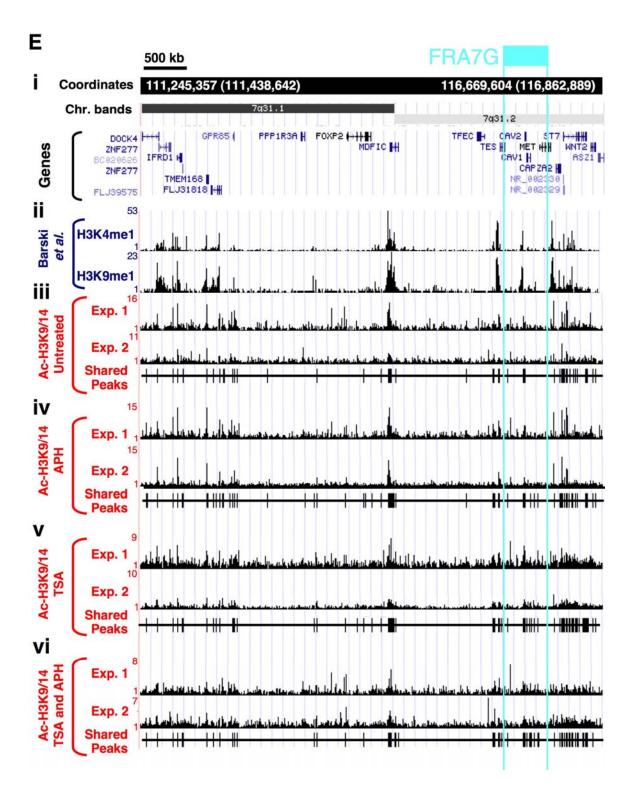
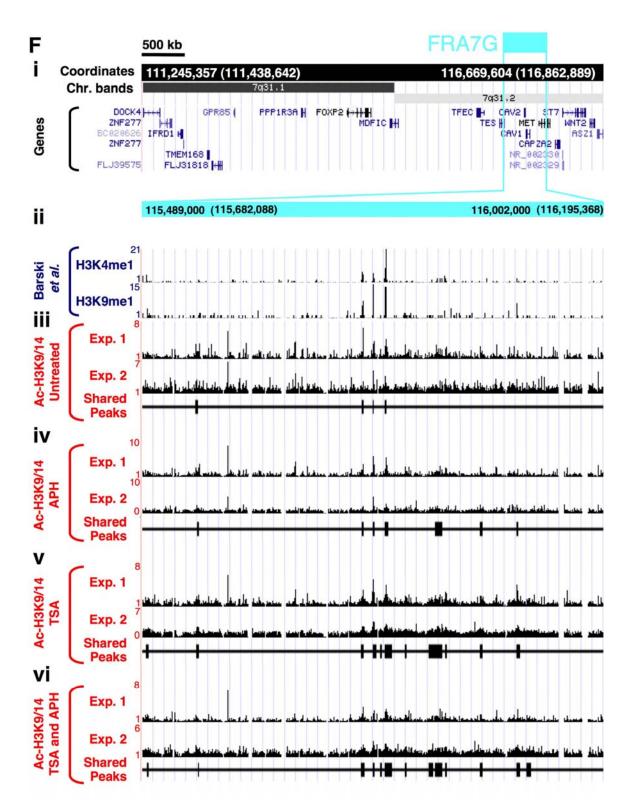
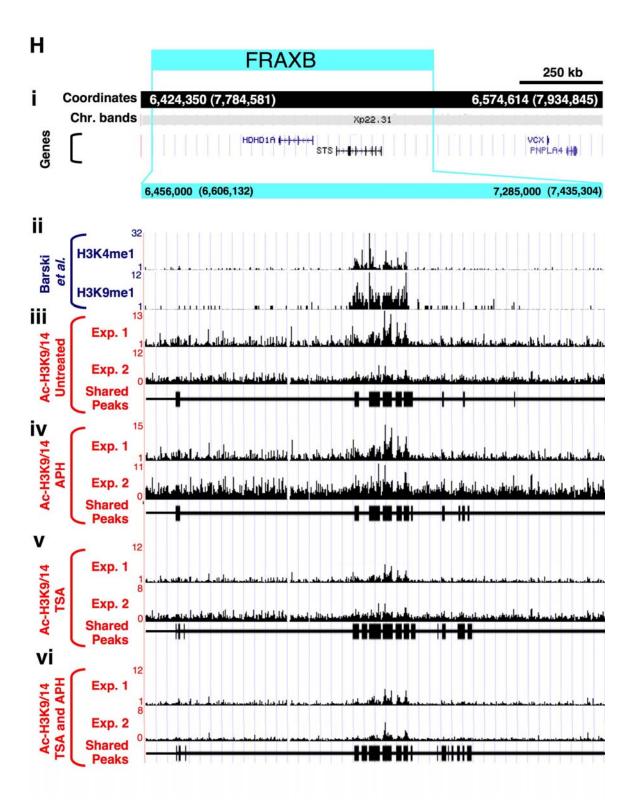
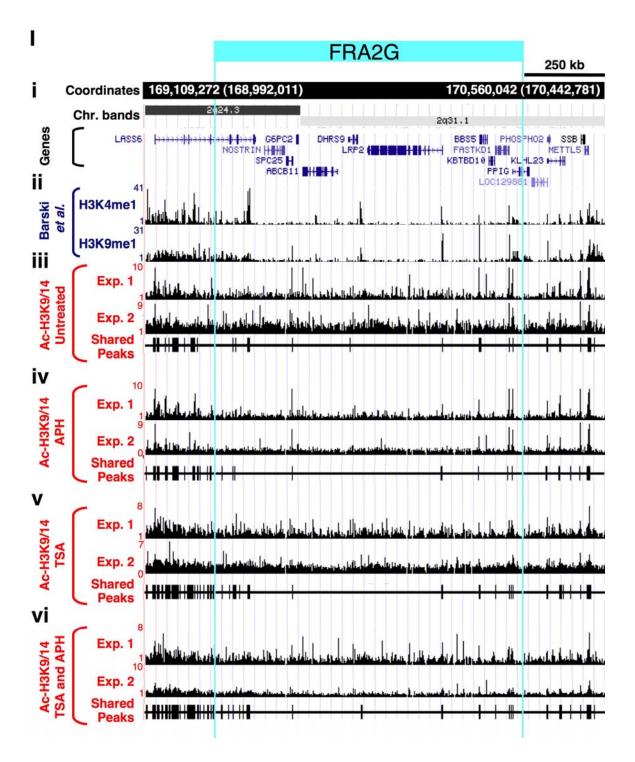
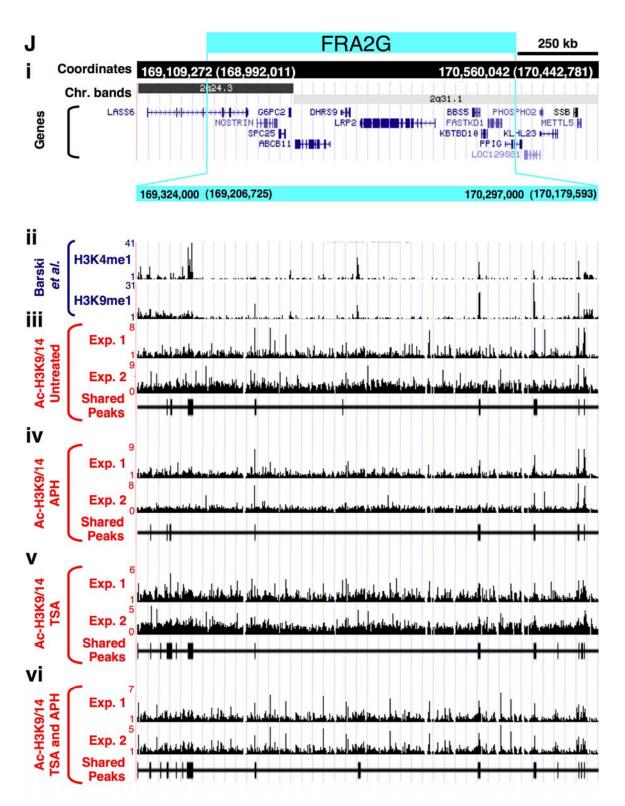

Supplementary Material Figure S1

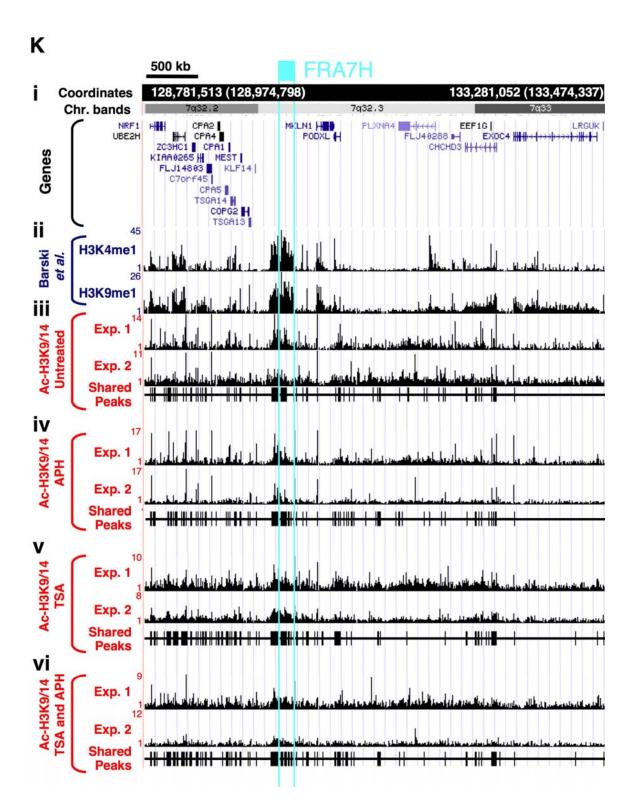


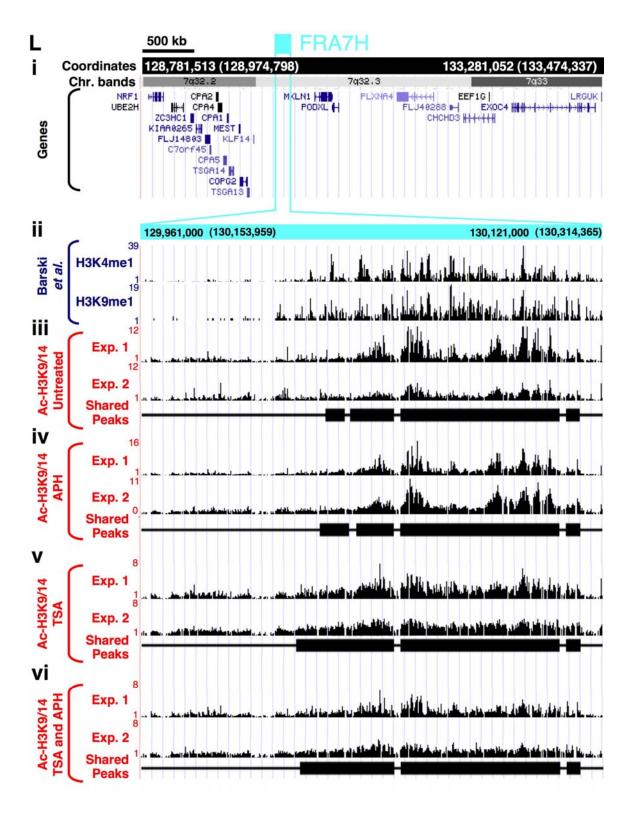

Jiang et. al.

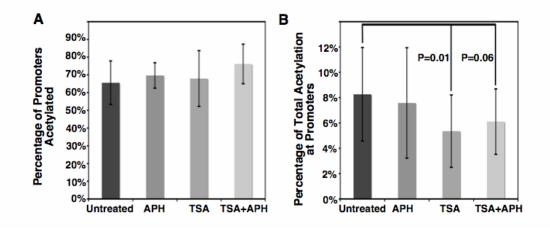







		FRAXB	050 kk
			250 kb
i	Coordinates	6,424,350 (7,784,581)	6,574,614 (7,934,845)
ii _{Genes}	Chr. bands	Xp22.31	
Ger	Г	HDHD1A - - - STS ++ - ++ + + +	VCX) PNPLR4 🙌
ii	32		
	H3K4me1	الأراب المراجع	
Barski	12" H3K9me1		
Ac-H3K9/14	13		
14	Exp. 1	, hadde heler defender als feider die die die eine der die der die	
5X	Exp. 1 13 Exp. 2 Shared		a hi haddi a kiniki i na sini a shadilin ta hadili a ha
Ť	Exp. 2	ومراجع والمراجع والمراجع والمنابع المحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحاف	بلغار غه أألمه للرجين بقلاء يخدمه فالقري عاري تعسيها المتقد وسا
¥-	Shared Peaks		
iv	15		
14	Exp. 1	الله ا	in a
6		مراقب إنامت علم هذهر هذي فالمحافظ المتلجم عن العالم المسلح المراجع عن عنهم الله المحافظ المراجع المحافظ وعد	ومنابعه والقريط ومرجدة منه وماهمته منافع فقعه والقريلان
Ac-H3K9/14	E 11 E Exp. 2	T	
Ac	Shared ⁰	an a	يعدراد المحادر ومودر بسمين وكالشمعا ومرع عصعيرة والمطورين
	Peaks		
V	12		
4	Exp. 1	ا يىلىس بىلىر	
1/6	1	ه، روي بالمراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجع المراجع	فلابته مفاقعة ومحينات بعريها وألمد وترفقته القافتين واللتدرين
Ac-H3K9/14	Exp 2		· · · · · · · · · · · · · · · · · · ·
4	Shared	ada, ministratura a una datal dal sasa da an la de de la banda ad la ara danita a una a una ada. 	ىغى يەمەلىكى ھەر بىرىنىدىن بىلىرىغى يەلىرىغا قاقا قاقاتىي باللىندىن. الل
	Peaks		m
vi	10		
4			
1/6	1.	مالى بالرواب الراقع عند عند الاستانات والمرابعة والمناطقة المقارب المروري والوير عند عارية والمارية الم	<u>فه الحمالة المرام في بالقسلين ، القسم مثل المحافظة في بأرامة ل بد</u>
13K	Exp. 2	الألب المقاول الترابي المرا	
Ac-H3K9/14	Shared 1		معني الأفاريم عن عليم من عليم من الفاري والمعالية المرابع المرابع المرابع من عليم المرابع المرابع من
- F	Peaks		


A \/



Jiang et. al.

Figure S1. Summary of the results of the analysis of chromatin structure.

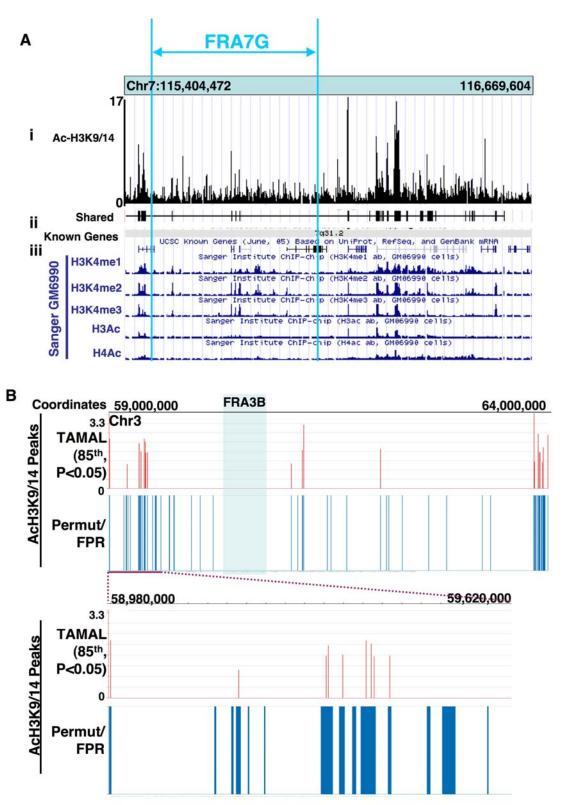
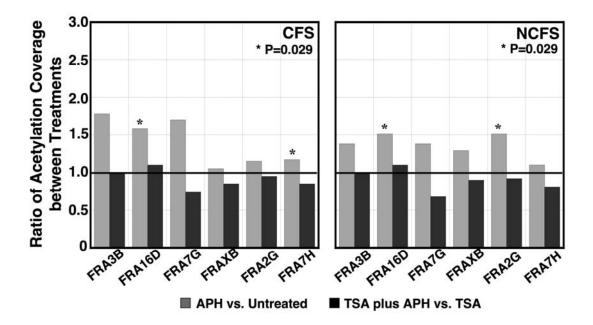

Panels A, C, E, G, I, and K illustrate regions represented on the microarray for each CFS examined, including its CFS and NCFS sequences; panels B, D, F, H, J, and L illustrate a zoomed-in view of the CFS sequences. For each region present on the microarray, the following information and mapping results are displayed: (i) The position of the CFS within the arrayed region is represented by the light blue box on top of each figure. The chromosome coordinates corresponding to the NCBI build 35 and 36 (in parentheses), and the chromosome bands are shown in the top two panels. The location of the annotated genes is represented below with genes from the Protein Databank in black, reviewed by RefSeq or SwissProt in dark blue, other RefSeq transcripts in medium blue, and non-RefSeq transcript in light blue. (ii) Screenshot from the UCSC genome browser showing ChIP-Seq data with antibody for H3K4me1 (1). (iii-vi) Screenshot from the UCSC genome browser showing ChIP-on-chip data for the lymphoblastoid cell line, 11365, using anti-Ac-H3K9/14 antibody. ChIP-on-chip data are displayed as the linear ratio of ChIP-on-chip sample fluorescence to input DNA fluorescence. The location of the mapped acetylated chromatin domains shared between two independent ChIP experiments is represented by vertical bars under the ChIP-on-chip data.

Figure S2

Figure S2: The majority of the Ac-H3K9/14-enriched sequences are not promoter sequences. *(A)* Promoter acetylation status of genes within common fragile site regions examined in this study. *(B)* Percentage of total acetylated regions represented by promoters. Statistical analysis was performed using the paired two-tailed student t-test assuming equal variance.

Figure S3


Acetylation	Permu	ıt/FPR	TAMAL (85th, P<0.05			
Coverage	CFS	NCFS	CFS	NCFS		
FRA3B	0.30%	4.48%	0.00%	0.13%		
FRA16D	1.87%	1.93%	0.00%	0.04%		
FRA7G	1.62%	3.93%	0.03%	0.14%		
FRAXB	8.47%	2.41%	0.63%	0.29%		
FRA2G	2.35%	11.55%	0.07%	0.76%		
FRA7H	40.50%	6.99%	1.10%	0.16%		

С

Figure S3: Comparison between our acetylation mapping methods and data analysis using other methods. (A) Comparison between our acetylation mapping data and ENCODE project data for FRA7G sequences. (i) Screenshot from the UCSC genome browser showing ChIP-on-chip data for the lymphoblastoid cell line, 11365, using anti-Ac-H3K9/14 antibody. ChIP-on-chip data are displayed as the linear ratio of ChIP-onchip sample fluorescence to input DNA fluorescence. The location of the mapped acetylated chromatin domains shared between two independent ChIP experiments is represented by vertical bars under the ChIP-on-chip data. (*ii*) The location of the annotated genes is represented below with genes from the Protein Databank in black, reviewed by RefSeq or SwissProt in dark blue, other RefSeq transcripts in medium blue, and non-RefSeq transcript in light blue. (*iii*) The location of the histone domains with active histone modifications mapped by the ENCODE project are illustrated below the acetylation data (2). (*B&C*) Comparison between our peak calling method (Permut/FPR) and TAMAL. (B) Screenshot from the NimbleScan browser showing the AcH3K9/14 peak of the Chr3 region identified either by TAMAL (85th percentile, P<0.05) or our Permut/FPR method. The height of the peaks identified by TAMAL represents the average \log_2 ratio of the top four consecutive probes (3). The FRA3B locus is shaded in

blue. A zoomed-in section is shown underneath. (*C*) The acetylation coverage calculated using Permut/FPR and TAMAL.

Figure S4

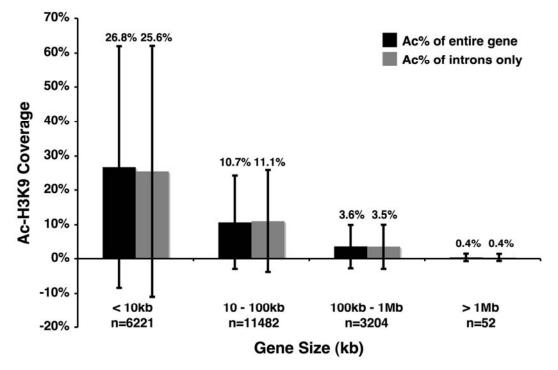

Figure S4: APH has relatively little effect on acetylation coverage at CFSs. The graph illustrates the ratio of the acetylation coverage between treatments for the CFSs (left panel) and their flanking NCFSs (right panel) (*, P=0.029).

Figure S5: *FHIT* expression in Blin and Molt-4 cells. Total RNA was extracted from Blin and Molt-4 cells following various treatments and reverse transcribed. Real time RT-PCR was performed to assess the expression level of the *FHIT* gene, which was normalized to the expression level of *GAPDH*. N.D.=non-detected.

Figure S6: Comparison of the percentage of acetylation of genes (Ac%) grouped according to their size (<10kb, 10-100kb, 100kb-1Mb, >1Mb). Ac% of each gene (black bar, from transcription start to end), or Ac% of introns only for each gene (gray bar) was calculated based on the ChIP-Seq data generated by the ENCODE project

(http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeBroadChipSeq,

track: wgEncodeBroadChipSeqPeaksGm12878H3k9ac) and averaged according to size. The average Ac% for each gene group is listed above the bars; the total number of genes within each gene group is listed below the bars, error bars represent standard deviation of each group. Note that due to the differences between the array platforms, the Ac% values illustrated in this graph cannot be compared directly to the Ac% values generated by our ChIP-on-chip experiments.

2,210,844

270,000

1,360,231

829,000

6,825

337

Mangelsdorf

et al.(8)

Arlt et al.⁽⁹⁾

N.A.

N.A.

77,947,373

77,479,000

7,784,581

7,285,000

219,945,878

1,161,683

Region	Chromo -some	Category	Start (bp)*	Stop (bp)*	Size (bp)	Reference
FRA2G	2	Arrayed region	169,109,272	170,560,042	1,450,770	Limongi
111420	2	CFS region	169,324,000	170,297,000	973,000	et al. ⁽⁴⁾
FRA3B	3	Arrayed region	58,981,490	64,015,114	5,033,624	Rassool
TRASE		CFS region	60,347,000	60,806,000	459,000	et al. ⁽⁵⁾
FRA7G	7	Arrayed region	111,245,357	116,669,604	5,424,247	Huang
FRA70	1	CFS region	115,489,000	116,002,000	513,000	et al. ⁽⁶⁾
FRA7H	7	Arrayed region	128,781,513	133,281,052	4,499,539	Mishmar
FRAIN	/	CFS region	129,961,000	130,121,000	160,000	et al. ⁽⁷⁾

75,736,529

77,209,000

6,424,350

6,456,000

219,939,053

1,161,346

Table S1: Chromosomal regions covered on the microarray platform and coordinates of the CFS boundaries.

* The chromosome coordinates are derived from the human genome sequence (NCBI, Build 35). N.A., not available.

Arrayed region

CFS region

Arrayed region

CFS region

Hyperacetylated

region Hypoacetylated

region

FRA16D

FRAXB

TUBA1

HET405

16

Х

2

Table S2:	Summary of the Ac-H3 K9/14 Mapping Results.

		FR	A3B	FRA16D FRA7G		FRAXB FRA2G			A2G	FRA7H			
		CFS	NCFS	CFS	NCFS								
	Exp1	0.28%	5.53%	2.06%	2.13%	2.34%	5.06%	9.83%	2.75%	3.26%	13.98%	42.82%	8.44%
e g g		± 0.01	± 0.09	± 0.35	± 0.16	± 0.10	± 0.08	± 0.67	± 0.21	± 0.08	± 0.04	± 0.92	± 0.11
Untreated Acetylation Coverage	Exp2	0.32%	3.44%	1.68%	1.73%	0.90%	2.79%	7.11%	2.07%	1.44%	9.12%	38.18%	5.55%
itre etyl ve		± 0.18	± 0.01	± 0.24	± 0.05	± 0.41	± 0.13	± 0.52	± 0.25	± 0.21	± 0.51	± 2.88	± 0.35
u sõ o	Conservation:	4000/	500/	000/	E 40/	500/	010/	4000/	070/	750/	0.00/	c.00/	500/
	Exp1 Exp2	100% 0%	52% 68%	33% 100%	54% 58%	50% 100%	61% 98%	100% 82%	67% 100%	75% 64%	86% 100%	63% 80%	52% 72%
u	Exp1	0.76%	7.13%	3.53%	3.44%	3.34%	5.14%	9.30%	2.81%	3.67%	19.98%	46.22%	8.44%
lati ge	•	± 0.16	± 0.14	± 0.38	± 0.37	± 0.18	± 0.06	± 0.59	± 0.35	± 0.17	± 1.10	± 1.08	± 0.08
H Acetylat Coverage	Exp2	0.30% ± 0.25	5.22% ± 0.10	2.44% ± 0.04	2.34% ± 0.09	2.10% ± 0.23	5.64% ± 0.08	8.50% ± 0.54	3.36% ± 0.06	1.70% ± 0.21	15.14% ± 0.18	48.80% ± 0.59	6.90% ± 0.17
AC	Conservation:	± 0.25	± 0.10	± 0.04	± 0.09	± 0.23	± 0.00	± 0.04	± 0.00	± 0.21	± 0.10	± 0.59	± 0.17
APH Acetylation Coverage	Exp1	0%	74%	60%	58%	88%	84%	100%	0%	75%	100%	78%	66%
Ā	Exp2	0%	90%	50%	67%	100%	91%	100%	85.7%	88%	100%	100%	85%
		3.92%	7.08%	9.88%	4.50%	8.24%	5.18%	10.48%	2.74%	5.46%	20.35%	43.52%	10.26%
TSA Acetylation coverage	Exp 1	± 0.36	+ 0.25	9.00% ± 1.65	± 0.03	6.24% ± 0.50	± 0.02	± 0.28	± 0.63	5.40% ± 0.25	± 0.71	43.52% ± 5.10	± 0.23
'lat ge		2.98%	7.28%	9.61%	3.76%	8.79%	6.88%	12.64%	3.20%	4.32%	26.56%	56.87%	10.65%
Acetylat coverage	Exp 2	± 0.53	± 0.08	± 1.61	± 1.12	± 0.07	± 0.06	± 0.74	± 0.09	± 0.11	± 0.03	± 2.69	± 0.06
Ac V	Conservation:												
SA	Exp 1	46%	60%	40%	34%	87%	75%	78%	67%	48%	87%	67%	68%
F	Exp 2	71%	78%	43%	47%	100%	89%	80%	100%	71%	92%	100%	79%
		2.59%	5.68%	6.64%	3.54%	6.76%	2.96%	8.58%	2.62%	3.82%	15.62%	31.24%	7.63%
	Exp 1	± 1.09	± 0.13	± 1.37	± 0.24	± 0.07	± 0.18	± 0.18	± 0.08	± 0.40	± 1.32	± 3.04	± 0.07
PH Itio		4.22%	8.70%	14.09%	5.56%	5.84%	5.30%	10.97%	2.80%	5.42%	27.67%	53.90%	9.24%
.&A :yla era	Exp 2	± 0.55	± 0.15	± 0.20	± 0.13	± 0.78	± 0.23	± 0.48	± 0.04	± 0.20	± 0.51	± 1.43	± 0.52
TSA&APH Acetylation coverage	Conservation:												
⊢∢∘	Exp 1	40%	56%	54%	52%	59%	66%	70%	67%	57%	90%	80%	66%
	Exp 2	100%	89%	57%	72%	100%	82%	91%	100%	77%	89%	100%	79%

The acetylation coverage corresponds to the sum of the width of all of the acetylated chromatin domains within that region divided by the total size of the region. It is displayed as the average of the acetylation coverage of both data

sets (FWD1 and 2) for experiments 1 and 2. The percentage of conserved acetylated regions between two experiments is given in the last row of each treatment.

Brooks por 25		Subject 1			Subject 2			Subject 3	
Breaks per 25 cells	TSA	APH/Caf	TSA/APH /Caf	TSA	APH/Caf	TSA/APH /Caf	TSA	APH/Caf	TSA/APH /Caf
Total	1	219	44	2	767	25	6	298	94
FRA1D (1p22)	0	1	2	0	11	1	0	3	2
FRA1I (1q44)	0	9	2	0	20	0	0	6	1
FRA2C (2p24.2)	0	4	2	0	15	0	0	8	0
FRA2E (2p13)	0	0	0	0	13	1	0	1	1
FRA2F (2q21.3)	0	5	0	0	14	0	1	2	2
FRA2G (2q31)	0	1	0	0	4	0	0	3	2
FRA2H (2q32.1)	0	8	0	0	17	1	0	7	0
FRA2I (2q33)	0	1	0	0	8	0	0	0	0
FRA2J (2q37.3)	0	1	0	0	12	0	0	7	0
FRA3B (3p14.2)	0	18	4	0	33	3	0	26	6
FRA4A (4p16.1)	0	5	0	0	11	0	0	5	1
FRA4C (4q31.1)	0	5	0	0	19	0	0	4	2
FRA5D (5q15)	0	2	1	0	10	0	1	4	0
FRA6B (6p25.1)	0	1	0	0	13	0	0	4	0
FRA6E (6q26)	0	7	1	0	4	0	0	2	1
FRA7G (7q31.2)	0	11	0	0	14	0	0	6	1
FRA7H (7q32.3)	0	5	1	0	8	0	0	5	0
FRA8B (8q22.1)	0	2	1	0	20	0	0	7	0
FRA9E (9q32)	0	1	0	0	13	0	0	4	1
FRA11D (11p14.2)	0	4	0	0	15	0	0	0	3
FRA12B (12q21.3)	0	2	0	0	11	0	0	3	1
FRA12E (12q24.1)	0	3	0	0	12	0	0	0	0
FRA13A (13q13.2)	0	1	0	0	12	0	0	6	0
FRA14C (14q24.1)	0	5	1	0	12	0	0	6	0
FRA16D (16q23.2)	1	17	3	0	17	0	0	9	3
FRAXB (Xp22.3)	0	5	3	0	32	2	0	14	4
FRAXC (Xq22.1)	0	5	1	0	11	1	0	4	1

Table S3: TSA treatment decreases fragile site expression.

Fragile site breaks were scored in 25 trypsin-Giemsa banded metaphase cells from PHA-stimulated peripheral blood lymphocytes for each treatment as described in Figure 3. The table illustrates the breakage observed in the subset of CFSs that are expressed at the higher levels; CFSs in red are also displayed in Table 2.

 Table S4: Primer sets used in bisulfite sequencing.

Primer Name	Forward Primer (Chromosome Coordinates)	Reverse Primer (Chromosome Coordinates)	Length (bp)	Annealing Temp. (°C)	[Mg ²⁺] (mM)
Ex1-B2	GGAGGTAAGTTTAAGTG (61211983)	CTACACCCCCAAAACCAA (61211705)	279	55	2.5
Ex3-B1	GGGTGATATTAGTTGTTT (61002982)	TCTCTTTCTCTCCCCTTCC (61002765)	218	50	3.75
Ex5-B2	GTGGGAGGGGGAGATGGATT (60497502)	ACTTCAACTATAAAAACATAT (60797752)	151	55	3.75
Ex6-B2	GAGAGTTTAGGTTTTGGT (59975025)	TATTTTTCCACCACTATC (59974807)	219	55	3.75
Ex8-B2	GAGAGTATTATTGTTAAG (59883253)	TCCATTTCAAACCATATC (59883007)	247	50	3.75
Ex9-B1	GGAGATTAGAGGAGGAAA (59713050)	CATCCCCATTCTAAAAAT (59712909)	142	55	3.75

The forward and reverse primers were modified from the original sequences to amplify bisulfite-treated DNA. The chromosome coordinates are derived from the human genome sequence (NCBI, Build 35).

Probes	Coordinates (NCBI, Build 35)	Length (bp)
Α	60,371,618-60,372,609	992
В	60,572,342-60,573,268	927
С	60,597,236-60,598,120	885
D	60,762,244-60,763,204	961
E	59,866,738-59,867,746	1005
\mathbf{F}	60,126,108-60,127,081	974
G	61,033,477-61,034,475	999
Η	61,261,209-61,262,169	961

 Table S5: Genomic locations of Southern blot probes.

Supplementary References

- 1. Barski A, *et al.* (2007) High-resolution profiling of histone methylations in the human genome. *Cell* 129: 823-837.
- 2. Koch CM, *et al.* (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. *Genome Res* 17: 691-707.
- 3. Krig SR, *et al.* (2007) Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays. *J Biol Chem* 282: 9703-9712.
- 4. Limongi MZ, Pelliccia F, Rocchi A (2003) Characterization of the human common fragile site FRA2G. *Genomics* 81: 93-97.
- 5. Rassool FV, *et al.* (1996) Direct cloning of DNA sequences from the common fragile site region at chromosome band 3p14.2. *Genomics* 35: 109-117.
- 6. Huang H, Qian C, Jenkins RB, Smith DI (1998) Fish mapping of YAC clones at human chromosomal band 7q31.2: identification of YACS spanning FRA7G within the common region of LOH in breast and prostate cancer. *Genes, Chromosomes & Cancer* 21: 152-159.
- 7. Mishmar D, *et al.* (1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. *Proc Natl Acad Sci USA* 95: 8141-8146.
- 8. Mangelsdorf M, *et al.* (2000) Chromosomal fragile site FRA16D and DNA instability in cancer. *Cancer Res* 60: 1683-1689.
- 9. Arlt MF, Miller DE, Beer DG, Glover TW (2002) Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells. *Genes, Chromosomes & Cancer* 33: 82-92.