74            |         | RNA-binding subunit of tRNA MT        |
| 28 YGR277C | NA           | -3.03  | -2.37            |         | Homolog to human PPAT                 |
| 29 YGR172C | YIP1         | -2.82  | -2.55            |         | Golgi integral membrane protein       |
| 30 YHL009C | YAP3         | -2.73  | -2.60            |         | bZIP protein; transcription factor    |
| 31 YPR176C | BET2         | -2.80  | -2.53            | -2.66   | geranylgeranyltransferase type II     |
| 32 YHR094C | HXT1         | -2.97  | -2.30            | -2.62   | hexose transporter                    |
| 33 YDR126W | SWF1         | -2.35  | -2.90            | -2.61   | Spore Wall Formation                  |
| 34 YHL011C | PRS3         | -2.60  | -2.61            | -2.61   | ribose-phosphate pyrophosphokinase    |
| 35 YKL096W | CWP1         | -2.68  | -2.53            |         | cell wall mannoprotein                |
| 36 YDR179W | NA           | -2.08  | -3.25            |         | Hypothetical ORF                      |
| 37 YBR145W | ADH5         | -2.15  | -3.12            |         | alcohol dehydrogenase isoenzyme V     |
| 38 YLR128W | NA           | -2.21  | -3.00            |         | Hypothetical ORF                      |
| 39 YIR017C | MET28        | -2.78  | -2.35            |         | trxn activator Cbf1p-Met4p-Met28p     |
| 40 YJR016C | ILV3         | -2.55  | -2.52            |         | dihydroxyacid dehydratase             |
| 41 YPR114W | NA           | -2.04  | -3.16            |         | Hypothetical ORF                      |
| 42 YBR248C | HIS7         | -2.40  | -2.66            |         | imidazole glycerol P synthase         |
| 43 YHR029C | NA           | -2.19  | -2.80            |         | Hypothetical ORF                      |
| 44 YHR143W | DSE2         | -2.19  | -2.75            |         | Daughter cell-specific secreted       |
| 45 YGL028C | SCW11        | -2.25  | -2.66            |         | glucanase                             |
| 46 YLR426W | NA           | -2.50  | -2.35            |         | Hypothetical ORF                      |
| 47 YPL099C | NA           | -2.37  | -2.39            |         | Localized to the mitochondria         |
| 48 YBR194W | NA           | -2.50  | -2.26            |         | Synthetic with Old Yellow Enzyme      |
| 49 YNL327W | EGT2         | -2.32  | -2.42            |         | Glycosylphosphatidylinositol (GPI)    |
| 50 YMR132C | JLP2         | -2.79  | -2.01            | -2.37   | Hypothetical ORF                      |
|            |              |        |                  |         |                                       |

# Top 100 ORFs - with 3' non-coding transcripts: Differential expression (ess1-ts vs. wild-type, 34°C) from +25 to +150 bp from the TSS

### (5,074 ORFs evaluated)

|    |           | Common | Adjacent ORF | Common |      | Aberrant transcripts  |        | rrp6 - SAGE         |        | <i>rrp6</i> Tiling Array |        |
|----|-----------|--------|--------------|--------|------|-----------------------|--------|---------------------|--------|--------------------------|--------|
|    | ORF       | name   | -            | name   |      | in ess1 mutant        | Strand | (Neil et al., 2009) | Strand | (Xu et al. 2009)         | Strand |
| 1  | YDR041W   | RSM10  | YDR042C      |        | 8.56 | SNR47 RT (1)          |        |                     |        |                          |        |
| 2  | YBR118W   | TEF2   | YBR119W      | MUD1   | 8.44 | E-CBR118/9 (1)        | W      |                     |        |                          |        |
| 3  | YOR271C   | FSF1   | YOR270C      | VPH1   | 7.34 | E-COR270/1            |        |                     |        |                          |        |
| 4  | YML058W   | SML1   | YML057W      | CMP2   | 6.96 | Readthrough (RT)      |        |                     |        |                          |        |
| 5  | YCL005W   | LDB16  | YCL004W      | PGS1   | 6.28 | E-CCL004/5            | W      |                     |        |                          |        |
| 6  | YMR143W   | RPS16A | YMR144W      |        | 6.20 | E-CMR143/4            |        |                     |        |                          |        |
| 7  | YLR221C   | RSA3   | YLR220W      | CCC1   | 5.94 | E-CLR220/1            |        |                     |        |                          |        |
| 8  | YLL018C   | DPS1   | YLL018C-A    | COX19  | 5.18 | RT                    |        |                     |        | CUT248                   | W      |
| 9  | YPL081W   | RPS9A  | YPL079W      | RPL21B | 5.17 | E-CPL079/81           |        |                     |        |                          |        |
| 10 | YFL038C   | YPT1   | YFL039C      | ACT1   | 5.15 | SUT101                | W      |                     |        | SUT101                   | W      |
| 11 | YOR279C   | RFM1   | YOR278W      | HEM4   | 4.45 | SNR5 RT (1)           |        |                     |        |                          |        |
| 12 | YFR033C   | QCR6   | YFR032C-B    |        | 4.38 | E-CFR032-B/3          |        | CFR033CTa3          | W      |                          |        |
| 13 | YLR153C   | ACS2   | YLR152C      |        | 4.36 | CUT264                | W      |                     |        | CUT264                   | W      |
| 14 | YHR156C   | LIN1   | YHR155W      | YSP1   | 4.32 | E-CHR155/6 (*)        |        |                     |        |                          |        |
| 15 | YNL103W-A |        | YNL103W      | MET4   | 3.99 | SUT334                | W      |                     |        | SUT334                   | W      |
| 16 | YMR194W   | RPL36A | SNR11        |        | 3.97 | E-CMR194/SNR11        |        |                     |        |                          |        |
| 17 | YER082C   | UTP7   | YER081W      | SER3   | 3.89 | SRG1 RT (1)           |        |                     |        |                          |        |
| 18 | YJL136C   | RPS21B | YJL137C      | GLG2   | 3.65 | E-CJL136/7            |        |                     |        |                          |        |
| 19 | YER166W   | DNF1   | YER167W      | BCK2   | 3.54 | E-CER166/7, TERM      |        |                     |        |                          |        |
| 20 | YHL025W   | SNF6   | YHL024W      | RIM4   | 3.50 | E-CHL024/5            |        |                     |        |                          |        |
| 21 | YOR045W   | TOM6   | YOR046C      | DBP5   | 3.43 | E-COR045/6 (*)        |        |                     |        |                          |        |
| 22 | YBL029C-A |        | YBL030C      | PET9   | 3.42 | E-CBL029A/30          |        |                     |        | SUT006                   | W      |
| 23 | YNL024C   |        | YNL024C-A    |        | 3.36 | E-CNL024/A            |        |                     |        | CUT343                   | W      |
| 24 | YNL134C   |        | YNL135C      | FPR1   | 3.32 | E-CNL134/5            |        |                     |        | SUT330                   | W      |
| 25 | YDR002W   | YRB1   | YDR003W      | RCR2   | 3.28 | E-CDR002/3            |        |                     |        | CUT061                   | W      |
| 26 | YPR114W   |        | YPR115W      | GCA1   | 3.25 | E-CPR114/5, RT        | W      | CPR114WTa2          | С      |                          |        |
| 27 | YCR012W   | PGK1   | YCR014W      | POL4   | 3.20 | E-CCR012/14           |        |                     |        | CUT045                   | W      |
| 28 | YBR249C   | ARO4   | YBR248C      | HIS7   | 3.17 | CBR249CTa2            | W      | CBR249CTa2          | W      | CUT037                   | W      |
| 29 | YBR092C   | PHO3   | YBR091C      | MRS5   | 3.09 | E-CBR091/2, INI, TERM |        |                     |        |                          |        |
| 30 | YOR323C   | PRO2   | YOR322C      | LDB19  | 3.08 | E-COR322/3            |        |                     | 1      |                          |        |
| 31 | YKL007W   | CAP1   | YKL006C-A    | SFT1   | 3.07 | E-CKL006A/7, TERM     |        |                     |        |                          |        |
| 32 | YHR008C   | SOD2   | YHR007C-A    |        | 3.07 | CHR008CTa3-A          | W      | CHR008CTa3-A        | W      | SUT153                   | W      |
| 33 | YLR344W   | RPL26A | YLR345W      |        | 2.99 | E-CLR344/5            |        |                     | 1      |                          |        |
| 34 | YGR245C   | SDA1   | YGR244C      | LSC2   | 2.91 | CGR245CTa3-B          | W      | CGR245CTa3-B        | W      |                          |        |
| 35 | YDR233C   | RTN1   | YDR232W      | HEM1   | 2.90 | TERM, RT              | С      |                     | 1      |                          |        |

| 36 | YPL198W   | RPL7B  | YPL196W   | OXR1   | 2.87 | E-CPL196/8                                                                 |   |                                                            |         |               |     |
|----|-----------|--------|-----------|--------|------|----------------------------------------------------------------------------|---|------------------------------------------------------------|---------|---------------|-----|
| 00 | 11 210011 | 10 210 |           | 0,441  | 2.01 | CGL120CTa3 (?)                                                             |   | CGL120CTa3                                                 |         |               |     |
| 37 | YGL120C   | PRP43  | YGL121C   | GPG1   | 2.83 | CGL121CTa3 (?)                                                             | w | CGL121CTa3                                                 | W,W     | CUT135        | W   |
| 38 | YHR062C   | RPP1   | YHR061C   | GIC1   | 2.81 | E-CHR061/2,TERM                                                            |   |                                                            |         | SUT159        | W   |
| 39 | YHR155W   | YSP1   | YHR156C   | LIN1   | 2.78 | E-CHR155/6 (*)                                                             |   |                                                            |         |               |     |
| 40 | YPR139C   | VPS66  | YPR138C   | MEP3   | 2.77 | E-CPR138/9, TERM                                                           |   |                                                            |         | SUT423,SUT424 | W,W |
| 41 | YOR046C   | DBP5   | YOR045W   | TOM6   | 2.75 | E-COR045/6 (*)                                                             |   |                                                            |         |               |     |
| 42 | YCL028W   | RNQ1   | YCL027W   | FUS1   | 2.74 | RT (1)                                                                     | W |                                                            |         |               |     |
| 43 | YJR104C   | SOD1   | YJR103W   | URA8   | 2.74 | URA8 upregulated                                                           |   |                                                            |         |               |     |
| 44 | YPL136W   |        | YPL135W   | ISU1   | 2.74 | E-CPL135/6, INI, TERM                                                      |   |                                                            |         | SUT400        | W   |
| 45 | YML061C   | PIF1   | YML062C   | MFT1   | 2.72 | E-CML061/2                                                                 |   |                                                            |         | SUT293        |     |
| 46 | YIL023C   | YKE4   | YIL024C   |        | 2.71 | RT                                                                         | С |                                                            |         | CUT698,CUT647 | C,C |
| 47 | YOR186W   |        | YOR187W   | TUF1   | 2.70 | E-COR186/7                                                                 |   |                                                            |         |               |     |
| 48 | YKL054C   | DEF1   | YKL055C   | OAR1   | 2.68 | E-CKL054/5, RT                                                             |   |                                                            |         | CUT232,CUT233 | W,W |
| 49 | YNL002C   | RLP7   | YNL003C   | PET8   | 2.68 | CNL002CTa2                                                                 | W | CNL002CTa2                                                 | W       |               |     |
| 50 | YNL016W   | PUB1   | YNL015W   | PBI2   | 2.66 | CNL016WTa2                                                                 | С | CNL016WTa2                                                 | С       | SUT751        | С   |
| 51 | YGR210C   |        | YGR209C   | TRX2   | 2.66 | E-CGR209/10, INI, TERM                                                     |   |                                                            |         |               |     |
| 52 | YHR057C   | CPR2   | YHR056W-A |        | 2.65 | E-CHRO56A/7 (*)                                                            |   |                                                            |         |               |     |
| 53 | YMR013W-A | -      | YMR013C   | SEC59  | 2.63 | YMR013C upregulated                                                        |   |                                                            |         |               |     |
| 54 | YNL091W   | NST1   | YNL090W   | RHO2   | 2.62 | TERM, RT                                                                   |   |                                                            |         | CUT473        | С   |
| 55 | YOR133W   | EFT1   | YOR134    | BAG7   | 2.60 | COR134WTs2 (?)<br>COR133WTa1-A (?)<br>COR133WTa3-B (?)<br>COR133WTa3-C (?) |   | COR134WTs2<br>COR133WTa1-A<br>COR133WTa3-B<br>COR133WTa3-C | W,C,C,C |               |     |
| 56 | YDL074C   | BRE1   | SNR63     |        | 2.60 | E-CDL074/SNR63, TERM                                                       |   |                                                            |         | SUT046        | W   |
| 57 | YDL193W   | NUS1   | YDL192W   | ARF1   | 2.59 | TERM, RT                                                                   |   |                                                            |         |               |     |
| 58 | YJR114W   |        | YJR115W   |        | 2.59 | RT                                                                         | W |                                                            |         |               |     |
| 59 | YLR203C   | MSS51  | YLR201C   | COQ9   | 2.58 | E-CLR201/3                                                                 |   |                                                            |         |               |     |
| 60 | YDL075W   | RPL31A | SNR63     |        | 2.56 | E-CDL075/SNR63, RT                                                         |   |                                                            |         |               |     |
| 61 | YGR092W   | DBF2   | YGR093W   | DRN1   | 2.55 | E-CGR092/3                                                                 |   |                                                            |         | CUT613        | С   |
| 62 | YHR056W-A |        | YHR057C   | CPR2   | 2.53 | E-CHRO56A/7 (*)                                                            |   |                                                            |         |               |     |
| 63 | YPR183W   | DPM1   | YPR184W   | GDB1   | 2.51 | E-CPR183/4, RT                                                             | W | CPR183WTa3                                                 | С       | CUT923        | С   |
| 64 | YPR043W   | RPL43A | YPR045C   | MNI2   | 2.49 | E-CPR043/5 (*)                                                             |   |                                                            |         | CUT427        | W   |
| 65 | YBR093C   | PHO5   | YBR092C   | PHO3   | 2.47 | E-CBR092/3                                                                 |   |                                                            |         | CUT025        | W   |
| 66 | YOR324C   | FRT1   | YOR323C   | PRO2   | 2.45 | COR324CTa2                                                                 | С | COR324CTa2                                                 | W       | CUT393        | W   |
| 67 | YMR213W   | CEF1   | YMR214W   | SCJ1   | 2.44 | E-CMR213/4, TERM, RT                                                       |   |                                                            |         |               |     |
| 68 | YOR013W   | IRC11  | YOR014W   | RTS1   | 2.40 | E-COR013/4, RT                                                             |   |                                                            |         |               |     |
| 69 | YHR083W   | SAM35  | YHR084W   | STE12  | 2.40 | CHR083WTa3                                                                 | С | CHR083WTa3                                                 | С       | CUT646        |     |
| 70 | YCL064C   | CHA1   | YCL065W   |        | 2.39 | TERM                                                                       | C |                                                            |         |               |     |
| 71 | YPR045C   | MNI2   | YPR043W   | RPL43A | 2.38 | E-CPR043/5 (*)                                                             |   |                                                            |         | CUT427        | W   |
| 72 | YGR135W   | PRE9   | YGR136W   | LSB1   | 2.36 | E-CGR135/6                                                                 |   | CGR135WTa3A<br>CGR135WTa3-C                                | C,C     | CUT561,CUT620 | C,C |
|    |           |        | YDR348C   | -00,   | 2.00 | 2 0011100/0                                                                | 1 | 0.01110011100-0                                            | 5,5     | 001,001020    | 0,0 |

| 74  | YGR093W   | DRN1   | YGR094    | VAS1   | 2.32 | E-CGR093/4            |   | CGR093WTa3-A  | С   | CUT614        | С   |
|-----|-----------|--------|-----------|--------|------|-----------------------|---|---------------|-----|---------------|-----|
| 75  | YDL083C   | RPS16B | YDL084W   | SUB2   | 2.32 | E-CDL083/4            |   |               |     |               |     |
| 76  | YBR080C   | SEC18  | YBR079C   | RPG1   | 2.31 | E-CBR079/80           |   |               |     |               |     |
| 77  | YML028W   | TSA1   | YML027W   | YOX1   | 2.31 | RT                    | W |               |     |               |     |
| 78  | YOR370C   | MRS6   | YOR369C   | RPS12  | 2.29 | E-COR369/70           |   |               |     |               |     |
| 79  | YML125C   | PGA3   | YML126C   | ERG13  | 2.29 | E-CML125/6, RT        |   |               |     |               |     |
| 80  | YPL015C   | HST2   | YPL016W   | SWI1   | 2.29 | E-CPL015/6            |   |               |     | SUT820        | С   |
| 81  | YLR388W   | RPS29A | SNR34     |        | 2.28 | E-CLR388/SNR34        |   |               |     |               |     |
| 82  | YHR186C   | KOG1   | YHR185C   | PFS1   | 2.28 | E-CHR185/6            |   |               |     |               |     |
| 83  | YOR246C   |        | YOR245C   | DGA1   | 2.28 | E-COR245/6            |   | COR246CTa2    | W   |               |     |
|     |           |        |           |        |      |                       |   | CER165WTs2    |     |               |     |
| 84  | YER164W   | CHD1   | YER165W   | PAB1   | 2.27 | E-CER164/5            |   | CER164WTa3    | W,C | CUT570,SUT517 | C,C |
| 85  | YNL299W   | TRF5   | YNL298W   | CLA4   | 2.27 | E-CNL298/9, RT        | W |               |     | CUT798        | С   |
| 86  | YPL036W   | PMA2   | YPL034W   |        | 2.27 | E-CPL034/6, TERM      | W |               |     |               |     |
| 87  | YLR186W   | EMG1   | YLR187W   | SKG3   | 2.26 | E-CLR186/7            |   |               |     |               |     |
| 88  | YMR015C   | ERG5   | YMR014W   | BUD22  | 2.26 | E-CMR014/5            |   |               |     |               |     |
|     |           |        |           |        |      |                       |   | CMR122W-ATa1C |     |               |     |
| 89  | YMR122W-A |        | YMR123W   | PKR1   | 2.25 | E-CMR122A/3           |   | CMR121CD1-A   | C,C | SUT306,CUT775 | W,C |
| 90  | YGR156W   | PTI1   | YGR157W   | CHO2   | 2.24 | CGR156WTa3-B          | С | CGR156WTa3-B  | С   | CUT623,SUT564 | C,C |
| 91  | YMR142C   | RPL13B | YMR143W   | RPL16A | 2.23 | E-CMR142/3, INI, TERM |   |               |     |               |     |
| 92  | YGL198W   | YIP4   | YGL197W   | MDS3   | 2.23 | E-CGL197/8, TERM, RT  |   | CGL198WTa3    | С   |               |     |
| 93  | YPR070W   | MED1   | YPR071W   |        | 2.21 | E-CPR070/1, TERM, RT  |   |               |     |               |     |
| 94  | YLR075W   | RPL10  | YLR077W   | FMP25  | 2.21 | E-CLR075/7, INI, TERM |   |               |     |               |     |
| 95  | YDR315C   | IPK1   | YDR314C   | RAD34  | 2.21 | E-CDR314/5            |   |               |     | CUT080        | W   |
| 96  | YLR056W   | ERG3   | YLR057W   |        | 2.20 | E-CLR056/7, RT        |   | CLR056WTa3-B  | С   |               |     |
| 97  | YBR256C   | RIB5   | YBR255C-A |        | 2.19 | E-CBR255A/6           |   |               |     |               |     |
| 98  | YER138W-A |        | YER139C   | RTR1   | 2.18 | E-CER138A/9           |   |               |     |               |     |
| 99  | YER048C   | CAJ1   | YER047C   | SAP1   | 2.18 | E-CER047/8, INI, TERM |   |               |     |               |     |
| 100 | YGL031C   | RPL24A | YGL032C   | AGA2   | 2.18 | E-CGL031/2, INI, TERM |   |               |     |               |     |

(1) confirmed by RT-PCR and/or Northern analysis (this paper); (E-) indicates CUT specific to ess1 mutants (also highlighted in red; (\*) transcripts found between two convergent ORFs (will therefore appear more than once in Table); Potential defects in readthrough (RT), initiation (INI) or termination (TERM). Ess1-specific CUTs have been named for the adjacent ORF, using the nomenclature of Neil et al., 2009.

### Top 100 ORFs - with 5' non-coding transcripts: Differential expression (ess1-ts vs. wild-type, 34°C) from -200 to -50 bp from the TSS

### (4,367 ORFs evaluated)

|    | ORF       | Common<br>name | Adjacent<br>ORF<br>(upstream) | Common<br>name | Fold Up | Aberrant transcripts<br>in <i>ess1</i> mutant | Strand | <i>rrp6 -</i> SAGE<br>(Neil et al., 2009) | Strand | <i>rrp6</i> Tiling Array<br>(Xu et al. 2009) | Strand |
|----|-----------|----------------|-------------------------------|----------------|---------|-----------------------------------------------|--------|-------------------------------------------|--------|----------------------------------------------|--------|
| 1  | YHR156C   | LIN1           | YHR157W                       | REC104         | 6.97    | snoRNA, RT (1); CUT187                        |        |                                           |        | CUT181                                       | W      |
| 2  | YLR152C   |                | YLR153C                       | ACS2           | 5.94    | CUT264, (‡)                                   | W      |                                           |        | CUT264                                       | W      |
| 3  | YOR234C   | RPL33B         | SNR17A                        |                | 5.45    | E-COR234/SNR17A                               |        |                                           |        |                                              |        |
| 4  | YMR144W   |                | YMR143W                       | RPS16A         | 5.45    | E-CMR143/4, INI, TERM, (‡)                    |        |                                           |        |                                              |        |
| 5  | YOR270C   | VPH1           | YOR271C                       | FSF1           | 5.36    | E-COR270/1, (‡)                               |        |                                           |        |                                              |        |
| 6  | YLL018C-A | COX19          | YLL018C                       | DPS1           | 5.22    | RT, (‡)                                       | С      |                                           |        | CUT248                                       | W      |
| 7  | YDR462W   | MRPL28         | YDR461C-A                     |                | 5.06    | E-CDR461A/2                                   |        |                                           |        |                                              |        |
| 8  | YOR182C   | RPS30B         | YOR183W                       | FVY12          | 4.98    | E-COR182/3                                    |        |                                           |        |                                              |        |
| 9  | YPL079W   | RPL21B         | YPL081W                       | RPS9A          | 4.32    | E-CPL079/81, (‡)                              |        |                                           |        |                                              |        |
| 10 | YDR156W   | RPA14          | YDR155C                       | CPR1           | 4.29    | E-CDR155/6, (**)                              |        | CDR156WD1                                 | W      |                                              |        |
| 11 | YPR115W   | GCA1           | YPR114W                       |                | 4.09    | E-CPR114/5, RT                                | W      | CPR114WTa2                                | С      |                                              |        |
| 12 | YCL004W   | PGS1           | YCL005W                       | LDB16          | 4.08    | E-CCL004/5, RT, (‡)                           | W      |                                           | -      |                                              |        |
| 13 | YJR145C   | RPS4A          | YJR147W                       | HMS2           | 3.91    | E-CJR145/7                                    | W      |                                           |        | SUT650                                       | С      |
| 14 | YGL031C   | RPL24A         | YGL030W                       | RPL30          | 3.85    | E-CGLO30/1, INI, TERM<br>(**)                 |        |                                           |        |                                              |        |
| 15 | YHR041C   | SRB2           | YHR042W                       | NCP1           | 3.67    | E-CHR041/2, (**)                              | W      |                                           |        | SUT156,CUT642                                | W,C    |
| 16 | YHR021C   | RPS27B         | YHR021W-A                     | ECM12          | 3.66    | CHR021W-AD4                                   | W      | CHR021W-AD4                               | W      |                                              |        |
| 17 | YGL189C   | RPS26A         | YGL188C-A                     |                | 3.58    | E-CGL188A/9                                   | W      |                                           |        |                                              |        |
| 18 | YKR094C   | RPL40B         | YKR095W                       | MLP1           | 3.56    | CKR094CD1                                     | W      | CKR094CD1                                 | С      | SUT242                                       | W      |
| 19 | YCR013C   |                | YCR014C                       | POL4           | 3.36    | CUT045                                        | W      |                                           |        | CUT045                                       | W      |
| 20 | YLR432W   | IMD3           | YLR431C                       | ATG23          | 3.30    | CLR432WD2                                     | W      | CLR432WD2                                 | W      |                                              |        |
| 21 | YAL003W   | EFB1           | YAL005C                       | SSA1           | 3.26    | E-CAL003/5                                    |        |                                           |        |                                              |        |
| 22 | YGR149W   |                | YGR148C                       | RPL24B         | 3.16    | E-CGR148/9                                    |        |                                           |        |                                              |        |
| 23 | YIL069C   | RPS24B         | YIL068C                       | SEC6           | 3.16    | E-CIL068/9                                    |        |                                           |        |                                              |        |
|    |           |                |                               |                |         | CDR233CD3-A                                   |        | CDR233CD3-A                               |        |                                              |        |
| 24 | YDR234W   | LYS4           | YDR233C                       | RTN1           | 3.13    | CDR234WD2                                     | C,W    | CDR234WD2                                 | C,W    |                                              |        |
| 25 | YJR148W   | BAT2           | YJR147W                       | HMS2           | 3.10    | CJR147WTa3                                    | С      | CJR147WTa3                                | С      | SUT650                                       | С      |
| 26 | YIL051C   | MMF1           | YIL050W                       | PCL7           | 3.07    | CIL050WD1-B<br>CIL051CD1-B, (**)              | W,C    | CIL050WD1-B<br>CIL051CD1-B                | W,C    |                                              |        |
| 27 | YPL206C   | PGC1           | YPL204W                       | HRR25          | 3.07    | CPL206CD1, (**)                               | С      | CPL206CD1                                 | С      | CUT886                                       | С      |
| 28 | YGR148C   | RPL24B         | YGR149W                       |                | 3.06    | E-CGR148/9 (**)                               |        |                                           |        |                                              |        |
| 29 | YDR233C   | RTN1           | YDR234W                       | LYS4           | 3.02    | CDR233CD3-A<br>CDR234WD2; (**)                | C,W    | CDR233CD3-A<br>CDR234WD2                  | C,W    |                                              |        |
| 30 | YBL030C   | PET9           | YBL029C-A                     |                | 2.94    | E-CBL029C/30, (‡)                             | W      |                                           |        | SUT006                                       | W      |
| 31 | YPL233W   | NSL1           | YPL234C                       | TFP3           | 2.87    | E-CPL233/4                                    | W      |                                           |        |                                              |        |

| 32 | YNL015W   | PBI2   | YNL016W   | PUB1   | 2.85 | CNL016WTa2, (‡)                             | С   | CNL016WTa2   | С     | SUT751        | С   |
|----|-----------|--------|-----------|--------|------|---------------------------------------------|-----|--------------|-------|---------------|-----|
| 33 | YDL082W   | RPL13A | YDL083C   | RPS16B | 2.83 | E-CDL082/3, (**)                            |     | ONLONGIAL    |       | 001101        | Ŭ   |
| 34 | YJL137C   | GLG2   | YJL136C   | RPS21B | 2.81 | E-CJL136/7, (‡)                             |     |              |       |               |     |
| 35 | YBR248C   | HIS7   | YBR249C   | ARO4   | 2.77 | CBR249CTa2, (‡)                             | W   | CBR249CTa2   | W     | CUT037        | W   |
| 36 | YGR244C   | LSC2   | YGR245C   | SDA1   | 2.77 | CGR245CTa3-B, (‡)                           | W   | CGR245CTa3-B | W     | 01037         | VV  |
| 37 | YDR471W   | RPL27B | YDR470C   | UG01   | 2.77 | E-CDR470/1                                  | vv  | CGR240C100-D | vv    |               |     |
| 38 | YNL298W   | CLA4   | YNL299W   | TRF5   | 2.74 | E-CNL298/9, RT, (‡)                         | W   |              |       | CUT798        | С   |
| 39 | YNL300W   | CLA4   | YNL301C   | RPL18B | 2.74 | E-CNL290/9, RT, (‡)<br>E-CNL300/1, RT, (**) | W   |              |       | SUT742        | C   |
|    |           | NODA   |           |        |      |                                             | W   |              |       |               | -   |
| 40 | YHR042W   | NCP1   | YHR041C   | SRB2   | 2.72 | E-CHR041/2, (**)                            | VV  | 00045014/04  |       | SUT156,CUT642 | W,C |
| 41 | YDR155C   | CPR1   | YDR156W   | RPA14  | 2.71 | E-CDR155/6, (**)                            |     | CDR156WD1    | W     |               | -   |
| 40 |           | 0014   |           |        | 0.70 | CEL007WD1-C                                 | W O | CEL007WD1-C  |       |               |     |
| 42 | YEL009C   | GCN4   | YEL007W   |        | 2.70 | CEL009CD2                                   | W,C | CEL009CD2    | W,C   |               |     |
| 43 | YCL027W   | FUS1   | YCL028W   | RNQ1   | 2.68 | RT, (‡) (1)                                 | W   |              |       | -             |     |
| 44 | YBR119W   | MUD1   | YBR118W   | TEF2   | 2.65 | E-CBR118/9, (‡) (1)                         | W   |              |       |               |     |
| 45 | YPL143W   | RPL33A | SNR17B    |        | 2.63 | E-CPL143/SNR17B                             | -   |              |       |               | _   |
| 46 | YPR144C   | NOC4   | SNR45     |        | 2.63 | CUT916                                      | С   |              |       | CUT916        | С   |
| 47 | YJR105W   | ADO1   | YJR104C   | SOD1   | 2.62 | E-CJR104/5                                  |     |              |       | SUT217,SUT645 | W,C |
|    |           |        |           |        |      | CGL120CTa3 (?)                              |     | CGL120CTa3   |       |               |     |
| 48 | YGL121C   | GPG1   | YGL120C   | PRP43  | 2.62 | CGL121CTa3 (?), (‡)                         | W   | CGL121CTa3   | W,W   | CUT135        | W   |
| 49 | YPL204W   | HRR25  | YPL206C   | PGC1   | 2.61 | E-CPL204/6, (**)                            |     |              |       | CUT886        | С   |
| 50 | YNL135C   | FPR1   | YNL134C   |        | 2.60 | E-CNL134/5, (‡)                             |     |              |       | SUT330        | W   |
| 51 | YER009W   | NTF2   | YER008C   | SEC3   | 2.60 | E-CER008/9, (**)                            |     |              |       |               |     |
| 52 | YGR214W   | RPS0A  | YGR213C   | RTA1   | 2.60 | E-CGR213/4                                  |     |              |       | CUT162        | W   |
| 53 | YBL071W-A | KTI11  | YBL071C-B |        | 2.59 | E-CBL071A/B                                 | W   |              |       |               |     |
|    |           |        |           |        |      | E-CGR209/10, INI,                           |     |              |       |               |     |
| 54 | YGR209C   | TRX2   | YGR210C   |        | 2.58 | TERM, (‡)                                   |     |              |       |               |     |
| 55 | YER058W   | PET117 | YER057C   | HMF1   | 2.56 | E-CER057/8                                  |     | CER057CD1    | С     | SUT092        | W   |
| 56 | YCL057C-A |        | YCL057W   | PRD1   | 2.55 | CCL057WD1, (**)                             | W   | CCL057WD1    | W     |               |     |
|    |           |        |           |        |      | E-CBR091/2, INI, TERM,                      |     |              |       |               |     |
| 57 | YBR091C   | MRS5   | YBR092C   | PHO3   | 2.55 | (‡)                                         |     |              |       |               |     |
| 58 | YJL190C   | RPS22A | YJL189W   | RPL39  | 2.54 | E-CJL189/90                                 |     |              |       | SUT617        | С   |
|    |           |        |           |        |      |                                             |     | CEL046CD1    |       |               |     |
| 59 | YEL044W   | IES6   | YEL046C   | GLY1   | 2.53 | E-CEL044/6                                  |     | CEL046CD2    | C,C   |               |     |
| 60 | YKL006W   | RPL14A | SNR87     |        | 2.49 | E-CKL006/SNR87                              |     | CKL006WD1-A  | W     |               |     |
| 61 | YNL003C   | PET8   | YNL002C   | RLP7   | 2.48 | CNL002CTa2, (‡)                             | W   | CNL002CTa2   | W     |               |     |
| 62 | YDR003W   | RCR2   | YDR002W   | YRB1   | 2.48 | E-CDR002/3, (‡)                             |     |              |       | CUT061        | W   |
| 63 | YKL150W   | MCR1   | YKL151C   |        | 2.48 | E-CKL150/1                                  |     |              |       |               |     |
| 64 | YBR173C   | UMP1   | YBR175W   | SWD3   | 2.47 | E-CBR173/5                                  |     |              |       |               |     |
|    | 1         |        |           |        |      | CIL050WD1-B                                 |     | CIL050WD1-B  |       |               |     |
|    |           |        |           |        |      | CIL051CD1-B                                 |     | CIL051CD1-B  |       |               |     |
| 65 | YIL050W   | PCL7   | YIL051C   | MMF1   | 2.47 | CIL051CD2, (**)                             |     | CIL051CD2    | W,C,C |               |     |
| 66 | YNL096C   | RPS7B  | YNL095C   |        | 2.44 | E-CNL095/6                                  |     |              |       | SUT334        | W   |
| 67 | YLR172C   | DPH5   | YLR173W   |        | 2.42 | CLR172CTa1                                  | W   | CLR172CTa1   | W     | SUT268        | W   |
| 68 | YMR240C   | CUS1   | YMR241W   | YHM2   | 2.38 | E-CMR240/1                                  | С   | CMR241WD1    | W     |               |     |

|     |           |        |             |        |      | E-CMR142/3, INI, TERM, |   |                        |          |               |     |
|-----|-----------|--------|-------------|--------|------|------------------------|---|------------------------|----------|---------------|-----|
| 69  | YMR142C   | RPL13B | YMR143W     | RPS16A | 2.37 | (‡)                    |   |                        |          |               |     |
| 70  | YOL154W   | ZPS1   | YOL155C     | HPF1   | 2.37 | E-COL154/5 (1)         |   |                        |          |               |     |
| 71  | YOR312C   | RPL20B | YOR313C     | SPS4   | 2.36 | E-COR312/3             |   |                        |          |               |     |
| 72  | YDR510W   | SMT3   | YDR508C     | GNP1   | 2.34 | E-CDR508/10            |   | CDR508CD3              | С        |               |     |
| 73  | YBL087C   | RPL23A | YBL086C     |        | 2.34 | E-CBL086/7             |   |                        |          |               |     |
| 74  | YCL057W   | PRD1   | YCL057C-A   |        | 2.33 | CCL057WD1, (**)        | W | CCL057WD1              | W        |               |     |
| 75  | YCR032W   | BPH1   | SNR189      |        | 2.32 | CCR032WD1              | W | CCR032WD1              | W        | CUT048        | W   |
| 76  | YNL090W   | RHO2   | YNL091W     | NST1   | 2.31 | TERM, RT, (‡)          | W |                        |          |               |     |
| 77  | YFR032C-B |        | YFR033C     | QCR6   | 2.30 | E-CFR032B/3, (‡)       | W | CFR033CTa3             | W        |               |     |
| 78  | YFL031W   | HAC1   | YFL033C     | RIM15  | 2.30 | E-CFL031/3             |   | CFL031WD2<br>CFL033CD2 | W,C      |               |     |
| 79  | YPR184W   | GDB1   | YPR183W     | DPM1   | 2.29 | E-CPR183/4, RT, (‡)    | W | CPR183WTa3             | C        | CUT923        | С   |
| 80  | YNL240C   | NAR1   | YNL239W     | LAP3   | 2.28 | E-CNL239/40, (**)      | W |                        | <u> </u> | SUT324        | W   |
| 00  |           |        | Intelector  | 2      | 2.20 |                        |   | CBR082CD1-B            |          | 001021        |     |
| 81  | YBR083W   | TEC1   | YBR082C     | UBC4   | 2.28 | E-CBR082/3             | w | CBR082CD1-C            | C,C      | CUT453        | С   |
|     |           |        |             |        |      |                        |   | CGR027CD1-A            | - / -    |               |     |
| 82  | YGR027C   | RPS25A | YGRWDELTA11 |        | 2.27 | E-CGR027/DELTA11       |   | CGR027CD1-B            | C,C      | CUT606        | С   |
| 83  | YML027W   | YOX1   | YML028W     | TSA1   | 2.26 | RT, (‡)                | W |                        |          |               |     |
| 84  | YCL021W-A |        | YCLCDELTA1  |        | 2.26 | E-CCL021A/DELTA1, RT   | W | CtE(UUC)CD2            | С        |               |     |
| 85  | YNL239W   | LAP3   | YNL240C     | NAR1   | 2.25 | E-CNL239/40, (**)      | W |                        |          | SUT324        | W   |
| 86  | YHR204W   | MNL1   | YHR203C     | RPS4B  | 2.25 | E-CHR203/4, RT         | W |                        |          |               |     |
| 87  | YLR345W   |        | YLR344W     | RPL26A | 2.23 | E-CLR344/5, (‡)        |   |                        |          |               |     |
| 88  | YOL039W   | RPP2A  | YOL040C     | RPS15  | 2.23 | E-COL039/40, (**)      |   |                        |          |               |     |
| 89  | YNL301C   | RPL18B | YNL300W     |        | 2.23 | E-CNL300/1, RT, (**)   | W |                        |          | SUT742        | С   |
| 90  | YDL083C   | RPS16B | YDL082W     | RPL13A | 2.21 | E-CDL082/3, (**)       |   |                        |          |               |     |
| 91  | YML007W   | YAP1   | YML007C-A   |        | 2.21 | E-CML007/A             |   |                        |          | SUT296/uORF   | W   |
| 92  | YER008C   | SEC3   | YER009W     | NTF2   | 2.20 | E-CER008/9, (**)       |   |                        |          | SUT330        | W   |
| 93  | YOL040C   | RPS15  | YOL039W     | RPP2A  | 2.20 | E-COL039/40, (**)      |   |                        |          |               |     |
| 94  | YLL048C   | YBT1   | YLL046C     | RNP1   | 2.20 | E-CLL046/8             | С | CLL046CTa3-B           | W        |               |     |
| 95  | YLR350W   | ORM2   | YLR349W     |        | 2.20 | E-CLR349/50            |   |                        |          | SUT708        | С   |
| 96  | YBR048W   | RPS11B | YBR047W     | FMP23  | 2.19 | E-CBR047/8             |   | CBR047WTa3             | С        |               |     |
| 97  | YKL103C   | LAP4   | YKL101W     | HSL1   | 2.17 | E-CKL101/3             |   | CKL103CD3              | C        | CUT229        | W   |
| 98  | YGR157W   | CHO2   | YGR156W     | PTI1   | 2.16 | CGR156WTa3-B, (‡)      | С | CGR156WTa3-B           | C        | CUT623,SUT564 | C,C |
| 99  | YOR052C   |        | YOR053W     |        | 2.16 | E-COR052/3             |   |                        |          |               | -,- |
| 100 | YOR322C   | LDB19  | YOR323C     | PRO2   | 2.15 | E-COR322/3, (±)        | 1 |                        |          |               |     |

(1) Confirmed by RT-PCR and/or Northern analysis (this paper); (E-) indicates CUT specific to ess1 mutants (also highlighted in red); (\*\*) transcripts found between two divergent ORFs (will therefore appear more than once in Table); (‡) transcripts also identified in 3' analysis (Table S2); Potential defects in readthrough (RT), initiation (INI) or termination (TERM). Ess1-specific CUTs have been named for the adjacent ORF, using the nomenclature of Neil et al., 2009.

| Strain name | Genotype                                                                                           | Source                          |
|-------------|----------------------------------------------------------------------------------------------------|---------------------------------|
| W303-1A     | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15                                           | Thomas and<br>Rothstein (1989)  |
| W303-1B     | MAT $\alpha$ ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15                                   | Thomas and<br>Rothstein (1989)  |
| YGD-ts22    | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 ess1 <sup>H164R</sup>                     | Wu et al., (2000)               |
| YSB2039     | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 PCF11-TAP                                 | S. Buratowski                   |
| YSB2040     | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 ess1 <sup>H164R</sup><br>PCF11-TAP        | S. Buratowski<br>(unnpublished) |
| YXW137      | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 ess1∆::HIS (pRS315-GAL1-ESS1)             | Gemmill et al.,<br>(2005)       |
| YXW138      | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 ess1∆::HIS (pRS315-GAL1-H164R)            | Gemmill et al., (2005)          |
| YJM1        | MATa ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15<br>srb10::TRP1                            | Wilcox et al.,<br>(2004)        |
| YJM2        | MAT <b>a</b> ura3-1 trp1-1 leu2-3,112 can1-100 ade2-1 his3-11,15 ess1 <sup>H164R</sup> srb10::TRP1 | Wilcox et al.,<br>(2004)        |
| CBW22       | MATa ura3-1 trp1-1 can1-100 ade2-1 his3-11,15 ess1 <sup>A</sup> HIS3 srb10::TRP1                   | Wilcox et al.,<br>(2004)        |
| 46a         | MATa cup1 $\Delta$ ura3 his3 trp1 lys2 ade2 leu2                                                   | Steinmetz and<br>Brow, (1996)   |
| 46a nrd1-5  | MAT $\alpha$ cup1 $\Delta$ ura3 his3 trp1 lys2 ade2 leu2 nrd1-5                                    | Steinmetz and<br>Brow, (1996)   |
| YJC1412     | MATa ade2 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1                                             | Conrad et al.,<br>(2000)        |
| YJC1098     | MATa ade2 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 nab3-11                                     | Conrad et al.,<br>(2000)        |
| NA67        | MATα ura3-1 leu2-3,112 trp1∆ his3-11,15 ade2-1 pcf11-9                                             | Amrani et al.,<br>(1997)        |
| BY4741      | MATa his3∆1 leu2∆0 met15∆0 ura3∆0                                                                  | Open<br>Biosystems              |
| Ess1-TAP    | MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ESS1-TAP::HIS3                                                   | Open<br>Biosystems              |

## Table S4. Saccharomyces cerevisiae strains used in this study

| Name  | Locus            | Sequence (5'->3')                         | Use                      |
|-------|------------------|-------------------------------------------|--------------------------|
| OW547 | SNR5-Forward (F) | GGT TCG CTC TAG GTG TAC ATA TC            | Intergenic PCR           |
| OW548 | SNR5-Reverse (R) | AAG CGG TAC GAA TAT GGG TTC               | دد                       |
| OW551 | SNR10-F          | GTA GTT GGA TTG ACG CAT G                 | دد                       |
| OW552 | SNR10-R          | CTA CAC AAT CTC TGC TCA TTA C             | دد                       |
| OW561 | SNR13-F          | GCT CGA GTT GCT GTT TGG CTT               | دد                       |
| OW562 | SNR13-R          | TTG TTG GTC AGA TGC GCT TGG               | دد                       |
| OW545 | SNR33-F          | AAA GCC TAG CTT TTA CAC CGG               | دد                       |
| OW546 | SNR33-R          | GTA TCC GTC CAT ATA TGT C                 | دد                       |
| OW563 | SNR50-F          | CCT TTA CAG AAC CGC TAC AC                | دد                       |
| OW564 | SNR50-R          | TGG TCA TGC TAG GGA TAT AG                | دد                       |
| OW559 | SNR60-F          | GAG ACC ATT GTG GAG CGA TTT               | دد                       |
| OW560 | SNR60-R          | ATG TCC CCT GTA AGC AAG TGT               | ۵۵                       |
| OW553 | SNR68-F          | GTT GGA TTT ATC ATG ATG AGC               | ۵۵                       |
| OW554 | SNR68-R          | CTA ATG GAT GCA CTA CCA ATG               | ۵۵                       |
| OW543 | SNR71-F          | GAT AAT CTA AGT CGG CTA AG                | دد                       |
| OW544 | SNR71-R          | GAA TGA CCA TGC TAA GCT GC                | دد                       |
| OW565 | SNR79-F          | CTC AAG ACT ACA ACG GTA TC                | ζζ                       |
| OW566 | SNR79-R          | AAC TCT GGA AGG TCA TCT AC                | دد                       |
| OW549 | SNR82-F          | CCC ACA GTC TAT AGT TTG ATA G             | دد                       |
| OW550 | SNR82-R          | GCT TTC CTT CGT AGA CGA TTC               | دد                       |
| OW501 | PYK1-F           | CTC TCT TGT TTC TAT TTA CAA GAC ACC AAT C | دد                       |
| OW502 | PYK1-R           | CGG AGA TGA CCT TGG TGA TGT TC            | دد                       |
| 000   |                  |                                           |                          |
| OW513 | SNR5-F           | TTG CAG GAT CCT TCA GGA TAA G             | Northern probes<br>(PCR) |
| OW514 | SNR5-R           | AGC TGA CTA CAG CAC AAC CCA AC            | دد                       |
| OW511 | HEM4-F           | GGT AAA ATA GAC CTT GCT CGA G             | دد                       |
| OW528 | HEM4-R           | ACG GAG ATG AAG GGG AGA CCA AAA TC        | دد                       |
| OW521 | SNR13-F          | ATG GCA TCT CAA ATC GTC TC                | دد                       |
| OW522 | SNR13-R          | TCC GTG TCT CTT GTC CTG CAA AG            | دد                       |
| OW587 | TRS31-F          | TAT CAC CAT CCA TAA TAC TGG AG            | دد                       |
| OW588 | TRS31-R          | TGA GAT GAT ATC AGC CAA ATC TC            | ۵۵                       |
| OW611 | SNR51-F          | TGA TAA AAG AGA CTG TTG CG                | ۵۵                       |
| OW612 | SNR51-R          | TAC ATA GGG TGC AAG ATT AG                | ۵۵                       |
| OW585 | YPR091C-F        | TCT CGC AGT TTA CTT GCT TGG C             | ۵۵                       |
| OW586 | YPR091C-R        | GTT GTG AAG GCC TTC TTG GTA C             | ۵۵                       |
| OW599 | SNR60-F          | CTG ACA TAC AAC AGG TGT TG                | دد                       |
| OW600 | SNR60-R          | GCC CTT CTC CAA TTA CAA GC                | دد                       |
| OW597 | UBX6-F           | GAC CCT CAA AGG AAG TGA ATT ACA G         | دد                       |
| OW598 | UBX6-R           | CAT GAT GGA AGA ACA ACC ACG TTG           | ۲۵                       |
| OW515 | SNR82-F          | ACG GCC CTC TAT TAA TTT GCT C             | ۲۵                       |
| OW516 | SNR82-R          | CGC TCA TAT GAC AAG ATA TAG GG            | ۲۵                       |
| OW581 | USE1-F           | GTT GAC AGG ACA CAT AAT AGC               | ۲۵                       |
| OW582 | USE1-R           | GGA GAA TTC TGC AGC CTA TAC               | ۲۵                       |
| OW595 | SNR33-F          | CGG AAC GGT ACA TAA GAA TA                | ۲۵                       |
| OW596 | SNR33-R          | CAG ATA AAC AAG CTC AGT AG                | دد                       |
| OW530 | YCR015C-F        | ACA ATT GCA GTA ACC AGA AGC G             | "                        |
| OW578 | YCR015C-R        | CGG AGA TAG AAG AAT AGT GCA AG            | دد                       |
| OW658 | FUS1-F           | TGC AGA CGA CAA CAA CTG TG                | دد                       |
|       |                  |                                           |                          |
| OW659 | FUS1-R           | TGT CTT CCC TAA TTG GAC GC                | دد                       |

# Table S5. Oligonucleotides used in this study

| OW859          | GRE1-R            | TAT TCA TCG TTT CCT GAC CCA              | دد           |
|----------------|-------------------|------------------------------------------|--------------|
| OW932          | NMR026W-F         | CAA TTT TAT CAA GAC CGC AC <sup>1</sup>  |              |
| OW933          | NMR026W-R         | TAA ACG TTA GCG TGT TCT TG <sup>-1</sup> |              |
| OW646          | ZPS1-F            | CAA CTC TAC TGC TGA GTT AC               | ۰۵           |
| OW647          | ZPS1-R            | ACA GAA GCA CTG TAA ACG TC               |              |
| OW666          | YGR277-F          | TAG TGC TAC TTT GCA GAG GA               |              |
| OW667          | YGR277-R          | GAC TTA AGT AGG CGT CTG AT               |              |
| OW856          | IMD2-F            | GCT GAA CAT TTA ACC GGA GAA TCT          |              |
| OW857          | IMD2-R            | CTT AAT GGA TCC TTT GTC AAC GAC          | "            |
| OW857<br>OW862 | SRG1-F            | ACT CAC AAT CGA GTA ATG CCT              |              |
| OW863          | SRG1-R            | GAA TTT CCT TAT CCT CTG CTC              | "            |
| OW863<br>OW864 | SER3-F            | CGA AGA GCA AGG TTA CCA AGT C            |              |
| OW865          | SER3-R            | GCA CAG TGT TCT CTT GGT CGT A            |              |
| OW805<br>OW650 | MUD1-F            | ATC CCA ACA ACA AGT ATG CC               |              |
| OW650<br>OW651 | MUD1-R            | GCA AAT CCT ATG GTA ACG TC               |              |
| OW656          | SMK1-F            | TAC CAG AGC CAT AAA TGT GG               |              |
| OW657          |                   | GGA TTC ATA GGT GAA GTC GA               |              |
| 00057          | SMK1-F            | GGA TTC ATA GGT GAA GTC GA               |              |
| OW681          | SNR5-HEM4 1-F     | AGG CTG ACG TTA ATA GGA AC               | Chromatin Ip |
| OW682          | 1-R               | ATC TCT TAG GGC TCC TAC TG               | "            |
| OW513          | 2-F               | TTG CAG GAT CCT TCA GGA TAA G            |              |
| OW683          | 2-R               | GTC TAC TTC CAG CCA TTT GC               |              |
| OW547          | 3-F               | GGT TCG CTC TAG GTG TAC ATA TC           | ۰۵           |
| OW514          | 3-R               | AGC TGA CTA CAG CAC AAC CCA AC           | ۰۵           |
| OW511          | 4-F               | GGT AAA ATA GAC CTT GCT CGA G            |              |
| OW548          | 4-R               | AAG CGG TAC GAA TAT GGG TTC              |              |
| OW686          | SNR47-YDR042C 1-F | ATC AGA ACT GTC TCC GAA CA               |              |
| OW687          | 1-R               | ATG ACC GTA TGG AAG ACG TA               |              |
| OW613          | 2-F               | ACA TTC TCT TGG CGA GTG AT               |              |
| OW688          | 2-R               | ACC TAT AAA GGA TTC GGA CG               |              |
| OW541          | 3-F               | CCT TTA TAG GTG GAA ACA AAC              |              |
| OW532          | 3-R               | GCT ACT CTG ATT TAC GTT ACC GC           |              |
| OW689          | 4-F               | TCG GGA TAA CAA AGC GTA CT               |              |
| OW542          | 4-R               | CTC TTA GAG ACC TAG TCG T                |              |
| OW542<br>OW573 | 5-F               | GCG AAT CAA CAA CAG CTA AC               | "            |
| OW690          | 5-P               | CAT TCT TGG TAG CAG CTA AC               |              |
| OW709          | 6-F               | TAT TAA GCG GTA TGC AGT ACC              |              |
| OW709<br>OW710 | 6-R               |                                          |              |
| OW710<br>OW595 | SNR33-YCR015C-    | CGG AAC GGT ACA TAA GAA TA               |              |
| 000595         | POL4 1F           |                                          |              |
| OW669          | 1-R               | TAG TGC TTG ATA TCA CAT CC               |              |
| OW757          | 2-F               | GCT TAA TGC CCT CTT TGT AC               |              |
| OW758          | 2-R               | ATC GAT TGT CCA CAC ACT TC               |              |
| OW545          | 3-F               | AAA GCC TAG CTT TTA CAC CGG              |              |
| OW596          | 3-R               | CAG ATA AAC AAG CTC AGT AG               | ۰.           |
| OW530<br>OW577 | 4-F               | ACA ATT GCA GTA ACC AGA AGC G            | ۰۵           |
| OW546          | 4-R               | GTA TCC GTC CAT ATA TGT C                | ۰۵           |
| OW707          | 5-F               | GCT AAT AAA CCC GCA AGA AAA TC           | ۰۵           |
| OW707<br>OW708 | 5-R               | AGA GTC CCA GGA TTT CAC AAG GTA G        | ۰.           |
| OW708<br>OW670 | 6-F               | TGC CTA CCT TGT GAA ATC CTG              | ۰.           |
| OW578          | 6-R               | CGG AGA TAG AAG AAT AGT GCA AG           |              |
| OW578<br>OW579 | 7-F               | CAT GCG ACC TGT TAG ACA AAT C            |              |
| OW579<br>OW671 | 7-F<br>7-R        | GAC CAC TTC CTT ACG GCT AGA TT           |              |
| OW0712         | SNR82-USE1 1-F    | GTC CTA GAG ATA TTA TAA AAC GG           |              |
| OW712<br>OW713 | 1-R               | CCA CTA ACA CAA ATT ACT TGA AC           |              |
| 000113         | I I-R             |                                          |              |

| 0W/7E 4                                                                 | <u>م</u> ۲                                              |                                                                  | "              |
|-------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|----------------|
| OW754<br>OW694                                                          | 2-F<br>2-R                                              | TGG CTC TTC AAC ACA TTT CAA<br>GAA GCT TAA GGA TAA TCA GAC G     |                |
| OW549<br>OW549                                                          |                                                         |                                                                  | .د             |
|                                                                         | 3-F                                                     | CCC ACA GTC TAT AGT TTG ATA G-                                   |                |
| OW715                                                                   | 3-R                                                     | ATC CAG ACC GAC ATC TGT AAC                                      |                |
| OW581                                                                   | 4-F                                                     | GTT GAC AGG ACA CAT AAT AGC                                      | "              |
| OW550                                                                   | 4-R                                                     | GCT TTC CTT CGT AGA CGA TTC                                      |                |
| OW696                                                                   | 5-F                                                     | GTG ACG ACA ATA AGG TCT CAG                                      |                |
| OW697                                                                   | 5-R                                                     | TCA ACT CCA TAA CAG CTT CGC                                      |                |
| OW698                                                                   | 6-F                                                     | GAT TCT CGG ACT GGT GTT TAC                                      | "              |
| OW582                                                                   | 6-R                                                     | GGA GAA TTC TGC AGC CTA TAC                                      | "              |
| OW761                                                                   | MUD1 (NBR024W) 1-F                                      | ACT GCT CAC ATT GCT TGT AG                                       | "              |
| OW762                                                                   | 1-R                                                     | CAG TCT TGT CAA CAG ACT TG                                       | "              |
| OW866                                                                   | 2-F                                                     | CTG CTC AAA AGG CTG CTA AGA A                                    | "              |
| OW867                                                                   | 2-R                                                     | TGA GGC CGT CTT TTG TTG AT                                       |                |
| OW868                                                                   | 3-F                                                     | AAG CTG CTA TCA ACA AAA GAC GG                                   | u              |
| OW869                                                                   | 3-R                                                     | CGA CGG ATT AAT GGC ATA CTT G                                    | ű              |
| OW650                                                                   | 4-F                                                     | ATC CCA ACA ACA AGT ATG CC                                       | ű              |
| OW763                                                                   | 4-R                                                     | TCT GCT TCT TCT TGA GTG AC                                       | ű              |
| OW651                                                                   | 5-F                                                     | GCA AAT CCT ATG GTA ACG TC                                       | ű              |
| OW764                                                                   | 5-R                                                     | ATC GCA GAA ACC TCT TAA GC                                       | ű              |
| V-1                                                                     | Intergenic control -F                                   | GGC TGT CAG AAT ATG GGG CCG TAG <sup>2</sup>                     | "              |
| V-2                                                                     | (chr. V) -R                                             | CAC CCC GAA GCT GCT TTC ACA ATA C <sup>2</sup>                   | "              |
| 014/047                                                                 |                                                         |                                                                  |                |
| OW917                                                                   | GRE1-F                                                  | CAG GTA TGG GTT TGA GGA TGT TCT                                  | qRT-PCR (CUTs) |
| OW918                                                                   | GRE1-R                                                  | AAA TGA CGA AGC CCA AAA CG                                       | "              |
| OW932                                                                   | NMR026W-F                                               | CAA TTT TAT CAA GAC CGC AC                                       |                |
| OW933                                                                   | NMR026W-R                                               | TAA ACG TTA GCG TGT TCT TG 1                                     |                |
| OW789                                                                   | NGR060W-F                                               | TCT GAA GCA CAA AAG GGA GC                                       |                |
| OW790                                                                   | NGR060W-R                                               | ATA CGT TTG TCC CTA AGT GC <sup>3</sup>                          | "              |
| OW787                                                                   | NEL025C-F                                               | GCA AAG ATC TGT ATG AAA GG <sup>3</sup>                          | "              |
| OW788                                                                   | NEL025C-R                                               | CGC AGA GTT CTT ACC AAA CG <sup>3</sup>                          |                |
| OW787                                                                   | NEL025C-F                                               | GCA AAG ATC TGT ATG AAA GG                                       |                |
| OW929                                                                   | NEL025C-R                                               | GCG TCT TTC CTG TTT ATG AG                                       | "              |
| OW903                                                                   | NGR047W-F                                               | ACA GGA AAA CAG CAA TGA CCA                                      | "              |
| OW904                                                                   | NGR047W-R                                               | CTA AAA TCT TTG CAT TTG TCA TCC                                  |                |
| OW909                                                                   | gGR12-F                                                 | CGT TGC CAA CTG GTA CAT TT                                       |                |
| OW910                                                                   | gGR12-R                                                 | AGA TAG TTT TAC AGG CGG TTC C                                    |                |
| OW915                                                                   | NPR021W-F                                               | AGG ATG ATG TTG GTT TGA CCG T                                    | "              |
| OW916                                                                   | NPR021W-R                                               | ATA CCG CCA TTC TCC TGC TTA                                      | "              |
| OW907                                                                   | uZPS1-F                                                 | CTT TTC CAG ATC ACG AAT CTG TTG                                  | "              |
| OW908                                                                   | uZPS1-R                                                 | GTT GCA AAG ATG ATA GAT TTG CC                                   | "              |
| OW923                                                                   | dYGR277-2-F                                             | AAC GTG TGA CCT TAT CAT TTC CC                                   | "              |
| OW924                                                                   | dYGR277-2-R                                             | GGC GGT GTA TAA GGA AGA ACA A                                    | "              |
| OW781                                                                   | SRG1-F                                                  | GCC AAG CTA TGT GCA AAT ATC AC                                   | "              |
| OW918                                                                   | SRG1-R                                                  | TTT CCT TAT CCT CTG CTC CCT                                      | "              |
| OW783                                                                   | SER3-F                                                  | TGA CAA GCA TTG ACA TTA ACA AC                                   | "              |
| <b>a</b> 1 <b>a</b> 1 <b>a</b> 2 <b>b</b> 1                             | SER3-R                                                  | TTT TCG ATC AAC TCT TCC TCG G                                    | "              |
|                                                                         |                                                         |                                                                  | "              |
| OW927                                                                   | NBR024-F                                                | TGG TGT TTT CTT GCC CAT CA                                       |                |
| OW784<br>OW927<br>OW902                                                 | NBR024-R                                                | ACG CTG ACA TGG TTT CTT TAG GT                                   | "              |
| OW927<br>OW902<br>OW785                                                 | NBR024-R<br>ACT1-F                                      | ACG CTG ACA TGG TTT CTT TAG GT<br>CTG AGG TTG CTG CTT TGG TTA TT | دد             |
| OW927<br>OW902<br>OW785<br>OW786                                        | NBR024-R<br>ACT1-F<br>ACT1-R                            | ACG CTG ACA TGG TTT CTT TAG GT                                   |                |
| OW927<br>OW902<br>OW785<br>OW786<br><sup>1</sup> after Tho              | NBR024-R<br>ACT1-F<br>ACT1-R<br>mpson and Parker (2007) | ACG CTG ACA TGG TTT CTT TAG GT<br>CTG AGG TTG CTG CTT TGG TTA TT | دد             |
| OW927<br>OW902<br>OW785<br>OW786<br>after Tho<br><sup>2</sup> after Kom | NBR024-R<br>ACT1-F<br>ACT1-R                            | ACG CTG ACA TGG TTT CTT TAG GT<br>CTG AGG TTG CTG CTT TGG TTA TT | دد             |

### **Supplemental Figure Legends**

Figure S1. Expression array analyses of ess1 mutants. (A) Scatterplots of ess1<sup>H164R</sup> temperature-sensitive mutants (Wu et al., 2000) vs. wild type reveal only a small fraction of the genome is affected. Control panels (upper row) reveal a tight distribution of data points along the diagonal, as expected. Comparisons between the ess1<sup>H164R</sup> mutant and wild-type were done at two temperatures (24°C and 34°C), and as expected a greater spread in the distribution away from the diagonal (in yellow) is apparent at restrictive temperature (34°C). Data points above the diagonal (in red) are elevated in ess1<sup>H164R</sup> cells relative to wild type, while points below the diagonal (in green) are reduced in mutants. (B) A similar analysis was done using an ess1 $\Delta$ ::HIS3 shutoff strain (YXW138) expressing the ess1<sup>H164R</sup> allele from the GAL1 promoter under control of a GAL4-estrogen receptor-VP16 fusion activator (Gemmill et al. 2005). In absence of added hormone (0  $\beta$ -estradiol), the strain produces a very low level of the Ess1(H164R) protein, whereas at 100 nM estradiol, the mutant protein is overproduced to levels supporting nearly normal growth (Gemmill et al., 2005). Cells were grown at 30°C. The control cells (YXW137) were  $ess1\Delta$ ::HIS3 with ESS1 under control of the GAL1 promoter as above. As expected, the number of genes affected in the absence of estradiol is greater than that with 100 nM estradiol. (C) Venn diagrams representing the extent of overlap in the gene sets identified in the two experiments described in A and B, above. P-values based on the hypergeometric distribution indicate a highly significant overlap. The top 50 genes in common in each category are listed in **Table S1C,D.** (D) Venn diagrams representing genes in common among the top upregulated genes identified by microarray analysis of ess1<sup>H164R</sup> mutants (Affymetrix YG98S) microarray; this study) and ssu72 mutants (printed array; Ganem et al., 2003). P-values were calculated using N=5000 genes for each (out of 6871 for ess1<sup>H164R</sup> and 5885 for ssu72 mutants). (E) Venn diagrams representing genes in common among the top up-regulated genes identified by microarray analysis of ess1<sup>H164R</sup> mutants (Affymetrix YG98S microarray; this study) and nab3-11 (Affymetrix YG98S microarray; Arigo et al., 2006) mutants. P-values were calculated using N=5000 genes for each (out of 6871 for ess1<sup>H164R</sup> mutants and at least 5000 for nab3-11 mutants).

**Figure S2.** Average differential expression *ess1* mutants vs. wild type. (A) Readthrough at the 3' end of snoRNA genes. Average differential expression of *ess1*<sup>H164</sup>/wild type was computed by comparing tiling array data at each position within a 600 bp window encompassing +/- 300 bp from the predicted 3' end of 29 snoRNA genes. Polycistronic and snoRNA genes with convergent ORFs were excluded. (B) Readthrough at the 3' end of non-snoRNA genes. Average differential expression for 5,074 ORFs aligned relative to the transcription termination site (TTS) (Nagalakshmi *et al.*, 2008). ORFs transcribed from opposing strands with overlapping

1

3' UTRs were excluded, as were ORFs affected by upstream snoRNA genes. (**C**) Increased 5' transcription in *ess1*<sup>H164</sup> cells may identify new upstream regulatory RNAs (uRNAs). Average differential expression for 4,367 ORFs aligned relative to the transcription start site (TSS) (Nagalakshmi et al., 2008). Genes with overlapping (divergent) promoters and genes downstream of snoRNA genes were excluded. Colored lines in **B** and **C** represent three independent controls of the average differential expression of 600 bp segments from 5,074 and 4,367 random locations across the genome, respectively.

**Figure S3. Tiling array data indicating readthrough of snoRNAs in** *ess1* **mutants.** Data are displayed using Integrated Genome Browser (IGB). (A-D) Examples of different patterns of transcription readthrough of snoRNA genes in *ess1*<sup>H164R</sup> mutants. (A) Readthrough continues through the downstream ORF (*USE1*). (B) Readthrough stops at the 5' end of *YTM1*. (C) Readthrough proceeds through an ORF (YPR092W) on the opposite strand. (D) The *SNR52* gene is transcribed by RNA pol III (instead of pol II) and as expected, does not exhibit readthrough in *ess1* mutant cells.

**Figure S4.** Average differential expression in selected regions, ess1 mutants vs. wild type. (A) Rank ordered average differential expression in the region +25 through +150 of 3' TTS for each gene in the processing set of Fig. S2B. This interval was chosen for analysis because it appears to be most representative of 3' differential expression in Fig. S2B. Due to missing probes, one gene did not have data in the selected region, thus data for 5,073 genes was used. Genes with the most pronounced differential expression in the region appear at the left-most portion of the plot and the majority of genes show little or no effect. The rapidly decreasing slope of the curve indicates a relatively few number of genes account for the shape of Fig. S2B and its y-axis scale. (B) Rank ordered average differential expression in the region -250 through -50 to 5' TSS for each gene in the processing set of Fig. S2C. This interval was chosen for analysis because it appears to be most representative of 5' differential expression in S2C. Similar to (A), high differential expression of genes at left-most portion of the plot shows that a relatively small number of genes account for the shape of Fig. S2C and its y-axis scale.

Figure S5. Novel 3' and 5' sense and antisense transcripts revealed by bioinformatic analysis of tiling array data from *ess1* mutants. (A-E) Examples of aberrant 3' transcription in *ess1*<sup>H164R</sup> mutants among genes rank ordered among the top 50 in Fig. S4A and listed in Table S2. (F-J) Examples of aberrant 5' transcription in *ess1*<sup>H164R</sup> mutants among genes rank ordered among the top 50 in Fig. S4B and listed in Table S3. (A) Probable transcription readthrough of the *SML* gene in *ess1*<sup>H164R</sup> mutants. (B) Example of a previously identified antisense CUT (Neil et al., 2009) and (C) an antisense SUT (Xu et al., 2009) that are also revealed in *ess1*<sup>H164R</sup> mutants.

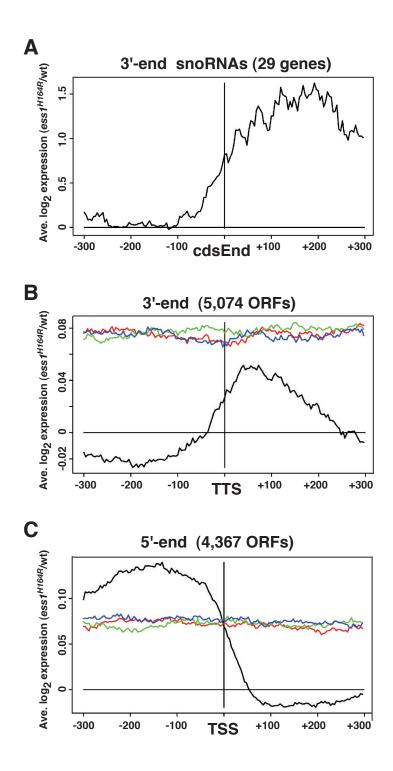
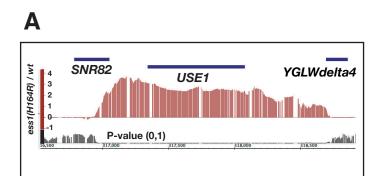
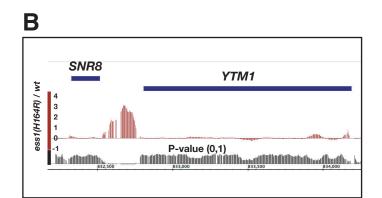
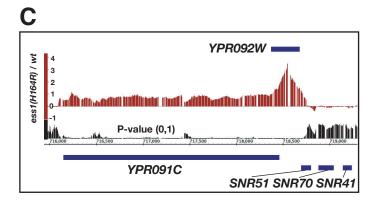
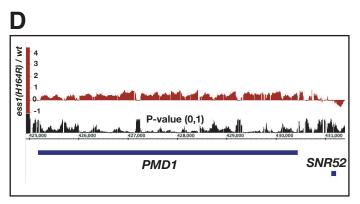
(**D**,**E**) Examples of probable 3' antisense CUTS that are specific to  $ess1^{H164R}$  mutants (i.e. not previously identified in  $rrp6\Delta$  or other Nrd1-related mutant backgrounds). Probable 5' sense (**F**,**G**) and antisense (**H**,**I**) CUTs that are specific to  $ess1^{H164R}$  mutants. (**J**) Previously identified divergent CUT (CDR050cTs2/CUT497) and SUT (CDR051cTa3-A/SUT056) transcripts (Neil et al., 2009; Xu et al., 2009) also revealed in  $ess1^{H164R}$  mutants.

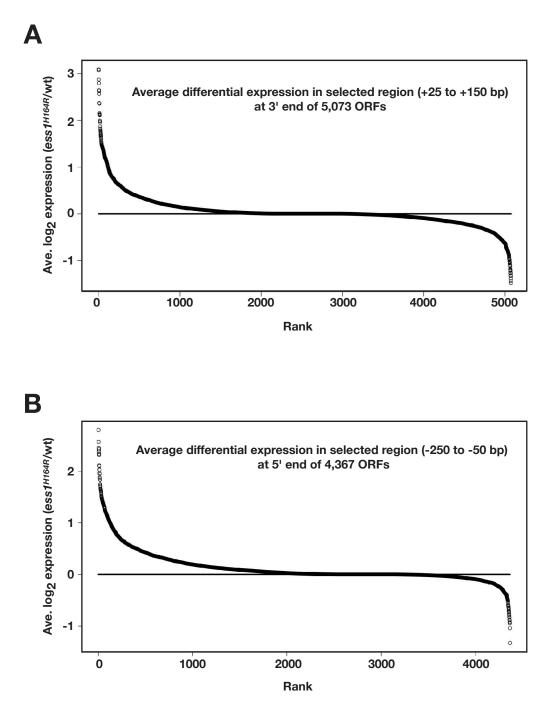
**Figure S6. Chromatin Ip for localization of Nrd1 and Pcf11 on CUT and ncRNA loci. (A,D,F)** Schematics showing location of PCR products used for ChIP. (**B,D**) Overexpression of Ess1 reduces recruitment of Nrd1 to terminator regions of two snoRNA genes. (**F**) Nrd1 ChIP at a CUT locus showing increased recruitment of Nrd1 in *ess1<sup>H164R</sup>* mutant cells relative to wild type. (**G**) Pcf11 ChIp at the same locus as in B, shows decreased recruitment of Pcf11 in *ess1<sup>H164R</sup>* mutant cells relative to wild type. All ChIP data are expressed as fold increase over a chromosome V control locus. Results in this figure are consistent with a model in which Ess1 is required for release of Nrd1 from the CTD and subsequent binding of Pcf11 (see Fig. 7 in main text). Error bars are standard deviation from the mean of at least 3 biological replicates.

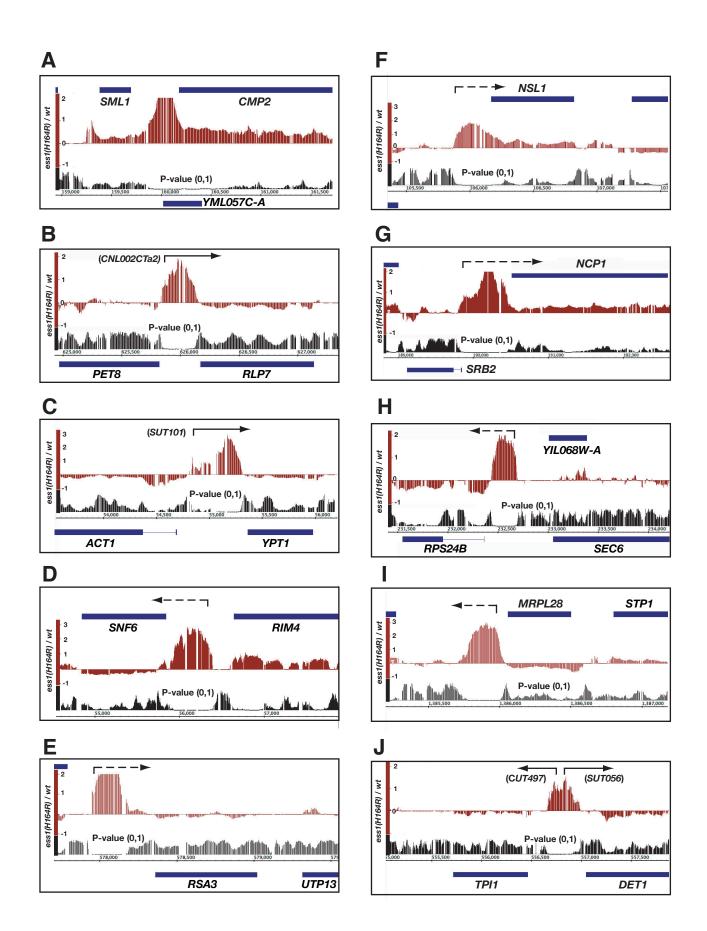
**Figure S7. Tiling array data identifying CUTs and uRNAs in ess1 mutants.** (**A**, **B**) Tiling results along with other data (see text), suggest the presence of novel CUT RNAs in *ess1*<sup>H164R</sup> mutant cells. Dotted lines represent the approximate locations of these putative CUTs. (**C-F**) Examples of genes known to be regulated by non-coding upstream regulatory RNAs (uRNAs). Tiling profiles shown here for *ess1*<sup>H164R</sup> mutant cells are consistent with upstream transcripts reading through into the downstream ORFs as in *nrd1*, *sen1*, and *nab3* mutants. (**G**) Venn diagram representing the overlap between potential CUTs identified as SAGE tags, which are upregulated in *ess1*<sup>H164R</sup> (this study), *rrp6*Δ (Wyers et al., 2005) and *nab3-11* (Arigo et al., 2006) mutants. As expected, there is some overlap between SAGE transcripts in each mutant background, consistent with a role for each of the three genes, *RRP6*, *NAB3* and *ESS1*, in CUT processing.

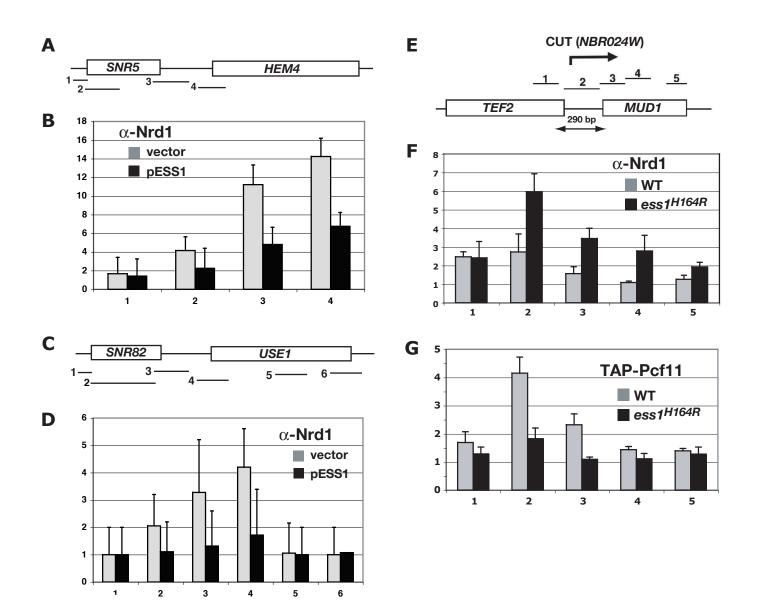


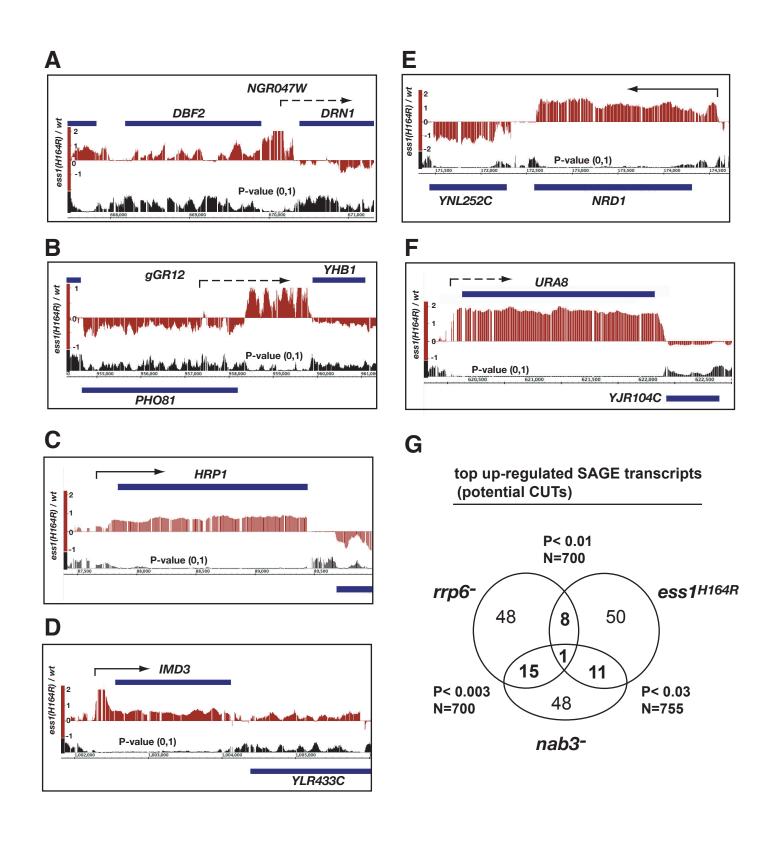
Figure S1



Figure S2














### Supplementary Experimental Procedures

### Plasmids

Reporter plasmids for snoRNA terminator activity were a gift from Jeff Corden (Carroll et al., 2004) and are derivatives of pRS416 (*CEN, URA3*) that contain an *ADH* promoter, *HIS3* coding region, and *CYC1* terminator. SnoRNA terminator sequences (66bp of *Snr13* or 70bp of *Snr47*) were inserted upstream of the *HIS3* coding region. Three constructs, pAHC-416 (*ADH1-HIS3-CYC1*), pA13HC-416 (*ADH1- Snr13*(66)-*HIS3-CYC1*) and pA47HC-416 (*ADH-Snr47*(70)-*HIS3-CYC1*) were transformed in W303-1A, *ess1*<sup>H164R</sup> (YGD-ts22), 46a and 46a-*nrd1-5* strains to measure the transcription read-through defect. The plasmid pRS424-ESS1 (2µ, *TRP1*) (Ren et al., 2005) was used to overexpress Ess1 in *nrd1-5*, *pcf11-9* and *nab3-11* mutant strains. The plasmids, pRS424-NRD1 (2µ, *TRP1*) (Steinmetz and Brow, 1998), pRS424-PCF11 (2µ, *TRP1*) and pRS424-*NAB3* (2µ, *TRP1*) plasmids were used to overexpress Nrd1, Pcf11 and Nab3, respectively, in W303-1A and *ess1*<sup>H164R</sup> mutants. Plasmid pRS415-PCF11 (Amrani et al., 1997) was obtained from S. Buratowski (Harvard Med. School), pNAB3.14 (Conrad et al., 2000) from Jeff Corden (Johns Hopkins Univ.) and pRS424 (Christianson et al., 1992) from the laboratory of Phil Heiter (U. British Columbia).

### **Northern Analysis**

For RNA preparations, cells were grown at 30°C and harvested after a rapid temperature shift to 37°C (by the addition of prewarmed media) for 0, 30, 60 and 180 minutes. For fractionation, 20-40 µg of total RNA were used per lane. Prehybridization and hybridization was performed at 65°C in a buffer containing 0.5 M Na<sub>2</sub>HPO<sub>4</sub>, 7% SDS, 1.0mM EDTA and 1% BSA. <sup>32</sup>P-labeled probes were prepared from the PCR amplified genomic regions by random priming. Signal was detected using a Molecular Dynamics phosphorimager and ImageQuant software.

#### Western Analysis

Yeast strains were grown at 30°C with shaking in YEPD or synthetic media lacking the appropriate amino acid to an OD<sub>600</sub> of 0.6. Cells were collected by centrifugation, washed with ice-cold water and resuspended in 200 ul lysis buffer [200mM Tris –HCl (pH 8.0), 320 mM (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub>, 5 mM MgCl<sub>2</sub>,10 mM EDTA, 10 mM EGTA, 20% glycerol, 1 mM dithiothreitol (DTT), protease and phosphatase inhibitors]. To make the protein extract, the same volume of glass beads was added to the yeast cell suspensions and cell suspensions were vortexed in a cell disruptor for 5 min at 4°C. After centrifugation, the supernatants were kept for immunoblot analysis. Protein concentrations were determined using a BioRad reagent.

Protein extracts (10 ug) were fractionated by SDS-PAGE (8% gels) and transfered to polyvinylidene difluoride membranes (Millipore) for reaction with primary antibodies according to standard procedures. Primary antibodies were H14 (P-Ser5) and 8WG16 (hypophoshorylated-CTD) from Covance, H5 (P-Ser2) from Bethyl, rabbit-anti Ess1 (Wu et al, 2000) and rabbit anti-Nrd1

antibodies (D. Brow). Anti-tubulin antibody (Abcam) was used for a loading control. Secondary monoclonal antibodies (anti-mouse or anti-rabbit immunoglobulin, IgG) conjugated to horseradish peroxidase (Amersham) were used as appropriate. Proteins were visualized using a chemiluminescence reagents (USB).

#### **Quantitative RT-PCR**

For quantitative reverse-transcription PCR (Fig. 6A), cells were grown at 25°C and shifted to 34°C for three hours prior to harvesting. RNA was prepared from three independently-grown cultures. RNA preparations were DNasel treated prior to cDNA synthesis. All PCR primers were tested using standard reactions and examination of the products on ethidium-bromide stained gels. The Comparative C<sub>T</sub> method (Applied Biosystems User Manual) was used for quantitation where the amount of target gene amplification is normalized to an *ACT1* internal control. The relative (fold) enrichment is calculated as follows:  $2^{-\Delta\Delta C}_{T} = 2^{[\Delta C}_{T} (control) - \Delta C_{T} (expt.)]$ , where  $\Delta C_{T} = C_{T} (sample) - C_{T} (control)$ . Error bars are standard deviations from the mean log values. Sequences of oligonucleotides used for PCR are given in Table S5.

#### **Chromatin Immunoprecipitation**

Chromatin immunoprecipitation was performed essentially as described (Keogh and Buratowski, 2004). 50 ml yeast cultures were grown at 30°C to mid-log phase and fixed with 11% formaldehyde. The crosslinking reaction was stopped by the addition of glycine. Cells were washed and resuspended in FA lysis buffer with protease inhibitors, lysed to isolate chromatin using glass beads (425-600µ). The chromatin was sonicated using a Sonifier 250 (Branson) to an average size of 200-500 bp. Wild-type and ess1<sup>H164R</sup> chromatin was immunoprecipitated using either anti-Rpb3 (1:100 dilution; Neoclone) or anti-Nrd1 (1:100 dilution; gift from D. Brow) antibodies. The immunoprecipitates were incubated with protein G-agarose (for anti-Rpb3) or protein A-agarose (for anti-Nrd1), washed and eluted. TAP-tagged Ess1 immunoprecipitation was performed with antiprotein A, then with protein A-agarose (Sigma). The eluted supernatants and input controls were treated with proteinase K for 1 hr at 42°C and incubated at 65°C for 5 hr to reverse crosslinked protein-DNA complexes. DNA was extracted using phenol/choloroform/isoamylalcohol (25:24:1) and then with chloroform. The DNA was precipitated using 2 vol. EtOH, 1/10 vol. 3M NaOAc and 20 µg glycogen. For each antibody, the immunoprecipitated DNA fragment was isolated from at least three biological replicates. The relative proportion was then analyzed by quantitative real time PCR. For normalization across a set of samples, quantitative real time PCR values (normalized to inputs and a chromosome V control) were summed for each experiment and the sums set to the same arbitrary value for each experiment. The normalized values thus obtained for each ChIP sample were then used to obtain averages and standard deviations (Yu et al., 2006).

### Standard Expression Microarray Analysis

Yeast genome YG98S expression arrays (Affymetrix) were used to analyze the expression of WT and mutant strains. Two independent RNA samples were isolated from wild-type (W303-1A) and ess1<sup>H164R</sup> cells after a temperature shift from 30°C to 34°C for 2 hrs. In a second experiment, RNA was prepared from an ess1 $\Delta$  strain expressing wild-type or an H164R mutant allele under control of the GAL1 promoter. The plasmids used were pRS-315-GAL1p-WT(ESS1) and pRS315-GAL1p-H164R (Gemmill et al, 2005), and were under the control of a ß-estradiol-dependent GAL4-ER-VP16 activator (Louvion et al., 1993). At least two independent RNA samples were isolated from cells grown either with ß-estradiol (100nm) or without ß-estradiol (0 hormone) for 90 minutes. Sample preparation and hybridization analysis of the arrays (Affymetrix) were performed according to the manufacturer's guidelines. Hybridization intensity, scatter plots, and change in gene expression of the annotated probesets was analyzed by Microarray Suite 5.0 software and Microsoft Excel. To identify new potential CUTs upregulated in ess1 mutants, we analyzed the probesets that represent the non-annotated serial analysis of gene expression (SAGE) open reading frames (Velculescu et al., 1997). To compare potential ess1-specific CUTs with previously identified CUTs from rrp6<sup>Δ</sup> mutants (Wyers et al., 2005) and nab3-11 ts-mutants (Arigo et al., 2006), we used the Affymetrix Yeast S98 array data from http://www.ncbi.nih.gov/geo, accession number GSE2579 and GSE4657, respectively. All resulting analysis included only the probesets that were identified as present by the software. Comparison analysis between ess1<sup>H164R</sup>/WT and rrp6△/WT and nab3-11 was performed using Gene Spring (Agilent Technologies) and Microsoft Excel. The SAGE tags located downstream of snoRNAs that overlap with annotated ORFs were excluded from the analysis (Wyers et al., 2005; Table S3).

#### Tiling Microarray Analysis

RNA was isolated from three biological replicates of wild-type cells and five replicates of *ess1*<sup>H164R</sup> mutant cells following a shift from 30°C to 34°C for 2 hrs. The RNA from each sample was hybridized to Affymetrix Yeast 1.0 Tiling Array according to the manufacturer's protocols. The data was analyzed using Tiling Analysis Software Version 1.1. The relative log<sub>2</sub> signal intensity files between *ess1*<sup>H164R</sup> and WT were visualized as graphs using Integrated Genome Browser (IGB) Version 5.12 (http://www.affymetrix.com/support/developer/tools/download\_igb.affx).

#### **Bioinformatic Data Analysis**

Affymetrix *S. cerevisiae* 1.0R tiling arrays were hybridized and intensities read with Affymetrix AGCC software. .CEL files produced by the AGCC software were analyzed with Affymetrix Tiling Array Software (TAS) v1.1.02. A two-sample TAS analysis was performed with five *ess1*<sup>H164R</sup> mutant samples as the 'treatment' group and three wild-type control samples as the 'control' group. The resulting .bar file will be available for download at http://www.wadsworth.org/resnres/bios/hanes.htm. Additional TAS analysis specifications were: bandwidth of 50, quantile normalization, probe-level

analysis performed with both perfect match and mismatch probes, signal reported as log2, a conservative selection of a two-sided p-value and BPMAP file Sc03b\_MR\_v04.bpmap. The 'scale to target intensity' option was not selected. TAS results were output to both .bar files and text files. Visual examination of TAS results was performed using Affymetrix Integrate Genome Browser (IGB) software. PERL scripts were written to read the TAS output text files and perform bioinformatics data analysis. Plots were created in the open source statistics package R.

Gene coordinates in the October 2003 release of the *S. cerevisiae* genome were used with the 1.0R tiling array data along with BPMAP file Sc03b\_MR\_v04.bpmap (Affymetrix). All ORF and snoRNA coordinates used in analysis were taken from the sgdGene and sgdOther tables, October 2003 release, downloaded from the UCSC Genome Bioinformatics web site.

Investigation revealed a 40 bp offset on chromosome 2 is present with the combination of the 1.0R tiling array chip and BPMAP file Sc03b\_MR\_v04.bpmap (confirmed by Affymetrix). Further investigation showed offsets on chromosomes 10 and 11. The offset on chromosome 2 is 40 bps and starts at approximately position 97,500 on the chromosome. The offset on chromosome 10 is 219 bp and starts at approximately chromosome position 121,500. The offset on chromosome 11 is more insidious as it gradually increases from 3 to 8 bps from roughly chromosome position 300,000 to the chromosome's end (approximately, position 660,000). For all three chromosomes, the offset is such that the probe is actually the indicated number of bps (40, 219 or 3-8) upstream of the position stated in the signal (and p-value) text files output by TAS. The PERL scripts performed transformations on coordinates of data falling in these known regions of offsets. For chromosome 11, a simplified correction of 6 was used from position 300,000 to the chromosome's end.

Figures S2A, B, C and Supp Figures 7A, B and C all show the **average** differential expression of a 600 bp region centered on the same relative position for a set of ORFs or snoRNAs. The centering point of the plots is coding sequence end (cdsEnd; Fig. S2A), 3' transcription termination site (TTS; Figs. S2B, S7C) or 5' transcription start site (TSS; Figs. S2C, S7A and B).

The particular set of ORFs or snoRNAs to process was determined by examining (Nagalakshmi et al., 2008) Suppl. Tables 4 or 6. ORF coordinates listed in these tables are more recent than the ORF coordinates of the October 2003 release of the *S. cerevisiae* genome (Oct. 2003 coordinates must be used with the 1.0R tiling arrays). The distance to the desired feature (cdsEnd, 5' TSS or 3' TTS, plot specific) was taken from Nagalakshmi et al. (2008) Table S4 or S6 (either "5-UTR\_length", "3'-UTR\_length", or "uORF\_length") and that value was added or subtracted to the Oct 2003 ORF start or end coordinate (taken from sgdGene and sgdOther tables downloaded from the UCSC Bioinformatics web site). This position was then transformed to take into account the offset problems (detailed above). For each ORF (or snoRNA) in the set being processed, this position become the center point from where signal data was extracted.

Differential expression signal data was extracted from the TAS signal output file +/- 300 bps around the center point. Probe spacing in the 1.0R tiling arrays is at best 4 bps and missing probes abound. When extracting the 600 bps of signal data, each of the 600 positions was recorded as

either containing data or not containing data. Once signal data was collected for all ORFs (or snoRNAs) the data was adjusted for strand orientation (all data placed 5' to 3') and centered on each ORF's computed center point (5' TSS, 3' TTS or cdsEnd). The data sets were then collapsed by groups of 4 and each group of 4 averaged over all ORFs in the set. This left 150 total data points – 75 points on either side of the center point (ignoring the fence post issue). The collapsing by 4 addressed the fact that at best, the data would be at 4 bp intervals; if 300 bps of data is desired, the best that can be had with this tiling array is 300 / 4 = 75. However, due to missing probes, each of the 150 generally, had different numbers of positions actually containing data, *i.e.*, the denominator when computing the average signal at each of the 150 positions differs for each position.

The three control lines on Figs S2A, B and C are plots of average differential expression signal data computed on N random draws of 600 bp regions of the tiling array data, where N is the number of ORFs processed in each plot, *i.e.*, 29, 5,074 and 4,367.

#### ORF or snoRNA gene sets analyzed:

<u>Figure S2A – Average Differential Expression at 3'-end of snoRNAs</u>. From an initial list of 36 snoRNAs, coordinates for 7 snoRNAs were not found in the Oct 2003 UCSC downloaded sgdOther table, leaving data for 29 snoRNA genes.

<u>Figure S2B – Average Differential Expression at 3'-end of ORFs, Genome-wide</u>. Nagalakshmi et al. (2008) Supp. Table 4 contains 5,127 ORFs across chromosomes 1-16 that have a non-zero entry in the "3'-UTR\_length" column (mitochondrial ORFs were ignored). 37 ORFs were removed because they are known to be affected by snoRNA read-through; 2 ORFs were removed because they are in the vicinity of where the offset error starts on chromosome 10; 14 ORFs were removed because they were not found in the sgdGene or sgdOther tables, leaving 5,074 genes.

Figure S2C – Average Differential Expression at 5'-end of ORFs, Genome-wide. Nagalakshmi et al. (2008) Supp. Table 4 contains 4,556 ORFs across chromosomes 1-16 that have an entry in the "5'-UTR\_length" column (mitochondrial ORFs were ignored). 32 ORFs were removed because they are known to be affected by snoRNA read-through; 2 ORFs were removed because they are in the vicinity of where the offset error starts on chromosome 10; 14 ORFs were removed because they are listed as "Potential\_AUG\_annotation\_error", leaving 4,367 genes.

<u>Suppl. Figs 4A and B</u>. For select regions in Figs. S2B and C, the average differential expression was computed for every ORF in the set. It was necessary to compute an average value, as opposed to computing the total area of the regions, due to missing probes on the chips. Signal data was collected and centered on the 3' TSS and the 5' TTS, and values were rank ordered and plotted. For Suppl. Fig. 4A, the selected region was +25 to +150 relative to the 3' TTS centering point. For Suppl.

Fig. 4B, the average differential expression was computed for each ORF in the region from -250 to -50 relative to the 5' TSS centering point. These regions were chosen because they show the most pronounced differential expression in Figs. S2B and C. The top 100 ORFs from Suppl. Figs. 4A and 4B are listed in Tables S2 and S3.

### Supplemental References

Amrani, N., Minet, M., Wyers, F., Dufour, M.E., Aggerbeck, L.P., and Lacroute, F. (1997). PCF11 encodes a third protein component of yeast cleavage and polyadenylation factor I. Mol. Cell. Biol. *17*, 1102-1109.

Arigo, J.T., Eyler, D.E., Carroll, K.L., and Corden, J.L. (2006). Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell *23*, 841-851.

Carroll, K.L., Pradhan, D.A., Granek, J.A., Clarke, N.D., and Corden, J.L. (2004). Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol. Cell. Biol. *24*, 6241-6252.

Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., and Hieter, P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene *110*, 119-122.

Conrad, N.K., Wilson, S.M., Steinmetz, E.J., Patturajan, M., Brow, D.A., Swanson, M.S., and Corden, J.L. (2000). A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics *154*, 557-571.

Ganem, C., Devaux, F., Torchet, C., Jacq, C., Quevillon-Cheruel, S., Labesse, G., Facca, C., and Faye, G. (2003). Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J. 22, 1588-1598.

Gemmill, T.R., Wu, X., and Hanes, S.D. (2005). Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in *Saccharomyces cerevisiae*. J. Biol. Chem. 280, 15510-15517.

Keogh, M.C., and Buratowski, S. (2004). Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in *Saccharomyces cerevisiae*. Methods Mol. Biol. (Clifton, N.J) 257, 1-16.

Louvion, J.F., Havaux-Copf, B., and Picard, D. (1993). Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene *131*, 129-134.

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science *320*, 1344-1349.

Nedea, E., He, X., Kim, M., Pootoolal, J., Zhong, G., Canadien, V., Hughes, T., Buratowski, S., Moore, C.L., and Greenblatt, J. (2003). Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J. Biol. Chem. *278*, 33000-33010.

Neil, H., Malabat, C., d'Aubenton-Carafa, Y., Xu, Z., Steinmetz, L.M., and Jacquier, A. (2009). Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature *457*, 1038-1042.

Ren, P., Rossettini, A., Chaturvedi, V., and Hanes, S.D. (2005). The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. Microbiology *151*, 1593-1605.

Steinmetz, E.J., and Brow, D.A. (1998). Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc. Nat. Acad. Sci. USA *95*, 6699-6704.

Thomas, B.J., and Rothstein, R. (1989). Elevated recombination rates in transcriptionally active DNA. Cell *56*, 619-630.

Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M.A., Bassett, D.E., Jr., Hieter, P., Vogelstein, B., and Kinzler, K.W. (1997). Characterization of the yeast transcriptome. Cell *88*, 243-251.

Wu, X., Wilcox, C.B., Devasahayam, G., Hackett, R.L., Arevalo-Rodriguez, M., Cardenas, M.E., Heitman, J., and Hanes, S.D. (2000). The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. *19*, 3727-3738.

Wyers, F., Rougemaille, M., Badis, G., Rousselle, J.C., Dufour, M.E., Boulay, J., Regnault, B., Devaux, F., Namane, A., Seraphin, B., *et al.* (2005). Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell *121*, 725-737.

Xu, Z., Wei, W., Gagneur, J., Perocchi, F., Clauder-Munster, S., Camblong, J., Guffanti, E., Stutz, F., Huber, W., and Steinmetz, L.M. (2009). Bidirectional promoters generate pervasive transcription in yeast. Nature *457*, 1033-1037.