Structural Perturbations Induced by the α-Anomer of the Aflatoxin B₁ Formamidopyrimidine Adduct in Duplex and Single-Strand DNA

Supporting Information

Kyle L. Brown, Markus W. Voehler, Shane M. Magee, Constance M. Harris, Thomas M. Harris, and Michael P. Stone*

Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235

*Author to whom correspondence should be addressed.

Michael P. Stone

Telephone 615-322-2589

FAX 615-322-7591

email: michael.p.stone@vanderbilt.edu

Nucleotide	Atom	Chemical Shift (ppm)	Nucleotide	Atom	Chemical Shift (ppm)
C^1	H1'	5.81	A^4	H1'	6.27
C^1	H2'	2.02	A^4	H2'	2.69
C^1	H2"	2.40	A^4	H2"	2.51
C^1	H3'	4.53	A^4	H3'	4.62
C^1	H4'	3.92	A^4	H4'	4.17
\mathbf{C}^1	Н5	5.54	A^4	H5'	4.00
C^1	H5'	3.58	A^4	H5"	3.96
C^1	H6	7.48	A^4	H8	8.29
T^2	H1'	6.19	AFB ⁵	H5	5.72
T^2	H2'	2.21	AFB ⁵	H5B	5.71
T^2	H2"	2.37	AFB ⁵	H6a	6.13
T^2	H3'	4.71	AFB ⁵	H8	5.66
T^2	H4'	4.28	AFB ⁵	H9	6.16
T^2	H5'	3.92	AFB ⁵	H9a	3.66
T^2	H5"	3.89	AFB ⁵	OCH ³	3.76
T^2	H6	7.54			
T^2	M7	1.70			
X ³	H1'	5.62			
X ³	H2'	2.30			

Table S1. Resonance Assignments for AFB- α -FAPY Modified 5'-d(C¹T²X³A⁴)-3'.

X^3	H2"	1.88
X ³	H3'	4.54
X ³	H4'	4.11
X ³	H5'	3.82
X ³	H5"	3.74
X^3	H8	8.27

Figure S1. Electronic circular dichroism of the AFB- α -FAPY and AFB- β -FAPY anomers in oligodeoxynucleotides. The duplex 5'-d(CTATXATTCA)-3'•5'-d(TGAATCATAG)-3' (panel A) was compared to 5'-d(CTATXATTCA)-3' (panel B). Unmodified oligodeoxynucleotides (solid black line) were compared to oligodeoxynucleotides containing the AFB- β -FAPY (broken black line) and AFB- α -FAPY (solid red line) adducts.

Figure S2. UV spectra of AFB-FAPY modified 5'-d(CTATXATTCA)-3'. The spectra of the α anomer (—) is compared to that of the β anomer (—) in **panel A**. The absorbance units on the Y-axis are normalized to the maximum absorbance of 1.0. The spectrum of the α anomer (—) is compared to that of the chromatographically inseparable shoulder preceding the main α anomer peak (—) in **panel B**.

Figure S3. NOESY assignments of purine H8 and pyrimidine H6 protons to

deoxyribose H1' protons for the AFB- α -FAPY modified duplex 5'-d(CTATXATTCA)-3'•5'd(TGAATCATAG)-3'. **Panel A:** The connectivity for the modified strand was broken between T⁴ H1' and A⁶ H8. **Panel B:** The connectivity for the complementary strand was broken between C¹⁶ H6 and A¹⁷ H1'. The intra-nucleotide purine H8 and pyrimidine H6 to deoxyribose H1' cross peaks are labeled.

Figure S4. Upper Panel. NOE connectivity for the Watson-Crick base paired amino protons of the AFB-α-FAPY modified duplex. The cross peaks are: a, AFB OCH₃→X⁵ H3; b, C¹⁶ H41→X⁵ H3; c, X⁵ H21→X⁵ H3; d, X⁵ H22→X⁵ H3; e, A⁶ H61→X⁵ H3; f, C¹⁶ H42→X⁵ H3; g, C⁹ H42→G¹² H1; h, C¹ H42→G²⁰ H1; i, A¹³ H61→G¹² H1; j, C⁹ H41→G¹² H1; k, C⁹ H5→G¹² H1; l, AFB OCH₃→T⁴ H3; m, A³ H61→T¹⁸ H3; n, A¹⁷ H62→T⁴ H3; o, A¹⁷ H61→T⁴ H3; p, A³ H2→T¹⁸ H3; q, A¹⁷ H2→T⁴ H3; r, A⁶ H2→T¹⁵ H3; s, A¹⁴ H61→T¹⁵ H3; t, A⁶ H62→T¹⁵ H3; u, A¹⁴ H62→T⁷ H3; v, A¹⁴ H61→T⁷ H3; w. A¹⁴ H2→T⁷ H3; x; A¹³ H2→T⁸ H3; y, A¹³ H61→T⁸ H3; z, A¹³ H62→T⁸ H3. **Lower Panel.** NOE connectivity for the Watson-Crick hydrogen bonded imino protons of the AFB-α-FAPY modified duplex. The data was collected at 500 MHz. using a mixing time of 250 ms. The temperature was 5 °C.

Figure S5. ³¹P NMR of AFB- α -FAPY in 5'-d(C¹T²A³T⁴X⁵A⁶T⁷T⁸C⁹A¹⁰)-3'•5'd(T¹¹G¹²A¹³A¹⁴T¹⁵C¹⁶A¹⁷T¹⁸A¹⁹G²⁰)-3' (upper panel) and in 5'-d(C¹T²X³A⁴)-3' (lower panel). The phosphate resonance of C¹⁶ was observed at 0.9 ppm (upper panel).

Figure S6. ¹H NMR of AFB- α -FAPY modified tetramer aromatic

protons. A single formyl proton resonance assigned as the *E* isomer was observed at 5 °C (lower panel). A formyl resonance assigned as the *Z* isomer was apparent at 30 °C (upper panel).

Figure S7. NOE assignments of AFB inter-nucleotide and deoxyribose intra-nucleotide crosspeaks for the AFB- α -FAPY modified 5'-d(C¹T²X³A⁴)-3'. The cross peaks are assigned as (a) A⁴ H4' \rightarrow A⁴ H1' (b) AFB OCH₃ \rightarrow T² H1' (c) AFB H9a \rightarrow AFB H9 (d) AFB H9a \rightarrow AFB H6a (e) A⁴ H2' \rightarrow A⁴ H1' (f) A⁴ H2" \rightarrow A⁴ H1' (g) T² H2" \rightarrow T² H1' (h) T² H2' \rightarrow T² H1' (i) C¹ H2' \rightarrow C¹ H1' (j) C¹ H2" \rightarrow C¹ H1' (k) AFB OCH₃ \rightarrow AFB H5 (l) X³ H5" \rightarrow X³ H1' (m) X³ H2' \rightarrow AFB H5 (n) X³ H2" \rightarrow AFB H5 (o) X³ H2" \rightarrow X³ H1' (p) X³ H2' \rightarrow X³ H1'.

