Supporting Information

Fluorinated Xerogel-Derived Ultramicroelectrodes for Amperometric Nitric Oxide Sensing

Jae Ho Shin, Benjamin J. Privett, Justin M. Kita, R. Mark Wightman, and Mark H. Schoenfisch*

Contribution from the Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

* To whom correspondence should be addressed. E-mail: schoenfisch@unc.edu

1. Electrooxidation process of nitric oxide on a platinum working electrode.

The electrochemical oxidation of NO on a polycrystalline platinum electrode proceeds via the following

reactions.^{S1-S3} In the first step (Eq. S1) an electron is transferred from NO to the electrode, generating an oxidation current. Since nitrosonium ion (NO⁺) is a relatively strong Lewis acid, it is converted to nitrite (NO_2^-) in the presence of hydroxide (OH⁻) (Eq. S2).

$$NO \rightarrow NO^+ + e^-$$
 (S1)

$$NO^{+} + OH^{-} \rightarrow HNO_{2}$$
 (S2)

Ultimately NO_2^- is further oxidized to nitrate (NO_3^-), the final product of NO's electrochemical oxidation, resulting in the additional transfer of two electrons to the platinum electrode:

$$HNO_2 + H_2O \rightarrow NO_3^- + 3H^+ + 2e^-$$
(S3)

2. Calculation of the concentration for a standard NO solution (adapted from ref. S4).

The molarity of NO (C_{NO} , mol·L⁻¹) in phosphate-buffered saline (PBS; containing 3.9 mM NaH₂PO₄, 6.1 mM Na₂HPO₄, 2.7 mM KCl, and 138 mM NaCl) can be calculated from Henry's law:

$$C_{\rm NO} = P_{\rm NO} S_{\rm NO} \tag{S4}$$

where P_{NO} is the pressure of NO (mmHg), and S_{NO} is the solubility of NO in water (cm³). Alternatively, C_{NO} and S_{NO} in water may be calculated as C_{NO} and S_{NO} in saline or PBS. The pressure of NO (P_{NO}) may be expressed as follows.

$$P_{\rm NO} = (P_{\rm tot} - P_{\rm w})(G_{\rm NO})10^{-6}$$
(S5)

where P_{tot} and P_w are the total pressure (760 mmHg) of the gas mixture and the partial pressure of water vapor (23.8 mmHg)^{S5} at 25 °C, respectively. In addition, G_{NO} is the NO concentration obtained from a gas cylinder (ppm). For our studies, S_{NO} at 25 °C is 0.0432 cm³.^{S6} Finally, converting the units of pressure from mmHg to mol·L⁻¹ yields the following expression:

$$C_{\rm NO} = (760 - 23.8) \frac{133.322 \times 10^{-3}}{8.314(273.15 + 25)} (G_{\rm NO}) 10^{-6} (0.0432)$$
(S6)

Therefore, when PBS is purged with 24.1 ppm of NO gas (G_{NO}), C_{NO} is about 41 nM.

	Permeability, P_i^e		Permselectivity,	Selectivity, ^d
Xerogel composition ^{b,c}	i = NO	$i = NO_2^-$	$\alpha_{_{NO,NO_2}}$	$\log K^{amp}_{_{NO,NO_2}}$
Bare Pt (blank)				-1.51 ± 0.09
MTMOS (control)	0.52 ± 0.05	0.32 ± 0.09	1.6 ± 0.5	-1.74 ± 0.16
BTMOS (control)	0.83 ± 0.08	0.83 ± 0.12	1.0 ± 0.2	-1.60 ± 0.03
20% 3FTMS/MTMOS	0.77 ± 0.11	0.19 ± 0.04	4.1 ± 1.0	-2.00 ± 0.20
20% 9FTMS/MTMOS	0.20 ± 0.09	0.061 ± 0.009	3.3 ± 1.6	-1.90 ± 0.10
20% 13FTMS/MTMOS	0.51 ± 0.08	0.053 ± 0.007	10 ± 2	-2.22 ± 0.11
20% 17FTMS/MTMOS	0.75 ± 0.06	0.0091 ± 0.001	83 ± 11	-3.21 ± 0.15
20% 17FTMS/MTMOS/HCl	0.72 ± 0.09	< 0.0001	7200 ± 900	-5.74 ± 0.14
20% 17FTMS/MTMOS/NaOH	0.13 ± 0.02	< 0.0001	1300 ± 200	-4.83 ± 0.09
10% 17FTMS/MTMOS/HCl	0.92 ± 0.05	0.047 ± 0.009	20 ± 4	-3.11 ± 0.21
30% 17FTMS/MTMOS/HCl	0.33 ± 0.03	< 0.0001	3300 ± 300	-5.10 ± 0.14
40% 17FTMS/MTMOS/HCl	0.11 ± 0.05	< 0.0001	1100 ± 500	-4.57 ± 0.20
20% 17FTMS/BTMOS/HCl	0.22 ± 0.07	< 0.0001	2200 ± 700	-4.89 ± 0.17
20% AEMP3/MTMOS/Nafion (NO) ^{e,f}	0.10 ± 0.03	< 0.0001	1000 ± 300	-5.79 ± 0.08

Table S1. Electrochemical characteristics of fluorinated xerogel-derived NO sensors as a function of xerogel composition^a

^aThe values were determined at 10 μ M of NO and 100 μ M of NO₂⁻ in deoxygenated PBS (0.01 M, pH 7.4), respectively. Data are represented as means ± SD (n = 3 or 5). ^bMTMOS, methyltrimethoxysilane; BTMOS, isobutyltrimethoxysilane; 3FTMS, (3,3,3-trifluoropropyl)trimethoxysilane; 9FTMS, nonafluorohexyltrimethoxysilane; 13FTMS, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; 17FTMS, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane; AEMP3, (aminoethylaminomethyl)phenethyltrimethoxysilane. ^cXerogel compositions used: 45–75 μ L of MTMOS or BTMOS, 0–30 μ L of fluoroalkoxysilane (corresponding to 0–40%, balance MTMOS or BTMOS), 300 μ L of ethanol, and 80 μ L of water with or without 5 μ L of 0.5 M HCl or 0.5 M NaOH as catalysts. All xerogel coatings were dried under ambient conditions for 24 h except the 17FTMS/BTMOS xerogel, which was cured at 80 °C for 24 h. ^dTo determine NO selectivity over NO₂⁻, the separate solution method was employed from Ref S7. ^cThe previously-optimized composition of amine-modified xerogel coatings for a NO-permselective membrane from Ref S8. ^fThe amine-modified xerogel membrane consists of 40 μ L of MTMOS, 10 μ L of AEMP3 (20%, balance MTMOS), 10 μ L of Nafion (17% of 50 μ L of total silane), 200 μ L of ethanol, and 100 μ L of water. After curing for 24 h under ambient conditions, the xerogel/Nafion-modified electrodes were then charged at 5 atm NO for 10 min.

Table S2. ²⁹Si chemical shifts (δ_{Si} in ppm from tetramethylsilane), relative intensities of T^n structures, and degrees of condensation (%*DC*) of 20% 17FTMS/MTMOS-derived xerogel membranes synthesized under different catalytic conditions^{*a*,*b*}

	Si structure (int%)			
Catalytic condition	<i>T</i> ¹ (–44 ppm)	<i>T</i> ² (–53 ppm)	<i>T</i> ³ (–62 ppm)	$\% DC^{c}$
control ^d	5.2 ± 1.5	54.8 ± 0.5	40.0 ± 1.6	78.3 ± 1.7
6.5 mM HCl^{e}	2.2 ± 0.6	36.3 ± 1.7	61.5 ± 1.8	86.4 ± 2.1
6.5 mM NaOH ^e	3.7 ± 0.8	22.1 ± 0.9	74.2 ± 2.3	90.2 ± 2.4

^{*a*}The values were obtained by deconvolution of ²⁹Si CP/MAS NMR spectra. The peak intensity distributions were fitted to Gaussian functions, in terms of T^n where n = 1, 2, and 3 corresponding to the number of siloxane bridges bound to the silicon atom of interest. Data are represented as means \pm SD (n = 2 or 3). ^{*b*}Xerogel composition used: 60 µL of MTMOS, 15 µL of 17FTMS (20%, balance MTMOS), 300 µL of ethanol, and 80 µL of water. All fluorinated xerogel coatings were dried under ambient conditions for 24 h. ^{*c*}The degree of condensation (%*DC*) was calculated from the relative intensities of T^n species. ^{*d*}Composition without a catalyst. ^{*e*}The addition of 5 µL of 0.5 M HCl or 0.5 M NaOH in the above xerogel composition, respectively.

Figure S1. (A) Degree of condensation (%DC) and (B) thickness of the xerogel membrane as a function of the concentration of 17FTMS (balance MTMOS). All xerogels were synthesized under the acid-catalyzed conditions (6.5 mM HCl). The sol solution was deposited onto the Pt macroelectrodes (0.04 μ L·mm⁻²) and allowed to cure for 24 h under ambient conditions. Data are represented as means ± SD (*n* = 2 or 3 for graph (A) and *n* = 9 for graph (B), respectively).

Figure S2. NO permeability (bar graphs, left axis) and selectivity over nitrite (scatter plots, right axis) as a function of the membrane thickness of 20% 17FTMS/MTMOS synthesized under the acid-catalyzed conditions (6.5 mM HCl). The dashed line indicates NO selectivity of the bare Pt electrode over nitrite. Data are represented as means \pm SD (n = 3).

Figure S3. Cyclic voltammograms of the non-platinized (dashed blue) and platinized (solid red) Pt/W ultramicroelectrodes for 30 μ M of NO in deoxygenated PBS (0.01 M, pH 7.4) at a scan rate of 100 mV·s⁻¹ vs Ag/AgCl.

Figure S4. (A) Dynamic response and (B) calibration curves of the non-platinized (a) and platinized (b) Pt/W ultramicroelectrodes in deoxygenated PBS (0.01 M, pH 7.4). Currents were recorded at an applied potential of +0.7 and +0.8 V vs Ag/AgCl for the platinized and non-platinized electrodes, respectively. Insets represent the expansions of the dynamic response and calibration curves for the non-platinized electrode. The response sensitivity to NO was 0.38 ($R^2 = 0.9948$) and 7.38 ($R^2 = 0.9998$) nA·µM⁻¹ for the non-platinized and platinized Pt/W ultramicroelectrodes, respectively.

Figure S5. Dynamic response and calibration curves (insets) of the 20% 17FTMS/MTMOSmodified NO-selective ultramicroelectrode in the extended NO concentrations: (A) sub-micromolar and (B) micromolar levels of NO. The response sensitivity to NO was 9.96 pA·nM⁻¹ ($R^2 = 0.9987$) in the range from 30 to 300 nM NO and 7.60 nA· μ M⁻¹ ($R^2 = 0.9999$) from 0.5 to 4.0 μ M NO, respectively.

SI REFERENCES

- S1. Lee, Y.; Oh, B. K.; Meyerhoff, M. E. Anal. Chem. 2004, 76, 536-544.
- S2. Bedioui, F.; Trevin, S.; Devynck, J. *Electroanalysis* 1996, 8, 1085-1091.
- S3. de Vooys, A. C. A.; Beltramo, G. L.; van Riet, B.; van Veen, J. A. R.; Koper, M. T. M. *Electrochim. Acta* **2004**, *49*, 1307-1314.
- S4. Kitamura, Y.; Uzawa, T.; Oka, K.; Komai, Y.; Ogawa, H.; Takizawa, N.; Kobayashi, H.; Tanishita, K. *Anal. Chem.* **2000**, *72*, 2957-2962.
- S5. Dean, J. A. *Lange's Handbook of Chemistry*, 15th ed.; McGraw-Hill: New York, 1999; pp 5.28.
- S6. Dean, J. A. *Lange's Handbook of Chemistry*, 15th ed.; McGraw-Hill: New York, 1999; pp 5.6-5.7.
- S7. Stefan, R.-I.; van Staden, J. F.; Aboul-Enein, H. Y. *Electrochemical Sensors in Bioanalysis*; Marcel Dekker: New York, 2001.
- S8. Shin, J. H.; Weinman, S. W.; Schoenfisch, M. H. Anal. Chem. 2005, 77, 3494-3501.