# **Supplemental Data**

#### **Primers**

The sequence of primer sets used in this study are:

# For ChIP analysis

Primer sets used for p107, E2F1,  $cyclin\ A$  and cdc25A promoters and  $U_{2C}$  have been described (Takahashi et al., 2000 and Tyagi et al., 2007).

1. Apafl

Forward GGGTGTGTTTATTTGCATAAGCGGGC

Reverse TCTGGACAGCGGAGCAGTCAAAT

2. *p73* 

Forward TGCGACGGCTGCAGGTAGGA

Reverse TGTGTCGCCTTGTCCACTAGCTC

3. *p14*<sup>ARF</sup>

Forward CGCTGAGGGTGGGAAGATGGT

Reverse GTTCCTCTCCCTCCCGCCTA

4. *p21* 

Forward AGCTGCCGAAGTCAGTTCCTTGT

Reverse TCTCTCACCTCCTGAGTGCCT

# For RT-PCR analysis

Primer sets used for *E2F1* and *GAPDH* mRNA have been described (Tyagi et al., 2007).

1. Apaf1 mRNA

Forward TCCAGTCCAGGTTTCAGCACAAGA

Reverse TTCACTGTTTCCTGATGGCCTCGT

2. *p73* mRNA

Forward CGGGCCATGCCTGTTTACAAGAAA

Reverse TGGAGCAGACTGTCCTTCGTTGAA

3. *p14*<sup>ARF</sup> mRNA

Forward AGGTTCTTGGTGACCCTCCGGATT

Reverse CCCATCATCATGACCTGGTCTTCT

4. *p21* mRNA

Forward TTAGCAGCGGAACAAGGAGTCAGA

Reverse ACACTAAGCACTTCAGTGCCTCCA

5. hcf-1 mRNA

Forward AAGACAGCTCTGGCACCAA

Reverse GTCTGGAGAAGAATCCAGG

#### **Antibodies**

Antisera used in these experiments were: polyclonal anti-HCF-1<sub>N</sub> subunit, anti-WDR5, anti-β actin, anti-E2F1 for immunoblots (KH95), anti-E2F1 for ChIP and immunoprecipitation (sc-193), anti-MLLc (clone 9-12); anti-trimethyl-Histone H3K4; ALEXA FLUOR 680 goat anti-rabbit and ALEXA FLUOR 680 goat anti-mouse have been described before (Tyagi et al., 2007); p53 (sc-6243, Santa Cruz biotechnology); anti-PCNA (Transduction Laboratories); ALEXA FLUOR 488 goat anti-rabbit, ALEXA FLUOR 546 goat anti-mouse (Invitrogen); anti 53BP1 (kind gift of T. Halazonetis, University of Geneva); anti RPA 70 and RPA 34 antibody (kind gift of B. Stillman, Cold Spring Harbor Laboratory)







72 hr

Harvest sample: c) 48 hr OHT

C

| siRNA   | ОНТ | hrs with<br>OHT | Exp 1    |          | Exp 2    |          | Av of<br>Exp 1 & 2 | SD    |
|---------|-----|-----------------|----------|----------|----------|----------|--------------------|-------|
|         |     |                 | % sub-G1 | Fold Inc | % sub-G1 | Fold Inc |                    |       |
| Control | -   | 0               | 5.6      | 1        | 6.25     | 1        | 1                  |       |
| Control | +   | 24              | 14.6     | 2.6      | 15.3     | 2.44     | 2.52               | 0.08  |
| Control | +   | 48              | 19       | 3.39     | 22.8     | 3.64     | 3.51               | 0.12  |
| HCF-1   | -   | 0               | 12.9     | 1        | 15       | 1        | 1                  |       |
| HCF-1   | +   | 24              | 15.2     | 1.17     | 18.02    | 1.2      | 1.18               | 0.015 |
| HCF-1   | +   | 48              | 16.4     | 1.27     | 22.3     | 1.48     | 1.37               | 0.1   |
| WDR5    | -   | 0               | 16.6     | 1        | 17.9     | 1        | 1                  |       |
| WDR5    | +   | 24              | 17.2     | 1.03     | 21.7     | 1.21     | 1.12               | 0.09  |
| WDR5    | +   | 48              | 18.4     | 1.1      | 22       | 1.22     | 1.16               | 0.06  |





# В



Adriamycin

# C

| siRNA   | Adr | hrs with<br>Adr | Exp 1    |          | Exp 2    |          | Av of<br>Exp 1 & 2 | SD   |
|---------|-----|-----------------|----------|----------|----------|----------|--------------------|------|
|         |     |                 | % sub-G1 | Fold Inc | % sub-G1 | Fold Inc |                    |      |
|         |     |                 |          |          |          |          |                    |      |
| Control | -   | 0               | 4.3      | 1        | 3.9      | 1        | 1 1                |      |
| Control | +   | 24              | 14.3     | 3.32     | 11.4     | 2.92     | 3.12               | 0.2  |
| Control | +   | 48              | 23.8     | 5.53     | 24.6     | 6.31     | 5.92               | 0.38 |
|         |     |                 |          |          |          |          |                    |      |
| HCF-1   | -   | 0               | 11.5     | 1        | 11.9     | 1        | 1                  |      |
| HCF-1   | +   | 24              | 12.3     | 1.07     | 13.2     | 1.11     | 1.08               | 0.01 |
| HCF-1   | +   | 48              | 18.7     | 1.62     | 21.4     | 1.79     | 1.71               | 0.08 |
|         |     |                 |          |          |          |          |                    |      |
| WDR5    | -   | 0               | 10.3     | 1        | 9.3      | 1        | 1                  |      |
| WDR5    | +   | 24              | 11.9     | 1.15     | 10.3     | 1.11     | 1.13               | 0.02 |
| WDR5    | +   | 48              | 23       | 2.23     | 20.6     | 2.21     | 2.22               | 0.01 |

## Figure Legends

### Figure S1

- A Immunoblot analysis of U2OS cell extracts stably expressing empty vector, ER-E2F1, or ER-E2F1<sub>HBMmut</sub> are shown. Endogenous (E2F1) and recombinant (ER-E2F1) E2F1 proteins were visualized using anti-E2F1 antisera.
- B Immunoblot analysis of control or E2F1 siRNA treated U2OS cell extracts stably expressing ER-E2F1 or ER-E2F1<sub>HBMmut</sub> are shown. (The difference in ER-E2F1 and ER-E2F1<sub>HBMmut</sub> mobility clearly seen in lanes 5 and 6 is a phosphatase-sensitive effect, which varies with electrophoresis conditions.)

# Figure S2

- A Immunoblot analysis of E2F1, HCF-1, WDR5, and β-actin proteins (as indicated) from U2OS cell extracts transfected with plasmid encoding empty vector, E2F1, or E2F1<sub>HBMmut</sub> mutant and harvested 24-hrs post-transfection, and used for the ChIP experiment in Fig. **5B** are shown.
- B Quantitation of HCF-1, MLL, WDR5, and H3K4 trimethylation ChIP analyses of U2OS cells transfected with plasmids encoding empty vector, E2F1 or E2F1<sub>HBMmut</sub>, by triplicate real-time PCR, of indicated promoters is shown. The cells samples are the same as in Fig. **5B** and are similarly normalized to E2F1 levels.

# Figure S3.

- A Immunoblot analysis of HCF-1, WDR5, RPA34, and β-actin proteins from U2OS cells stably expressing ER-E2F1 or ER-E2F1<sub>HBMmut</sub> and treated with control, HCF-1 or WDR5 siRNA for 72 hrs are shown. The cells were induced with OHT as indicated.
- **B** Schematic outline of experiment performed in Fig. 6C.

C Raw data (% sub-G1) and calculated relative-fold increase (Fold Inc) obtained in Fig 6C.

# Figure **S4**.

- A Association of endogenous HCF-1 and E2F1, in nuclear extracts from HeLa cell treated with adriamycin (Adr) for 16 h. HCF-1 or mock immunoprecipitates (IP) of adriamycin treated (+) or untreated (-) samples were probed for E2F1. NE, input nuclear extract (3%).
- B Immunoblot analysis of endogenous levels of HCF-1, p53, E2F1, PCNA and  $\beta$ -actin proteins from U2OS cells treated with  $2\mu$ g/ml Adriamycin and harvested after indicated times are shown.
- C Raw data (% sub-G1) and calculated relative-fold increase (Fold Inc) obtained in Fig 7C.