Biophysical Journal, Volume 97

Supporting Material

Protein stabilization and the Hofmeister effect. The role of hydrophobic salvation

Xavier Tadeo, Blanca López-Méndez, David Castaño, Tamara Trigueros, and Oscar Millet

SUPPLEMENTARY MATERIAL

Name	Legend
Kx2Q	K42Q + K54Q
Kx3Q	K28Q + K42Q + K54Q
Kx4Q	K28Q + K42Q + K54Q + K61Q
Kx5Q	K23Q + K28Q + K42Q + K54Q + K61Q
$Kx6\widetilde{Q}$	K23Q + K28Q + K41Q + K42Q + K54Q + K61Q

Table S1: Legend for the multiple K to Q replacements.

NOE upper distance limits:	1335
Short-range, $ i-j \le 1$	631
Medium-range, $1 < i-j < 5$	226
Long-range, $ i-j \ge 5$	498
$\phi'\psi$ dihedral angle restraints from TALOS	76
Maximal violation (Å)	0.14
Violations > 0.2 Å	0
CYANA target function $(Å^2)$	0.54 ± 0.11
AMBER energy (kcal/mol)	-3051.70 ± 55.66
Ramachandran plot statistics (%)	
residues in:	
most favoured regions	88.4
additionally allowed regions	11.1
generously allowed regions	0.6
disallowed regions	0
RMSD to mean coordinates (Å)	
backbone/heavy atoms (from 4 to 64)	0.34 / 0.70
RMSD to wild type ProtL, PDB ID 1HZ6 (Å)	
backbone (from 4 to 64)	0.77
backbone (secondary structure)	0.58

Table S2. Summary of experimental restraints and statistics of the structuredetermination of the Kx5Q mutant. Average values over the 20 energy-refinedconformers.

Mutant	Average T _m / °C	Number of independent
		measurements
		(CD / Fluorescence)
K7Q	64.6 ± 2.1	3 / 3
K23Q	66.1 ± 0.5	3 / 3
K28Q	71.3 ± 0.9	3 / 3
K41Q	69.4 ± 0.9	3 / 3
K42Q	63.8 ± 1.4	3 / 3
K54Q	67.1 ± 0.5	3 / 3
K61Q	65.5 ± 1.4	3 / 3
E2D	70.0 ± 0.8	4 / 4
E3D	68.0 ± 0.4	2 / 1
E21D	63.9 ± 1.4	2/3
E32D	70.9 ± 0.6	4 / 4
E46D	70.3 ± 0.7	4 / 4
K23A	63.1 ± 0.6	3 / 2
$Kx2Q^{(a)}$	66.1 ± 0.5	3 / 3
$Kx3Q^{(a)}$	69.4 ± 0.8	3 / 3
$Kx4Q^{(a)}$	62.3 ± 0.6	3 / 3
$Kx5Q^{(a)}$	61.9 ± 0.9	3 / 3
$Kx6Q^{(a)}$	60.2 ± 0.4	3 / 3

Table S3: Experimental data for the single point mutants considered in the present study (in the absence of cosolute).

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K54Q, K61Q.

Tuble 54. Soliten	i decessionnes and res	idites non pola	areas em	pioyeu in	i cquanoi	ι Δ.
Mutant	$\chi^{F}_{np,Mut}$	(a)		${\mathcal X}^F_{np,N}$	(a) WT	
K7Q	0.867 ± 0	0.06		0.738	± 0.17	
K23Q	0.751 ± 0	.03		0.660 :	± 0.18	
K28Q	0.665 ± 0	.10		0.363	± 0.06	
K41Q	0.852 ± 0	0.852 ± 0.08 0.492				
K42Q	0.249 ± 0	.07		0.375	± 0.09	
K54Q	0.313 ± 0	.05		0.328	± 0.07	
K61Q	0.709 ± 0	.14		0.623	± 0.14	
E2D	0.448 ± 0	0.06		0.307 :	± 0.15	
E3D	0.384 ± 0	0.04		0.416 :	± 0.23	
E21D	0.682 ± 0	0.07		0.698 :	± 0.22	
E32D	0.757 ± 0.10			0.522	± 0.27	
E46D	0.539 ± 0	0.04		0.504 :	± 0.19	
K23A	0.696 ± 0	0.05		0.660 :	± 0.18	
$\chi^U_{np,K}$ $\chi^U_{np,Q}$	$\chi^U_{np,E}$ $\chi^U_{np,D}$	$\chi^U_{np,A} = A^K_{np}/\text{\AA}^2$	A^Q_{np} /Å 2	$A_{np}^{E}/{ m \AA}^{2}$	A^{D}_{np} /Å ²	$A_{np}^A/{ m \AA}^2$
0.248 ^(b) 0.295 ^(b)	$0.277^{(b)}$ $0.222^{(b)}$ 0	$.360^{(b)}$ $122^{(c)}$	66 ^(c)	69 ^(c)	45 ^(c)	86 ^(c)

Table S4: Solvent accessibilities and residues non-polar areas employed in equation 2.

(a) Bold values are calculated from high resolution NMR structures (2PTL{Wikstrom, 1994 #142} or 2JZP). The 12 conformations of minimal energy have been used to estimate the error. Plain values have been obtained from homology models (using the servers' phyre {Bennett-Lovsey, 2007 #139}and swiss model workspace {Arnold, 2006 #125}). The error bars reflect the discrepancies between the models.

(b) Calculated from the expression: $\chi_{np}^{U} = A_{np}^{U} / A_{np}$. Values for A_{np} are taken from ref. {Bernado, 2006 #140}.

(c) Obtained from {Karplus, 1997 #134}.

Sodium sulfate								
Mutant	Conc. / mM	T_m / C	Mutant	Conc. / mM	$T_m / {}^oC$			
K7Q	250	72.6 ± 0.6	K61Q	500	78.5 ± 0.6			
	500	78.2 ± 0.5		750	84.0 ± 0.7			
	750	83.7 ± 0.4		1000	87.7 ± 0.4			
	1000	88.2 ± 0.9	$Kx2Q^{(a)}$	100	69.5 ± 0.3			
K23Q	250	71.6 ± 1.4		250	71.9 ± 1.0			
	500	77.0 ± 1.1		330	72.3 ± 0.3			
	750	82.3 ± 0.1		450	76.3 ± 0.3			
K28Q	200	74.0 ± 0.8		600	79.7 ± 0.4			
	400	77.1 ± 0.7	$Kx3Q^{(a)}$	50	70.3 ± 0.1			
	800	82.5 ± 0.3		100	71.5 ± 0.1			
K41Q	200	71.8 ± 1.3		200	74.2 ± 0.6			
	400	77.6 ± 1.0		400	78.1 ± 1.4			
	600	81.1 ± 1.0		750	82.9 ± 1.8			
K42Q	200	65.9 ± 1.5	$Kx4Q^{(a)}$	250	70.1 ± 0.2			
	250	67.4 ± 0.4		400	73.1 ± 0.2			
	400	70.1 ± 1.4		750	79.7 ± 1.3			
	500	73.2 ± 1.1		850	82.0 ± 0.3			
	600	75.4 ± 1.3	$Kx5Q^{(a)}$	250	70.1 ± 0.9			
	750	76.5 ± 0.5		500	76.7 ± 0.2			
K54Q	200	73.2 ± 0.7		750	82.2 ± 1.6			
	400	76.3 ± 0.6	$Kx6Q^{(a)}$	250	67.2 ± 0.2			
	600	79.4 ± 0.9		450	72.8 ± 0.3			
	800	84.5 ± 0.7		660	79.9 ± 0.3			
K61Q	250	72.0 ± 0.5						

Table S5:	Experimental	T_m	values	for	sodium	sulfate.
-----------	--------------	-------	--------	-----	--------	----------

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K61Q.

		-	-		
Mutant	Conc. / mM	T_m / C	Mutant	Conc. / mM	$T_m / {}^oC$
K7Q	200	67.4 ± 0.3	K61Q	400	71.2 ± 0.9
	400	70.9 ± 0.5		600	75.2 ± 0.8
	600	74.3 ± 0.3		800	77.0 ± 1.0
	800	78.4 ± 0.6	$Kx2Q^{(a)}$	200	70.1 ± 0.4
K23Q	200	69.1 ± 0.3		400	71.2 ± 1.6
	400	71.7 ± 0.2		600	75.9 ± 0.4
	600	75.7 ± 0.3		800	77.0 ± 1.0
	800	77.2 ± 0.4	$Kx3Q^{(a)}$	200	73.3 ± 0.8
K28Q	200	72.9 ± 0.8		400	75.7 ± 0.9
	400	75.0 ± 0.6		600	79.3 ± 0.9
	800	78.6 ± 0.4		800	81.7 ± 0.7
K41Q	200	70.6 ± 0.8	$Kx4Q^{(a)}$	200	66.7 ± 0.2
	400	75.8 ± 0.5		400	68.8 ± 0.1
	600	76.6 ± 1.5		600	72.0 ± 0.1
	800	75.4 ± 3.9		800	74.9 ± 0.5
K42Q	200	64.7 ± 0.9		900	77.2 ± 0.4
	400	69.7 ± 1.6	$Kx5Q^{(a)}$	200	66.9 ± 0.3
	600	72.2 ± 1.1		400	70.7 ± 0.5
	800	75.2 ± 0.7		600	76.1 ± 0.8
K54Q	200	70.8 ± 0.7		800	77.9 ± 0.1
	400	72.7 ± 0.6	$Kx6Q^{(a)}$	200	64.5 ± 0.4
	600	75.5 ± 0.7		400	68.9 ± 1.3
	800	77.4 ± 0.9		600	74.5 ± 0.5
K61Q	200	69.1 ± 0.7		800	80.5 ± 0.5

\mathbf{I}	Table S6:	Experimental	T_m	values	for	sodium	phos	phat
--------------	-----------	--------------	-------	--------	-----	--------	------	------

Sodium phosphate

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K61Q.

Sodium fluoride								
Mutant	Conc. / mM	T_m / C	Mutant	Conc. / mM	$T_m / {}^oC$			
K7Q	200	68.0 ± 0.8	K61Q	200	68.5 ± 1.1			
	400	71.1 ± 0.6		400	70.5 ± 1.0			
	600	73.4 ± 1.5		600	74.3 ± 0.8			
	800	75.6 ± 1.4		800	76.0 ± 0.8			
K23Q	200	68.7 ± 1.1	$Kx2Q^{(a)}$	200	69.3 ± 0.9			
	400	72.1 ± 0.3		300	70.1 ± 0.4			
	600	74.1 ± 0.3		400	71.3 ± 0.1			
	800	76.1 ± 0.2		600	74.8 ± 0.4			
K28Q	200	73.8 ± 1.7	$Kx3Q^{(a)}$	200	72.1 ± 0.1			
	400	76.1 ± 1.3		400	73.8 ± 0.6			
	600	78.5 ± 1.6		600	77.1 ± 1.7			
K41Q	200	72.2 ± 0.4		760	79.5 ± 3.3			
	400	74.7 ± 1.3	$Kx4Q^{(a)}$	200	66.0 ± 0.7			
	600	79.2 ± 1.2		400	69.1 ± 0.5			
	760	79.7 ± 0.9		600	71.6 ± 1.2			
K42Q	200	64.2 ± 2.7		760	74.9 ± 0.2			
	400	67.6 ± 0.5	$Kx5Q^{(a)}$	200	66.9 ± 0.6			
	600	69.2 ± 1.3		400	71.0 ± 0.4			
	760	70.5 ± 0.6		640	74.3 ± 0.6			
K54Q	200	71.1 ± 1.0	$Kx6Q^{(a)}$	100	62.6 ± 2.1			
	400	72.1 ± 1.0		250	65.0 ± 0.2			
	600	75.3 ± 0.7		300	65.6 ± 0.7			
	800	77.8 ± 1.3		500	70.4 ± 0.5			

Table S7: Experimental T_m values for sodium fluoride.

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K61Q.

Sodium nitrate						
Mutant	Conc. / mM	$T_m / {}^oC$	Mutant	Conc. / mM	$T_m / {}^oC$	
K7Q	200	63.6 ± 0.1	K54Q	750	63.5 ± 1.3	
	400	62.3 ± 0.4		1000	62.4 ± 1.3	
	600	61.8 ± 0.3	K61Q	250	65.2 ± 1.1	
	800	60.0 ± 0.3		500	63.5 ± 1.0	
K23Q	200	64.2 ± 0.5		1000	60.3 ± 0.8	
~	400	63.5 ± 0.7	$Kx2Q^{(a)}$	500	63.3 ± 0.2	
	600	62.3 ± 0.5	~	750	61.8 ± 0.5	
	800	60.6 ± 0.3		1000	61.4 ± 0.3	
K28Q	200	69.5 ± 0.8	$Kx3Q^{(a)}$	250	67.8 ± 0.01	
~	400	68.7 ± 1.2	~	500	65.6 ± 0.4	
	600	66.8 ± 0.3		750	63.2 ± 0.3	
	800	65.6 ± 0.3	$Kx4O^{(a)}$	100	61.5 ± 0.1	
K410	250	67.3 ± 2.7	~	250	61.1 ± 0.4	
~	500	65.5 ± 0.5		350	60.9 ± 0.01	
	1000	63.1 ± 0.6		500	59.4 ± 0.9	
K42O	500	61.6 ± 1.3	$Kx5O^{(a)}$	250	60.2 ± 0.4	
£	1000	59.1 ± 0.9	···· 2	500	58.1 ± 0.5	
K540	250	66.2 ± 1.0		750	57.3 ± 0.2	
·- · £	500	65.8 ± 0.7		1000	55.3 ± 0.7	

Table S8:	Experimental	T_m val	lues for	sodium	nitrate.
-----------	--------------	-----------	----------	--------	----------

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q.

Mutant	Conc. / mM	$T_m / {}^o\!C$	Mutant	Conc. / mM	$T_m / {}^oC$
K7Q	200	63.8 ± 0.8		800	56.8 ± 1.0
~	400	61.8 ± 1.0	K61Q	200	63.4 ± 0.8
	600	58.8 ± 0.3	~	400	61.6 ± 0.8
	800	58.0 ± 0.9		600	58.7 ± 0.3
K23Q	200	63.4 ± 0.5		800	57.7 ± 0.5
	400	61.7 ± 0.4	$Kx2Q^{(a)}$	250	61.9 ± 0.04
	600	60.2 ± 0.5		500	57.8 ± 0.2
	800	58.2 ± 0.4		1000	52.8 ± 1.5
K28Q	200	69.2 ± 0.3	$Kx3Q^{(a)}$	100	67.7 ± 0.2
	400	66.7 ± 0.5		250	65.9 ± 0.2
	600	64.6 ± 0.4		750	60.8 ± 0.2
	800	61.8 ± 0.8	$Kx4Q^{(a)}$	200	58.9 ± 0.9
K41Q	200	65.1 ± 0.6		600	56.5 ± 0.3
	400	59.6 ± 1.6		700	53.0 ± 0.9
	800	58.6 ± 1.5	$Kx5Q^{(a)}$	250	59.0 ± 0.3
K42Q	200	59.9 ± 0.7		500	57.4 ± 0.7
	400	55.2 ± 0.6		750	54.5 ± 0.4
	600	55.1 ± 1.0		1000	53.3 ± 0.9
	800	53.9 ± 0.8	$Kx6Q^{(a)}$	500	56.0 ± 0.7
K54Q	200	62.6 ± 0.8		750	52.0 ± 0.5
	400	61.0 ± 0.2		1000	49.5 ± 0.6
	600	57.6 ± 0.7			

Table S9: Experimental T_m values for sodium perchlorate.

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K61Q.

Sodium perchlorate

Mutant	Conc. / mM	$T_m / {}^oC$	Mutant	Conc. / mM	T_m / C
K7Q	200	63.0 ± 0.3	K61Q	600	53.1 ± 0.5
	400	57.7 ± 1.3		800	49.5 ± 0.8
	600	53.8 ± 0.8	$Kx2Q^{(a)}$	250	58.9 ± 0.3
	800	49.9 ± 0.5		500	54.4 ± 0.8
K23Q	200	61.3 ± 0.7		750	50.7 ± 0.3
	400	57.9 ± 0.3		1000	47.1 ± 0.4
	600	52.2 ± 0.8	$Kx3Q^{(a)}$	100	67.6 ± 0.2
K28Q	200	65.9 ± 0.5		250	64.9 ± 0.9
	400	60.6 ± 1.3		300	64.7 ± 0.5
	800	54.2 ± 0.6		375	63.4 ± 0.3
K41Q	200	64.4 ± 1.2		500	60.7 ± 0.5
	400	62.1 ± 0.8	$Kx4Q^{(a)}$	100	60.1 ± 0.5
	600	58.7 ± 1.3		300	56.3 ± 0.3
	800	56.2 ± 0.6		400	54.0 ± 0.9
K42Q	200	59.5 ± 0.8	$Kx5Q^{(a)}$	100	60.9 ± 0.4
	400	56.4 ± 0.6		200	58.0 ± 1.3
	600	53.3 ± 0.2		450	55.4 ± 0.8
	800	51.0 ± 0.7		600	52.2 ± 1.3
K54Q	250	59.4 ± 0.8		750	48.0 ± 0.6
	500	55.0 ± 0.1	$Kx6Q^{(a)}$	200	55.7 ± 0.5
	750	50.7 ± 0.5		400	53.0 ± 0.8
	1000	46.5 ± 0.7		500	50.9 ± 0.3
K61Q	200	62.4 ± 0.8		650	47.0 ± 0.8
	400	57.3 ± 0.5		750	43.8 ± 0.4

Table S10: Experimental T_m *values for sodium thiocyanate.*

(a) Legend: Kx2Q = K42Q, K54Q; Kx3Q = K28Q, K42Q, K54Q; Kx4Q = K28Q, K42Q, K54Q, K61Q; Kx5Q = K23Q, K28Q, K42Q, K54Q, K61Q; Kx6Q = K23Q, K28Q, K41Q, K42Q, K54Q, K61Q.

Sodium thiocyanate

Table S11: Comparison of the T_m variation
produced by the cosolute $(\partial T_m / \partial C_3)$ and
the salting in coefficient for K7Q.

Anion	$\partial T_m / \partial C_3$	Salting-in canstant(a) M ¹	
Sulfate	2.33	0.013	
Phosphate Eluoride	1.76	n.a.	
Nitrate	-5.5	n.a.	
Perchlorate Thiocyanate	-9.1 -19.3	0.097 0.077	

(a) Data taken from ref. 4.