SUPPLEMENTARY DATA

A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion

Hui-Wen Lo^{1,2,3,*}, Hu Zhu¹, Xinyu Cao¹, Amy Aldrich¹, and Francis Ali-Osman^{1,2,3}

Figure S1. The tGLI1 variant is frequently expressed in human breast cancer cells. Total RNA extracted from seven human breast cancer cell lines were subjected to RT-PCR to detect GLI1 and tGLI1 transcripts. Levels of β -actin transcripts were also determined to control for equal loading. The results showed that these cells expressed comparable levels of both GLI1 and tGLI1 transcripts. Lanes: 1, MCF-7; 2, BT-20; 3, SK-BR-3; 4, ZR75-1; 5, MDA-MB-361; 6, MDA-MB-453; 7, MDA-MB-468.

Figure S2. Cluster analysis of genes that are significantly and differentially expressed between U87MG-GLI1 and U87MG-tGLI1 cells. Based on the DNA microarray data and subsequent ANOVA analysis, genes differentially expressed between U87MG-GLI1 and U87MG-tGLI1 cells were subjected to cluster analysis. A total of 101 genes were identified to be significantly up-regulated or down-regulated (> 2) fold; p<0.05) in U87MG-tGLI1 cells relative to U87MG-GLI1 and U87MG-vector cells. In U87MG-tGLI1 cells, 75 genes were expressed at a significantly higher level and 26 genes were more suppressed compared to U87MG-vector and U87MG-GLI1 cells.

Figure S3. MEST gene expression is enhanced by tGLI1 but is not involved in tGLI1-mediated invasiveness in U87MG GBM cells.

A: MEST gene transcription is increased in U8MG-tGLI1 cells compared to U87MG-vector and U87MG-GLI1 cells. U87MG stable transfectants were subjected to RT-PCR (top) and RT-qPCR (bottom) to determine the levels of MEST and GAPDH transcripts. DNA sequences for primers that amplify MEST gene transcripts are 5'-TTTCCAACATCCAGCTACGA-3' (forward) and 5'-GGCCTGCTCAAATATG GAAT-3' (reverse).

B: **Activity of the MEST gene promoter is higher in U8MG-tGLI1 cells compared to U87MG-vector and U87MG-GLI1 cells.** The luciferase reporter construct, pMEST-Luc, contains a 1 kb human MEST gene promoter fragment, which was generated by PCR using primers, 5'-ATGCTAGCCACTTCGTGA TACTCTAC-3' (forward) and 5'-GGAGATCTCCGACTTTTAGAGCCCAC-3' (reverse). The promoter fragment was restricted by NheI and BglII and then ligated into the cohesive ends of the promoter-less pGL3-basic luciferase vector (Promega). The pMEST-Luc and pRL-TK (normalization control) reporter constructs were co-transfected into U87MG stable transfectants for 48 hrs and luciferase activity determined. Three independent experiments were performed to derive means and standard deviations.

C,D: **MEST expression down-regulation did not affect the invasiveness of U87MG-tGLI1 cells.** U87MG-tGLI1 cells were transfected with non-targeting control siRNA, CD24 siRNA and MEST siRNA for 48 hrs and subjected to RT-PCR and western blotting (C) and invasion assay (D). As indicated by results in panel C, MEST siRNA specifically down-regulated MEST but not CD24 and β -actin transcripts. In panel D (top), cell proliferative rates were also determined using Celltitier Blue Cell Viability assay kit to derive net invasiveness (invasiveness:proliferation). Three independent experiments were conducted to derive means and standard deviation. The bottom panel shows representative invaded tumor cells that have been stained by 0.5% crystal violet.

Figure S4. Transcriptional over-expression and down-regulation of CD24 did not significantly affect cell proliferation of U87MG GBM cells. To determine the effects of CD24 expression on U87MG cell proliferation, we transcriptionally down-regulated CD24 gene expression using U87MG-tGLI1 cells who express high levels of CD24 **(A)** and over-expressed CD24 using U87MG cells with low levels of CD24 **(B)**. These cells were also transfected with non-targeting siRNA and parental vector to control for CD24 siRNA and CD24 expression vector, respectively. Cell viability was then determined using Celltiter Blue Cell Viability assay kit (Promega) for 0-72 hrs. The viability at 0 hr was regarded as 1.0. Three independent experiments were performed to derive means and standard deviations. The student t-test was conducted and showed that CD24 expression did not significantly affect proliferation of U87MG GBM cells.

SUPPLEMENTARY TABLE I & II

Table I Genes significantly up-regulated in U87MG-tGLI1 cells compared to U87MG-GLI1 and U87MG-vector cells. DNA microarray data were subjected to ANOVA analysis to identify genes that are expressed in U87MG-tGLI1 cells at a significantly higher level, namely, at least 2-fold and p<0.05, compared to U87MG-GLI1 and U87MG-vector cells. The analysis revealed 79 hits corresponding to 75 genes in which both EPB41L4B and GREM2 genes had two hits each and for the FHL1 gene, three hits.

Table II Genes significantly down-regulated in U87MG-tGLI1 cells compared to U87MG-GLI1 and U87MG-vector cells. Following DNA microarray and subsequent ANOVA analysis, we identified 26 genes that are significantly down-regulated (at 2-fold and p<0.05) in U87MG-tGLI1 cells compared to U87MG-GLI1 and U87MG-vector cells. The list shows 28 hits but 26 genes as both C9orf72 and ST7L genes had two hits each.

SUPPLEMENTARY METHODS

Plasmids. GLI1- and tGLI1-expressing plasmids were constructed using the parental pCMV-Tag2b vector (Stratagene) with a 5'-flag tag. Briefly, full-length GLI1 and tGLI1 cDNAs were obtained via RT-PCR using the primers 5'-GGGGATATCATGTTCAACTCGATGACCC (forward) and 5'-GGGGTCGACGGC ACTAGAGTTGAGGAATTC-3' (reverse), restricted by EcoRV and SalI, and ligated into the pCMV-Tag2b vector. The CD24 mammalian expression plasmid, pCMV-SPORT6-CD24, was from Open Biosystems (Huntsville, AL) and the parental pCMV-SPORT6 vector was obtained from it by restriction digestion with SmaI and ApaI to release the CD24 cDNA and ligation. pCD24-0.14kb-Luc was obtained by releasing a MluI-BmgBI fragment from the pCD24-0.3kb-Luc construct. pCD24-0.25kb-Luc and pCD24- 0.2kb-Luc was obtained via mutagenesis.

Reverse transcription-PCR (RT-PCR). Total RNA isolation and RT were conducted using SV Total RNA Isolation System (Promega) and Superscript II First-Strand cDNA synthesis system (Invitrogen), retrospectively. The forward and reverse primers used for the PCR were: 5'-TGTTCAACTCGATGACCC-3' and 5'-GTCATGGGGACCACAAGG-3' (exons 1-4 of GLI1 and tGLI1reverse), 5'-GGCGGCA CCACCATGTACCC-3' and 5'-AGGGGCCGGACTCGTCATACT-3' (β -actin), 5'-ATGGGCAGAG CAATGGTGGCCA-3' and 5'-AGAGTGAGACCACGAAGAGACT-3' (CD24), 5'-TCTGGAGCAGAT TTCCAAGGGGAA-3' and 5'-AGGATTAAACATAGCCTCTTC TCC-3' (PTCH1), and 5'-TTTCCAAC ATCCAGCTACGA-3' and 5'-GGCCTGCTCAAATATGGAAT-3' (MEST). qRT-PCR was performed in the Mx3005P qPCR System (Stratagene) using the SuperScript III platinum SYBR green one-step qRT-PCR system (Invitrogen). GAPDH gene was used as normalization controls and all experiments were done in triplicates.

Transfection and luciferase assay.

All transfections were performed with cells in exponential growth using lipofectamine 2000 (Invitrogen, Carlsbad, CA) and FuGENE HD (Roche). A Renilla luciferase expression vector, pRL-CMV was used to control for transfection efficiency. Forty-eight hrs after transfection, the cells were lysed and luciferase activity measured using the Firefly and Renilla Luciferase Assay Kit (Biotium, Hayward, CA), as previously described (1-4).

Nuclear fractionation, immunofluorescence staining/confocal microscopy.

These were performed as previously described (1, 2, 5). In the immunofluorescence staining experiments, a mouse monoclonal flag-tag antibody (Sigma) was used to detect flag-tagged GLI1/tGLI1 and a fluoresceinconjegated secondary antibody was used to generate green fluorescence signals. Propidium iodide was used to label nuclei. Fluorescence signals were scanned using a Zeiss LSM 510 confocal microscope.

REFERENCES

- 1. Lo H-W, Hsu S-C, Ali-Seyed M*, et al.* Nuclear Interaction of EGFR and STAT3 in the Activation of iNOS/NO Pathway. Cancer Cell 2005;7(6):575-89.
- 2. Lo HW, Cao X, Zhu H, Ali-Osman F. Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators. Clin Cancer Res 2008;14(19):6042-54.
- 3. Lo HW, Stephenson L, Cao X, Milas M, Pollock R, Ali-Osman F. Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 2008;6(5):843-50.
- 4. Lo H-W, Hsu S-C, Xia W*, et al.* Epidermal Growth Factor Receptor Cooperates with Signal Transducer and Activator of Transcription 3 to Induce Epithelial-Mesenchymal Transition in Cancer Cells via Upregulation of TWIST Gene Expression. Cancer Res 2007;67(19):9066-76.
- 5. Lo H-W, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung M-C. Novel Prognostic Value of Nuclear EGF Receptor in Breast Cancer. Cancer Research 2005;65:338-48.