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Supporting Results

Cell/Region-Specific Polysomal mRNA Populations Are Distinct. The data presented
here indicate that cell/region-specific mRNA-ribosomes populations (translatomes) can be
reproducibly isolated from individual cell types based on the use of cell- and region-
specific promoters to drive FLAG:RPL18 in Arabidopsis. The high correlation coefficients
of Robust Multi-chip Average (RMA) signal values between biological replicates (r* =
0.93-0.99; Dataset S1, sheet g) indicate that the immunopurification method is highly
reproducible. This reproducibility extends to cell types that are a minor component of the
organ, such as phloem companion cells (CC) and guard cells. Accordingly, hierarchical
clustering of the RMA expression data revealed close proximity of replicates (Fig. S14).
This basic clustering method confirmed that translatomes were distinguishable first by
organ, then by growth condition and finally by cell type, leading to the conclusion that gene
expression changes due to hypoxia were more pronounced than cell-type differences. This
also showed that some shoot cell types [i.e. pSUC2 (phloem CC), pCER5 (epidermis)] still

differed from each despite the reconfiguration of translation during the stress treatment.

pGL2 and pSultr2;2 Promoter Specificity. Although most translatomes were consistent
with expectations for the targeted cell types, pGL2 and to a lesser extend pSultr2;2 showed
limited mRNA specificity. pGL2 was expected to be localized in root atrichoblasts (1) and
shoot trichomes (2). However, root pGL2 mRNAs overlapped with those of pSultr2;2 and

pSUC?2 (Datasets S2 and S3, Fig. S5). There were only 33 genes significantly lower and 59



genes higher in pGL2 than in pSultr2;2 roots, and 52 and 94 genes in shoots, respectively,
and pGL2 and pSultr2;2 samples clustered close together (Fig. S14). Confocal imaging of
over 50 independent pGL2:GFP-RPL18 transgenics confirmed expression of this promoter
in atrichoblasts, but also revealed a low activity in the root vasculature (Fig. S1B). In aerial
tissue, pGL2 produced GFP-tagged ribosomes in trichomes and epidermal cells at the
petiole base (Fig. S1A). Although 20 pGLZ2-enriched mRNAs were associated with
epidermal-specific expression, 32 mRNAs were enriched in the phloem CC population
(Dataset S2, sheet c). pSultr2;2 transgenics showed expression limited to the vasculature in
roots and shoots (Fig. S1C), but the overlap with shoot pPSUC2-enriched mRNAs was lower
than expected, whereas photosynthesis-associated mRNAs were elevated (Datasets S2 and
S3). This pattern of mRNA enrichment is consistent with the documentation of pSultr2;2
expression in shoot bundle sheath cells (3). The pGL2 and pSultr2;2 promoters may
provide less unique mRNA populations because of expression in multiple cell types,
emphasizing that promoters with robust expression are most desirable for cell-specific
expression analyses. We treated the pGL2 and pSultr2;2 mRNA populations in the analysis
of differentially expressed genes as they behaved in the microarray dataset and the GFP-

tagged ribosome analysis, and not as predicted from the literature.

Distribution of Ribosomal Protein mRNAs Within Cell Types and Organs. Fuzzy k-
means clustering of cell-type specific mRNAs under control conditions revealed two
clusters enriched in ribosomal proteins (Fig. S5B; Dataset S3). The mRNAs encoding
ribosomal proteins and translation factors were strongly enriched in clusters 38 (6.14E-56;
4.09E-33) and 77 (9.68E-19; 6.75E-08). Strikingly, mRNAs encoding components of the

protein synthesis apparatus were depleted in the proliferating cells of the root (pPRPL11C),



phloem CC (pSUC2) and maturation zone of the root cortex (PPEP). The low levels of
ribosomal protein mRNAs in polysomes in the pRPL11C population was unexpected but
provides further evidence that this cohort of mRNAs is translationally regulated in plants as
observed in animals (4-6). Accordingly, reduced translation of ribosomal protein mRNAs
was evident in most cell types of the root and shoot in response to hypoxia (cluster 58; Fig.

S10B).

Supporting Materials and Methods
Generation of promoter:HF-RPL18 and promoter:HF-GFP-RPL18 Arabidopsis
thaliana Transgenic Lines. The T-DNA binary vector pPZP111 (7) containing the CaMV
35S promoter and OCS3’ terminator (pS119) was modified by replacement of the promoter
region with the Gateway recombination cassette attl-cmR-ccdb-att2 (Invitrogen) by use of
the EcORI and Sacl sites to produce pGATA-S119. The tobacco mosaic virus (TMV)
omega 5’ leader-HF-RPL18B (At3g05590) cassette described by Zanetti et al., (8) was
amplified by standard polymerase chain reaction (PCR) to replace the Sacl with Kpnl
(primers see Table S1) so that the product could be inserted into the Kpnl and Xbal sites of
pGATA-S119 (Fig. S1). The resultant vector construct, pGATA:HF-RPL18, was used for
recombinational insertion of cell-type specific promoters upstream of the HF-RPL18
coding sequence. This construct includes the TMV omega 5° leader (66-bp) fused to an
open reading frame that consists of M(H)(G);DYKDDDDK(the FLAG epitope)(G); fused
the 187 amino acid coding sequence of RPL18B.

The coding sequence of sGFP (9) was amplified from a plasmid (pCsGFPBT,
GenBank accession: DQ370426), using forward primer GBamHIF: 5'- GAC TGG ATC

CAT GGT GAG CAA GGG CGA GGA G -3' and reverse primer GBamHIR: 5'- GTC



AGG ATC CCT TGT ACA GCT CGT CCA TGC C -3'. The PCR product was digested
with restriction enzyme BamHI and inserted into p35S:HF-RPL18 (8) to form an in-frame
fusion of p35S:HF-sGFP-RPL18. Additionally, a Gateway vector was constructed as
follows: the TMV 5’ leader-HissFLAG-GFP-RPL18B cassette from p35S:HF-sGFP-RPL18
was amplified by PCR using primers as described for pGATA:HF-RPL18. The PCR
product and the vector pGATA:HF-RPL18 were digested with Kpnl and Xbal and ligated
to form pGATA:HF-sGFP-RPL18. Maps of these construct are provided in Fig. S1 at the
end of this section.

The destination vectors with gene 5’ flanking regions were constructed as follows:
promoter sequences were amplified by PCR from Arabidopsis genomic DNA by use of
primers designed to bind just 5° of the initiator methionine and at the boundary of the
nearest 5’ gene. Forward primers had an additional 5’-CACC (Table S1). The amplified
DNA fragments were cloned into the pENTR/D-TOPO vector (Invitrogen, Carlsbad, CA,
USA). Following recombination into pGATA:HF-RPL18 or pGATA:HF-sGFP-RPL18, the
sequence of the promoter and coding region were verified by cycle sequencing (Institute for
Integrated Genome Biology Core Facility, University of California, Riverside). Binary T-
DNA vectors were electroporated into Agrobacterium tumefaciens (strains LBA4404
(PGATA:HF-RPL18) or GV3101 (pGATA:HF-sGFP-RPL18)) and 6-wk-old Arabidopsis
thaliana ecotype Columbia (Col-0) plants were transformed by the floral dip method (10).
Transgenic lines were identified by selection on solid MS medium for kanamycin resistant
seedlings and propagated on soil as previously described (8). Plants were cultivated in a
growth chamber at 22 °C under long-day photoperiod (16 h 200 pE m* s light). The
RPL18B fusion includes the Hiss and FLAG tags, but is referred to FLAG-RPL18 in the

subsequent text.



Establishment and Characterization of p:FLAG-RPL18 Transgenics with a Single T-
DNA Insertion. FLAG-RPL18 expressing transgenic lines were identified by immunoblot
analyses of crude seedling tissue extracts or by immunoprecipitation of the FLAG-tagged
protein as described previously (8). Lines that showed an average level of positive
expression were selected for further study. No abnormalities in seedling growth, plant
development or fecundity were observed in the p:FLAG-RPL18 transgenics. Lines were
further characterized by evaluation of the copy number of T-DNA insertions and ultimately
the site of insertion. Genomic DNA was isolated from rosette leaves from third-generation
(T3)-plants as follows: 2 mL of frozen pulverized tissue was homogenized in 10 mL DNA
Extraction Buffer [0.5 M NaCl, 200 mM Tris-HCI, pH 8.0, 100 mM EDTA, 2% (w/v)
SDS], incubated at 65 °C for 30 min, extracted with one volume of chloroform-isoamyl
alcohol (24:1), and centrifuged at 4,000 g for 15 min. The DNA in the supernatant was
concentrated by isopropanol precipitation, and resuspended in 1 mL of 10 mM Tris-HCI,
pH 8.0, 1 mM EDTA, containing RNAse. After incubation for 30 min at 37 °C, the solution
was extracted with phenol, and precipitated with ethanol. T-DNA insertion copy number in
each candidate line was determined by Southern blot analysis by digestion of genomic
DNA (20 ng) with EcoRI, BamHI or Xbal, transfer to nylon membranes and hybridization
with an OCS3’ fragment. For each p:FLAG-RPL18 construct a line with a single site of T-
DNA integration (or two sites in case of pCER5) was established. The site of T-DNA
insertion was determined by thermal asymmetric interlaced PCR (TAIL-PCR) using
arbitrary degenerate (AD) primers and three successive primers each from the left or right
border of T-DNA (Table SI) essentially as described in ref. 11. TAIL-PCR products from

the third amplification cycle were purified from an agarose gel by use of the QIAprep gel



purification kit (Qiagen) and directly sequenced using the Kan3 or RB3 primer. The site
and orientation of the T-DNA insertion was identified by use of the BLAST alignment
search tool (12) and the TAIR database. Sites of the T-DNA element insertions are
provided in Table S2. Immunoblot analysis of sucrose gradient fractionated polysomes was
used to confirm that the established lines accumulate FLAG-RPL18 in both small and large

polysome complexes.

Fluorescence Confocal Microscopy. p:FLAG-GFP-RPL18 transgenics were produced to
verify the cell-type specific expression of each promoter. Seven-d-old kanamycin resistant
T1 seedlings were evaluated for GFP fluorescence under a stereo-microscope (Leica MZ
FL III; Leica Microsystems). At least 50 individual plants per promoter were observed. The
location of GFP fluorescence was consistent for each promoter, although the intensity of
fluorescence was variable. Since different independent lines were used, differences in the
intensity of fluorescence might be due to different context of T-DNA insertion. T1 and T2
seedlings from four to eight individual lines were analyzed by confocal microscopy (Zeiss
LSM 510; Carl Zeiss). Samples were excited with 488 nm (Argon Ion Laser), and
fluorescence was detected (GFP filter: BP 500-550 IR; chlorophyll filter: LP 650). For the
analysis of T2 seedlings, roots were briefly stained with 10 pg mL™" propidium iodide and

cell walls were visualized by use of the chlorophyll-specific settings.

Growth of Seedlings on Solid Medium and Oxygen Deprivation. Seeds were surface
sterilized by incubation for 5 min in 95 % (v/v) ethanol followed by 10 min in 20 % (v/v)
bleach with 0.1 % (v/v) Tween-20, rinsed in sterile water, and imbibed at 4 °C for 3 d.

Seeds were transferred to plates with solid MS media [0.43 % (w/v) Murashigi Skoog (MS)



salts (Sigma)], 0.4 % (w/v) phytagel (Sigma), 1 % (w/v) sucrose, pH 5.7), and placed at a
vertical orientation in a growth chamber (Percival Scientific, Inc., model CU36L5CS8) under
long day conditions (16 h light at ~80 pmol photons m™ s™'/ 8 h darkness) at 23 °C. After 7
d, stress treatments were commenced after the end of the 16-h-day. Oxygen deprivation
(hypoxia stress, HS) was imposed exactly as described by Branco-Price et al. (6). Briefly,
plates were placed vertically in Lucite chambers into which 99.998 % (v/v) argon gas was
pumped and allowed to exit under positive pressure. The time required to purge the
chambers of air was about 1.5 h. This treatment deprives the plants of oxygen and carbon
dioxide, thereby limiting both photosynthesis and aerobic respiration. For non-stress (NS)
treatment, plates were placed in identical chambers open to ambient air. Both treatments
were carried out under dim light (5 to 7 pmol photons m™s™) at room temperature (23 to 25
°C). After 2 h of treatment tissues were harvested into liquid N, pulverized, and stored at —
80 °C. For one experiment set, the apical 1 cm of the root was harvested. For another
experiment set, the root below the hypocotyl-root junction and the shoot were separately
collected. Tissue harvest was accomplished within 3 min of removal from the treatment

chamber.

Measurement of Seedling ATP Content. The p35S:FLAG-RPL18 line was used to extract
and analyze metabolite contents from roots and shoots of Arabidopsis plants after 2 h
hypoxia. Five biological replicate samples were used to quantify ATP content as described

in ref. 13.

Quantitative Assessment of Polysomes. Polysomes were obtained from extracts of

seedling organs by pelleting through a sucrose cushion, further fractionation over sucrose



density gradients and quantified exactly as described by Branco-Price et al. (5). Four

biological replicates were analyzed.

Immunopurification of Ribosomes. The immunopurification of ribosomes from p:FLAG-
RPL18 lines (individual 60S subunits, ribosomes and polysomes) was accomplished as
described previously (6, 8) and further detailed in Mustroph et al. (14). Briefly, frozen
tissue was homogenized in Polysome Extraction Buffer (PEB; 200 mM Tris-HCI, pH 9.0,
200 mM KCI, 25 mM ethylene glycol tetraacetic acid (EGTA), 36 mM MgCl,, 1% (v/v)
octylphenyl-polyethylene glycol (Igepal CA-630), 1% (v/v) polyoxyethylene(23) lauryl
ether (Brig 35), 1% (v/v) Triton X-100, 1% (v/v) Tween-20, 1% (v/v) polyoxyethylene 10
tridecyl ether, 1% (v/v) sodium deoxycholate, 1 mM dithiothreitol (DTT), 50 pg mL
cycloheximide, 50 pg mL™" chloramphenicol, 0.5 mg mL™" heparin) using 2.5 mL PEB per
mL tissue. A typical extraction was 2 to 3 ml packed volume of frozen pulverised root or
root tip tissue or 4 to 6 mL shoot tissue. Homogenates were clarified by centrifugation at
16,000 g for 15 min and filtrated with cheesecloth. An aliquot of 600 uL of the supernatant
was reserved for isolation of total RNA. To the remaining supernatant 150 pL. of EZ-View
anti-FLAG agarose beads (Sigma) were added and incubated at 4 °C for 2 h with gentle
shaking. The beads were recovered by centrifugation at 3,500 g, and washed four times for
5 min each with 6 mL of wash buffer (200 mM Tris-HCI, pH 9.0, 200 mM KCl, 25 mM
EGTA, 36 mM MgCl,, 5 mM DTT, 50 pg mL’' cycloheximide, 50 pg mL’
chloramphenicol). Polysomes were eluted by resuspension of the washed beads in 300 uL.
of wash buffer per 100 ul beads that additionally contained 20 U mL™" of RNase inhibitor

(Promega) and 200 pg mL™ of [FLAG]; peptide (Sigma) at 4 °C for 30 min.



RNA extraction was performed by addition of two volumes of 8 M guanidine-HCI
and three volumes of ethanol to the cleared eluate, incubation overnight at —20 °C and
pelleting by centrifugation at 15,000 g for 45 min. RNA samples were further purified
using RNeasy columns (Qiagen) as described previously (6). The yield of RNA obtained by
immunoprecipitation of ribosome complexes varied in the different p:FLAG-RPL18 lines,
from 1 ng per mL tissue for pKAT:FLAG-RPL18 to 1 pg per mL tissue for p35S:FLAG-

RPL18. Total RNA was extracted in the same manner from the reserved cell lysate.

RNA Quantitation, cDNA Amplification and DNA Microarray Hybridizations. Total
and immunopurified RNA yields were quantified by use of a NanoDrop ND-1000 UV-Vis
Spectrophotometer according to the manufacture’s instructions (Nanodrop Technology).
RNA quality was assessed using an Agilent 2100 Bioanalyzer with either RNA 6000 Nano
or Pico Assay reagent kits (Agilent Technology). Only samples with no signs of rRNA
degradation were used to generate probes. For the root-tip mRNA samples, hybridization
probe preparation included two linear rounds of target amplification from 400 pg of total or
immunopurified RNA using the TargetAmp 2-Round Aminoallyl aRNA Amplification kit
1.0 according to the manufacturer’s instructions (Epicenter Biotechnologies). The
biotinylated aRNA was purified by use of an RNeasy spin column (Qiagen), quantified by
detection of Ayeo/Azso With the Nanodrop spectrophotometer and further evaluated with the
Agilent Bioanalyzer. For the whole root and shoot mRNA samples, hybridization probe
preparation included a two-step-amplification from 15 to 100 ng RNA by use of the
Affymetrix protocol. Biotin-labeled cRNA was synthesized using the GeneChip IVT
Labeling Kit (Affymetrix). Hybridizations against Arabidopsis ATHI Genome Array

(GeneChip System; Affymetrix) chips were performed at 45 °C for 16 h, in a rotating



platform, using 12 ug of biotin-labeled cRNA. Hybridizations were performed by the

Institute for Integrated Genome Biology Core Facility, University of California, Riverside.

Expression Data Analyses. CEL files from the Affymetrix Chips were processed by use of
the R program and Bioconductor packages (15). The Robust Multi-chip Average (RMA)
normalization was performed using the default settings of the corresponding R function
(16), together with previously published CEL files from a closely related experiment (6)
(Dataset S1, sheet d). To estimate the amount of expressed mRNA, the present call
information of the non-parametric Wilcoxon signed rank test (PMA values, 17) was
computed with the “affy” package (18) (Dataset S1, sheet a). Hybridization data from at
least two biological replicates were generated for each p:FLAG-RPL18 line, tissue sample
and treatment. The degree of correlation between hybridizations of biological replicate
samples was generated from the RMA normalized signal values (R? values, Dataset S1,
sheet g). RMA-normalized samples were hierarchically clustered by the R-function
HCLUST using complete linkage as the cluster joining method and Pearson correlation
coefficients as similarity measure (Fig. S14).

The ATH1 Genome Array microarray platform that was utilized for this study is
available at the GEO (Gene Expression Omnibus) data repository under accession number
GPL198. The microarray experiments reported here are described following MIAME
guidelines and deposited in GEO under the accession numbers GSE14493 and GSE14502

in the superSeries GSE14578.

Differential Gene Expression Analysis of Cell-Type Specific Genes. Analysis of



differentially expressed genes (DEGs) was performed with the LIMMA package using the
RMA normalized expression values (19). The Benjamini and Hochberg method was
selected to adjust P-values for multiple testing and to determine false discovery rates
(FDRs) (20). As confidence threshold, an FDR of <0.01 was used.

To identify mRNAs enriched in specific cell types, the following systematic
comparisons were performed: immunopurified RNA of control or hypoxia stressed samples
were compared to all other non-overlapping cell types in the same organ and under the
same treatment conditions. The complete list of comparisons is provided in Dataset S2,
sheet a. Genes were deemed as significantly enriched or depleted in a specific cell type
(mRNA population) if the following criteria were met: >2-fold change and FDR <0.01 for
each pairwise comparison. Subsequently, the overlap of the significantly enriched or
depleted gene lists for each cell type was recorded (Dataset S2, sheet a). In addition to the
gene lists, the mean of the signal-log-ratios (SLRs) and the FDRs of utilized comparisons
for each cell type were calculated (Dataset S2, sheet a). Because of partial overlap in
expression of some promoters in certain cell types (for example stele: pSHR and pWOL
mRNA populations partially overlap with pSUC and pSultr2;2 mRNA populations;
epidermis: pKAT, pGL2 and pCERS5 mRNA populations partially overlap with each other),
two comparison stringencies were used for root stele and most shoot samples.

For the comparison of the mRNAs enriched in specific cell types with published
microarray data, publicly available CEL files (21-25) were analyzed using the pipeline
described above. The RMA normalization step was always applied to samples published as
one experiment. The LIMMA DEG analysis was performed as a comparison of each
specific shoot cell type against the corresponding control dataset (21-24), or with the

queries described in Dataset S4, sheet C in the style of the analysis of our own data (25).



Comparisons of overlap between published data and our data are found in Datasets S2 and

S4.

Identification of Co-Expression Patterns Across Cell Types and Organs by Fuzzy k-
Means Clustering. Data were analyzed by fuzzy k-means clustering with the fanny
function from the cluster package in R. For this analysis, the means of biological replicates
of RMA-normalized data were used. Genes were removed from the dataset if they encoded
mitochondrial or plastid transcripts, or if they were not called as present by MASS in any
sample pair (P in all replicates of one sample type, across organs, cell types and stress
treatments). Furthermore, data were filtered prior to clustering by removing any genes that
did not show at least a 2-fold difference over the mean across all measurements. This
filtering retained 11,273 of the 17,468 present genes. The settings for the FANNY
algorithm were the following: distance measure = (1 - Pearson correlation), number of
clusters = 60, membership exponent = 1.1, maximal number of iterations = 5000, according
to Brady et al. (25). Preliminary runs established that the membership exponent and cluster
number were in the appropriate range for the dataset. Following the clustering the groups
were reduced from 60 to 59 clusters by collapsing with a Pearson correlation coefficient
larger of 0.95 as described previously (25, 26). The fuzzy algorithm was applied for the
whole control treatment (non-stress) dataset and independently for the hypoxia treatment
dataset, to avoid disturbing influences of the stress treatment on the cluster formation. After
fuzzy clustering, the median expression values of the clusters were calculated as described
previously (25, 26). For this, all genes with a cluster coefficient >0.4 were assigned to the

corresponding cluster. Because the coefficient can take values from 0 to 1 for each cluster



assignment and sums to 1 across all clusters, this setting allowed each gene to be part of a
maximum of 2 clusters. For easier visualization, the RMA values were transformed before
median calculation by the scale function in the R package “base”. The control dataset
resulted in 59 final clusters. Final gene-to-cluster assignments are given in Dataset S3.

Expression medians and clusters were visualized with the TIGR MEV program.

Differential Expression Analysis of Hypoxia-Induced Genes. RMA-normalized
expression data from immunopurified RNA from a cell-specific promoter line under
hypoxia was compared with the same line under control conditions by use of Limma
(Dataset S5). Criteria for the selection of significantly induced or reduced genes due to the
stress were the same as described for the cell-type comparison. The overlap of genes that
were significantly induced or reduced in all cell types of one organ was recorded as the
“core response”. Several approaches were used to identify mRNAs with a different
response to hypoxia in specific cell types.

To find general patterns of response to hypoxia, fuzzy k-means clustering was
performed with all genes that showed differential expression due to hypoxia as determined
by the Limma analysis described above. As for the cell-type fuzzy clustering, RMA
normalized mean values were used, but control and hypoxia datasets were combined. The
settings for the FANNY algorithm and the cluster post-processing were the same as above,
with the exception that the number of clusters was 100 instead of 60. The final gene-to-
cluster assignments are given in Dataset S6.

Both analyses described above revealed that many hypoxia-induced mRNAs were
induced in all cell types examined, whereas the hypoxia-reduced mRNAs were more cell

type specific. To recognize cell-types distinctions in hypoxia response, all mRNAs that



were enriched in a specific cell-type under control conditions (Dataset S2) AND displayed
significantly lower expression under hypoxia in that cell type were tabulated (Dataset S3).
Those gene lists demonstrate the loss of cell specific gene expression during hypoxic stress.

To identify mRNAs that showed a significantly different response to hypoxia in a
specific cell-type as compared to other non-overlapping cell types, DEG analysis was used
to compare the SLR of hypoxia versus control for one cell type to the SLR between
hypoxia and control of other non-overlapping cell types. The formula for the contrast
matrix was: (H_CT1-C_CT1)-(H_CT2-C_CT2), where CT is cell type. Dataset S7 records

the comparisons used and the overlap of gene lists for all comparisons.

GO Analyses. The specific gene lists obtained by the Limma and fuzzy k-mean clustering
analyses were evaluated for enrichment of genes with specific biological function,
molecular process or subcellular component annotations. Enrichment analyses of Gene
Ontology (GO) terms were performed as described in Horan et al. (27). In summary, the

Arabidopsis gene-to-GO mappings from TAIR (available at http://geneontology.org;

downloaded June 25, 2008) were used for these analyses. The hypergeometric distribution
was applied to test gene sets for the overrepresentation of GO terms. To perform this test,
the GOHyperGAll function was used (see refs. 27 and 28), which computes for a given
sample population of genes the enrichment test for all nodes in the GO network, and returns
raw and adjusted p-values. As an adjustment method for multiple testing, it uses the
Bonferroni method according to Boyle et al. (29). GO categories with an adjusted P-value
<0.05 were deemed significantly enriched. To remove nested GO terms, we enabled the

“simplify” step of the GOHyperGAIll function. GO enrichment lists can be found in



Datasets S2, S3, S5, S6, and S7. Because of the nature of the P-value calculations, clusters
or gene lists with <10 members were not analyzed.

Members of transcription factor families were obtained from TAIR (available at

www.arabidopsis.org; accessed October 2, 2008) and AGRIS (30). The exact TF family to
gene assignment is included in Dataset S2, sheet a. The TF family enrichment of gene lists
and clusters was calculated with the GOHyperGAll function. The results of this analysis
can be found in Datasets S2, S3, S5, S6, and S7. Enrichment of binding sites for
transcription factors was determined for specific gene lists for the —1,000 bp promoter
region by use of the online tool Athena with the default settings.
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SI Methods Fig. S1. T-DNA insertions used in this study. Maps include GATA site for
promoter insertion and selected restriction sites. (A) p35S:HF-RPLIS8; (B) pGATA:HF-RPLI1S;
(C) pGATA:HF-GFP-RPLI1S8. HF = His-FLAG-tag; OCS = OCS terminator; NPTII =
Kanamycin resistance gene; LB = left border of T-DNA; RB = right border of T-DNA;
35Sm, 820 nt CaMV 35S promoter; numbers: estimated nucleotide lengths of DNA

sequences. Arrows indicate direction of transcription.
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Fig. S1. Representative images demonstrating the specificity of promoter activity in T1 and
T2 transgenics produced for each of the cell/region specific promoters. Individual
promoters were used to drive the production of FLAG-GFP-RPLI8 in transgenic
Arabidopsis. Over 50 T1 seedlings (7-d-old) produced from multiple plants were evaluated
to confirm that the expression pattern of each promoter was consistent. Promoter activity
was re-evaluated in the T2 generation. All of the promoters showed highly consistent
expression patterns. Green = GFP fluorescence, red = chlorophyll in shoots, Propidium
iodide staining in roots. (Scale bar, 50 um.) (A) Aerial organs. (B) Roots. For each row, the
following sections of the roots are shown from left to right: root tip region; higher
magnification of propidium iodide stained root tip image; root maturation zone, with lateral
root primordia; transverse section through elongation zone for selected lines. Transverse
sections are optical sections through the intact root by confocal microscopy. (C) Roots. For
each row, the following sections of the roots are shown from left to right: root maturation
zone; higher magnification of propidium iodide stained root maturation zone image; root
tip; optical transverse section through root maturation zone. (D) Subcellular localization of
GFP-tagged ribosomes in a p35S:FLAG-GFP-RPL18 transgenic. As would be expected for
a RP, GFP is localized in the cytoplasm and enriched in the nucleoli (white arrows) as

represented by a (i) leaf mesophyll cell and (ii) root epidermis cell.
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Fig. S2. Immunopurified polysomal mRNA populations obtained from two distinct
pGL2:FLAG-RPL18 transgenic lines are highly correlated. (A) Schematic of the insertion
site of T-DNA in each transgenic line determined by TAIL-PCR; (B) Correlation between
probe pair set signal values for polysomal mRNA from 7-d-old seedlings of the two
pGL2:FLAG-RPL18 lines. (C) Correlation between probe pair set signal values for
polysomal mRNA from 7-d-old seedlings of pGL2:FLAG-RPL18-1 from two independent

biological replicate experiments.



Fig. S2

A
4_
pGL2-1 [
Chr3 At3g51090 At3g51080
—> —>
pGL2-2 ] 700 |
Chr4 At4g13780 At4g13770
B C

16iﬁndependent transgenic lines . biological replicates

14 - 14 -

R?=0.9818 R?=0.9706

12 4 12 4

Cc
C

10 A 10 A

GL2-2
GL2-1b




Fig. S3. Overview of isolation of RNA populations and post-hybridization analyses.
Computational analysis of microarray data. *1 — comparisons made: cell type versus
subsets of non-overlapping cell types (see Dataset S2 for details) of one organ of control
and hypoxic stressed seedlings. *2 — for each cell type, hypoxia was compared to aerated

control.
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Fig. S4. Data display available on the eFP browser. Absolute expression values (MASS
normalized) and SLRs from the differential gene expression analysis (from RMA-
normalized data, see Dataset S2, sheet a) can be visualized on a gene-by-gene basis using

the eFP platform (currently accessible at http://bioinfo.ucr.edu/~cjang/cgi-bin/absolute.cgi

for absolute (MASS) values and at http://bioinfo.ucr.edu/~cjang/cgi-bin/relative.cgi for

relative (SLR) values; to be added to the Toronto eFP site). Data are shown for two
transcription factors with cell-type specific expression. At3g24140 (FAMA; bHLH TF) and
At5g65790 (ATMYB68; MYB TF) are mRNAs that are enriched in guard cells and root
endodermis, respectively. Sucrose synthase 1 (SUS1, At5g20830) provides an example of
an mRNA that is enriched in phloem companion cells under control conditions and
hypoxia-induced across cell types. Views in eFP include three comparisons: shoot samples,
shoot and whole root samples, or whole root and root tip samples as exemplified in the
examples. Left panel, polysomal mRNA transcript abundance from MASS5 normalized raw
data (referred to as “Absolute values”). Right panel, SLRs exposing cell-type enrichment
by comparison to non-overlapping cell types in the same organ (values from Dataset S2,

sheet a, referred to as “Relative values™).
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Fig. SS. Pattern of cell-type specific gene expression across all organs. (A) Means of RMA-
normalized data of 11,273 genes (probe pair sets) from plants grown under control
conditions were analyzed by fuzzy k-means clustering (Expanded Fig. 2). The median
expression value of the 59 gene clusters was calculated from scaled values. The clusters
were organized to visualize trends in cell-type mRNA enrichment. Each cluster includes a
group of genes with similar enrichment/depletion across the samples. Sample names
correspond to the promoters used for FLAG-RPL18 expression (Table 1). White bars divide
different organs. Blue arrows indicate clusters presented in Fig. 2A. Red arrows indicate
clusters presented in B. (B) Examples of clusters with strong cell-type enrichment from A.
The colored panels show scaled RMA-values for all genes in a cluster; tables list the most
significantly enriched Gene Ontology (GO) categories. GO enrichment P-values were
calculated by the GOHyperGAIl function (27). Dataset S3 contains all fuzzy k-means

cluster and GO data.
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Fig. S6. GO enrichment in specific cell types (larger version of Fig. 2B). mRNAs enriched
or depleted in the cell types tested were identified by a differential gene expression analysis
between cell types of each organ/region. GO categories enriched or depleted in each mRNA
population were identified. Blue: GO categories of enriched genes, -log;o adjusted P-values;
red: GO categories of depleted genes, +log;o adjusted P-values. Grey: overlap of GO of
enriched and depleted genes. Dataset S2 contains the corresponding expression and GO
data. MS: pSultr2;2 was treated as a plastid containing cell type (bundle sheath); ST:

pSultr2;2 was treated as vasculature cell type.
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Fig. S7. Comparison of cell-specific enrichment of polysomal mRNAs with published data
on cell-specific gene expression. (A) Overlap in cell-type specific mRNA populations
obtained by immunopurification of mRNA-ribosome complexes or sorting of GFP-tagged
cells. Comparison of enriched mRNAs identified from polysomal mRNA populations with
those identified from total mRNA isolated from cells expressing GFP under the control of
pSUC?2 (root phloem companion cells), pPEP (root elongating and mature cortex), pSCR
(root epidermis) and pWOL (root stele). mRNAs that were significantly enriched in these
cell types from Brady et al. (25) (reanalyzed in this study, see Dataset S4, sheet a; yellow)
were compared to those identified in this study (Dataset S2, sheet a; grey). Venn diagrams
represent the overlap in enriched mRNAs for the three promoters. GO enrichment was
determined for each dataset (A: This study, Dataset S2; B: re-analyzed in this study,
Dataset S4, sheet b). (B) Overlap in cell-type specific mRNA populations obtained by
polysome immunopurification in shoots or isolation of cell types by other methods.
Comparison of enriched mRNAs identified from polysomal mRNA populations with those
identified from total mRNA isolated from stem epidermal peels (21), protoplasted guard
cells (22), isolated trichomes (23), or isolated phloem companion cells of seedling root
hypocotyls (24). mRNAs that were significantly enriched in these cell types (reanalyzed in
this study from .CEL files, see Dataset S4, sheet d; yellow) were compared to those
identified in this study (Dataset S2, sheet a; grey). Venn diagrams represent the overlap in
enriched mRNAs for the two cell types. GO enrichment determined for each dataset (A:

This study, Dataset S2; B: re-analyzed in this study, Dataset S4, sheet e).
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G0:0006596 | polyamine biosynthetic process BP 2.06E-05 1.82E-02
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[GOID Term Ont | P(ad)) (A) P(ad)) (B) |
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Fig. S8. mRNAs immunopurified with promoters that target the same cell types are
partially overlapping. Overlap of significantly enriched gene lists in partially overlapping
cell types (phloem companion cells, pSUC2 and pSultr2;2; root cortex, pCO2 and pPEP).
Data are from Dataset S2, sheet a. The GO annotation enrichment was obtained for the
overlapping phloem-companion cell specific gene lists of roots and shoots, and for the

distinct cortex-specific gene lists.
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Fig. S9. GO enrichment in cell type mRNA populations after hypoxic treatment. After
selection of hypoxia-modified genes by pairwise comparison of hypoxia versus control for
each cell type (Dataset S5), the GO enrichment P-value of all GO terms was calculated by
the GOHyperGAll function (27). Overlapping GO terms were removed by the simplify
variant of the function. Data shown are log;o of adjusted P-values. (A) Blue, GO enrichment

of hypoxia-induced genes; (B) Red, GO enrichment of hypoxia-reduced genes.
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Fig. S10. Pattern of cell-type specific gene expression under hypoxia across all organs. (A)
Means of RMA-normalized data of 6,461 genes (probe pair sets) of control and hypoxia
samples were sorted by fuzzy k-means clustering, and the median of each cluster was
calculated from scaled expression values. White bars divide different organs. The 100
clusters obtained from clustering of the data were then sorted to visualize trends in
individual cell-types. Red arrows: clusters with reduced genes, presented in B; blue arrows:
clusters with induced genes, presented in C. (B and C) Examples of different response
clusters are shown, with scaled RMA-values for all genes in the clusters, and a table of the

three most significant GO terms. Dataset S6 contains the cluster and GO data.
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Fig. S10B - reduced genes
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Fig. S10C - induced genes
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Fig. S11. Heat shock protein (HSP) and heat shock factor (HSF) mRNA adjustments in
polysomal mRNA cell type populations after hypoxic treatment. The SLR of pairwise
comparisons of hypoxia versus control for each cell type is shown for all genes associated
with the heat shock response (names according to ref. 41). Data are signal-log-ratios
between H and C from Dataset S5. Arrows indicate the phloem CC samples (pSUC2) that

show the highest and most complex induction of HSP mRNAs in the polysomal population.
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Fig. S12. Cell-type specific gene expression data are valuable to characterize gene families.
(A) Transcription factor (TF) family member genes are differentially expressed in cell
types. All TF families are shown with SLRs generated in the differential gene expression
analysis of control samples for all cell types and organs (Dataset S2, sheet a). Values were
ordered by hierarchical clustering in MEV. MS: pSultr2;2 was treated as a plastid
containing cell type (bundle sheath); ST: pSultr2;2 was treated as vasculature cell type. (B)
Focus on three TF families, extracted from A. (C and D) TF family enrichment in specific
cell types confirmed by GO analysis. Differentially expressed genes (Dataset S2, sheet a)
were evaluated for TF families. (C) TF family enrichment (TF family gene lists were
obtained from TAIR and AGRIS) among the cell-type enriched genes, analyzed for
significant enrichment by the GOHyperGAIll function (27). Data shown are log;y of
adjusted P-values. (D) Enrichment of binding sites for transcription factors in the -1000 bp
promoter region of cell-type enriched genes (analyzed by  Athena,

http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/analysis_select.pl). Data are logjo

of adjusted P-values.
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Fig. S13. Changes in expression of transcription factors during hypoxic stress. (A) Some
transcription factor families are differentially expressed in response to hypoxia. All TF
families are shown with SLRs of the comparison hypoxia versus control for all cell types
and organs. Values were ordered by hierarchical clustering in MEV. Data values are from
Dataset S5. (B) Two examples for TF families, extracted from A. Names of ERF TFs
according to Nakano et al. (42). (C and D) TF family enrichment in cell type mRNA
populations after hypoxic treatment. Hypoxia-induced genes in each cell type (Dataset S5)
were evaluated for TF families. (C) TF family enrichment (TF family gene lists were
obtained from TAIR and AGRIS) among the hypoxia-induced genes, analyzed for
significant enrichment by the GOHyperGAll function (27). Data shown are logl0 of
adjusted P-values. (D) Enrichment of binding sites for transcription factors in -1000 bp
promoter region of hypoxia-induced genes (analyzed by Athena). Data are logl0 of

adjusted P-values.
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Fig. S13B
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Fig. S14. Plasticity in transcription factor mRNAs - ribosome association: Cell specificity
and hypoxic induction. (A) Levels of polysomal mRNA of 1,200 expressed TFs in 7-d-old
seedlings under control and hypoxia stress. TF order was organized by hierarchical
clustering in MEV. Data values are scaled RMA normalized data, with control (Left) and
hypoxia (Right) data shown in paired columns for each promoter used to obtain a specific
mRNA population. (B) Level of induction of transcription factors, organized by TF
families, in 7-d-old seedlings under hypoxia stress. Data values are signal-log-ratios of
hypoxic versus control expression for each translatome and were organized by hierarchical

clustering in MEV.
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Fig. S14B
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Fig. S15. Immunopurified polysomal mRNA populations are distinct in organs and regions
of seedlings. Robust Multi-chip Average (RMA)-normalized expression values of the 129
ATHI1 GeneChips used in this study were grouped by hierarchical clustering, based on
Pearson correlation distance. Individual samples clustered first by organ, then by treatment,
and then by cell type, except in the shoot, where some mRNA populations (pSUC2, pCERS5,
pKAT1) clustered first by cell type, and then by treatment. All biological replicates grouped
together. Sample labels are organ (R, root; RT, root tip; S, shoot; WS, whole seedling)
followed by the promoter used to drive FLAG-RPL18 or Tot (total mRNA), and
bioreplicate number (1-3). Whole seedling data from Branco-Price et al. (6) which
evaluated four treatments (2hH, 2 h hypoxia; 9hH, 9 h hypoxia; R, 2hH plus 1 h
reoxygenation) and two mRNA populations (T, total mRNA or 35S, immunopurified). Red
arrows indicate branches that separate treatments. Promoter abbreviations correspond to

names in Table 1.
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Table 1. Primers used

Primer name

Sequence (5° 2 3°)

Cloning

SHR fw CACCGGACAAAGAAGCAGAGCGTGG

SHR rev TTAATGAATAAGAAAATGAATAGAAGAAAGGGAGACCCAC
SCR fw CACCGGATAAGGGATAGAGGAAGAGG

SCR rev GGAGATTGAAGGGTTGTTGGTCG

WOL fw CACCTACTGTCTCTAAGCGCACG

WOL rev CTGAGCTACAACAATAGAGAACAAAAGAAG
SULTR2;2 fw CACCGACCAAAGAATCCTACGTACC

SULTR2;2 rev GTGGGTTATTGAAGTGTGTGATAGGG

CERS fw CACCTTTAGTTTGCTTGAGTTCTCATGGAAG
CERS rev TGTTTTTGTTTGATCTTGAAAAAGATC

CO2 fw CACCTAACTCCATTATTTACGACTGTGCCAC
CO2 rev AAACTCTTGTTGCATTATTGTCAAATCCTT

GL2 fw CACCGTTTCCTTCACTATACGTCTTCGTCC

GL2 rev CTGTCCCTAGCTAGCTTCTTTGC

RBCSI1A fw CACCCCTTACGAGGAGCTTGAGCTTCAATG
RBCSIA rev GTTCTTCTTTACTCTTTGTGTGACTGAGG

KATI1 fw CACCTCTCATATAAATCATGCCGACATTACAC
KATI1 rev AGAGATCGACATCTTTTTGATGATCT

PEP fw CACCCGATGTTCACCATGCAAAAGT

PEP rev GGTTTTGGCTAATGTGATTGTGTAGA

SUC2 fw CACCAAGTTACTTTCTATTATTAACTGTTATAATGG
SUC2 rev ATTTGACAAACCAAGAAAGTAAGAAAAAAAAG
sGFP fw GACTGGATCCATGGTGAGCAAGGGCGAGGAG
sGFP rev GTCAGGATCCCTTGTACAGCTCGTCCATGCC

Omega-Kpnl fw

CGACGGTACCTATTTTTACAACAATTACCAACAAC

L18-Xbal rev GCICTAGATTAAACCTTGAATCCACGACTC
Tail PCR
RBI (step 1) TCATGTCATAGCTGTTTCCTGTGTG

RB2 (step 2)
RB3 (step 3)
Kanl (step 1)
Kan2 (step 2)
Kan3 (step 3)
ADI

AD2

AD3

AD4

ADS5

AD6

AD7

AD8

AD9

ADI10

ADI1

ADI2

ADI13

ADI14

ADI15

ADI16

CTGTGTGAAATTGTTATCCGCTCAC
AGCCGGAAGCATAAAGTGTAAAGC
CTATCAGGACATAGCGTTGGCTACC
CTACCCGTGATATTGCTGAAGAGC
CTTCTATCGCCTTCTTGACGAGTTC
NTCGASTWTSGWGTT
NTGCGASWGANAWGAA
WGTGNAGWANCANAGA
STTGNTASTNCTNTGC
TGWGNAGSANCASAGA
AGWGNAGWANCAWAGG
AWGCANGNCWGANATA
CGSATSTCSAANAAWAT
CGTGNAGWANCNAAG
NCTAGWASTWGSTTG
NTGGCGWSATNTSATA
NWGSTTMGAACNCGCT
SSTGGSTANATWATWCT
WCGWWGAWCANGNCGA
WGCNAGTNAGWANAAG
WGGWANCWGAWANGCA




Table 2. Characterization of T-DNA insertion sites in homozygous p:FLAG-RPLI8 lines

Length of 5° O}'len-
flankin Chromosome of tation of
Promo- AGI of . € Line used . . transgene Hybridi- Hybridi- Hybridi
s v . region from T-DNA insertion AGI locus at or near . . . .
Transgenic Line Target Cell Population ter refe- promoter N for array . . relative to  zations  zations  zations
the initiator . (AGI framework T-DNA insertion .
rence source studies . AGI locus root tip root shoot
ATG per site) near
TIGR (bp) insertion
p35S:FLAG-RPLIS8 Near constitutive (total RNA) [8] 1,343 12-2-1  Chr5 (24334454) 3’ of At5g60460 reverse  2xC,2xH 4xC,3xH 3xC, 3x
p35S:FLAG-RPLIS8 Near constitutive (IP’d RNA) [8] 1,343 12-2-1  Chr5 (24334454) 3’ of At5g60460 reverse  2xC,2xH 3xC,2xH 2xC,2x
PSCR:FLAG-RPLIS RO e“doii‘:t];f’ quiescent 1371 A3g54220 2,118 19-8-3  Chr3 (12603473) 5’ flanking At3g30842  reverse  2xC,2xH 2xC, 2xH
First intron of
pSHR:FLAG-RPLIS8 Root vasculature [32] At4g37650 2,505 10-1-2  Chrl (5484943) Atlg15960 reverse  2xC,2xH 2xC, 2xH
pWOL:FLAG-RPLIS8 Root vasculature [33] At2g01830 2,085 7-1-1 Chr3 (22701280)  Within At3g61300 forward 2xC,2xH 2xC,2xH
PGL2-FLAG-RPLIg ~ Rootatrichoblastepidermis, ), 41079840 2059 38-4  Chr3 (18988245) 3 ofABg51090  forward 2xC,2xH 2xC, 2x
shoot trichomes
pGL2-FLAG-RPLIg> ~ Rootatrichoblastepidermis, ;- xy070840 2,059 16-4  Chrd (7992964) 5 flanking At4g13770 forward 1xC?
shoot trichomes
pCO2:FLAG-RPL1S8 Root cortex meristematic zone [34] Atlg62500 586 1-7 ND
pPEP:FLAG-RPL18 Root fggﬁ:;}g:iﬁ‘;“ and [35]  Atlg09750 1,667 5-11  Chr4 (10801442) 5’ flanking At4g19925  reverse 2xC, 2xH 2xC, 2x
pRPL1IC:FLAG-RPLI8 Root proliferating cells [36] At4g18730 1,000 10-1-2  Chr5 (24334451) 3’ of At5g60460 reverse 2xC, 2xH
pSUC2:FLAG-RPLIS Root and shoot phloem [37]  Atlg22710 2,097 16-8 ND? 2xC, 2xH
companion cells
pSULTR2;2:FLAG- Root phloem companion cells, Al , .
RPLIS shoot bundle sheath [3] Atlg77990 1,962 1-3-9 Chr3 (10009685) 5’ flanking At3g27140  reverse 2xC
) . . } Chrl (19224463); 3’ of Atl1g51805; reverse;
pCER5:FLAG-RPLI8  Cotyledon and leaf epidermis [38] Atlg51500 2,614 25-2 Chrl (6771552) 5" flanking At1gl9560  reverse 2xC, 2x
pKATI1:FLAG-RPL18  Cotyledon and leaf guard cells [39] At5g46240 3,410 23-4 ND 2xC, 2x
pRBCS:FLAG-RPLIS Shoot photosynthetic [40] Atlg67090 1,976 9-11 Chr3 (<519301) 5’ of At3g02500 forward

p35S: Cauliflower mosaic virus 35S; pRPLI1IC, RIBOSOMAL PROTEIN LI11C; pSCR, SCARECROW,; pWOL, WOODENLEG;,
pSUC2, SUCROSE TRANSPORTER 2; pSULTR2;2, SULPHATE TRANSPORTER 2; pGL2, GLABRA2; pCO2, Cortex specific
transcript; pPEP, plastid endopeptidase; pRBCSI1A, RIBULOSE BISPHOSPHATE CARBOXYLASE SMALL CHAIN 1A4; pCERS, ABC
TRANSPORTER ABCG SUBFAMILY 12; pKATI, POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1. C, control treatment; H,
2 h hypoxia stress treatment; ND, insertion was not successfully determined by TAIL-PCR or inverse PCR. 'pGL2 was expressed in
the targeted cell population as well as in the phloem companion cells. *“Hybridization with RNA from a second independent transgenic
line with the insertion site of T-DNA in a different genomic location. *Insertion was defined as two side-by-side insertions of the T-
DNA but Tail-PCR inside genomic region was not possible.
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Supplemental Datasets

Dataset S1 (XLS): Normalized Microarray Data. Sheet a, Present calls. PMA values,
obtained by use of the MASS algorithm in R, were transformed into numerical values as
follows: O0=A=absent; 1=M=marginal; 2=P=present. The mean of the PMA value was
calculated for the biological replicates for each probe pair set. The maximum number across
all samples (root, shoot, root tip, C and H, all cell types) was recorded and shows if a gene
was present in at least one sample set. For all subsequent analyses and tables we excluded the
219 organelle-encoded genes and the 5,123 genes that did not have at least one P (=maxP<2)
across all sample sets. Sheet b, List of 6657 genes with a present call in all samples. Sheet C,
GO term enrichment of genes from sheet b. Sheet d, The mean of RMA normalized
expression values was calculated for the replicates. Sheet €, The mean of RMA normalized
expression values, unlogged. Sheet f, Correlation coefficients (R? values) from comparison of
RMA normalized signal values from individual hybridizations. Values highlighted in yellow

compare biological replicate samples.

Dataset S2 (XLS): Differential Gene Expression Analysis of mRNA Populations from
Different Cell Types. Sheets a--e, The goal of the comparison was to identify genes
transcripts that are enriched in specific mRNA populations as compared to other populations
isolated from the same organ or region. RMA raw data were used to perform comparisons
between cell types by use of LIMMA (R). Within one organ, non-overlapping cell types were
compared (see sheet b “queries” for the specific comparisons). Comparisons were done only
for the control (C) data, and separately for hypoxia data. For some cell types (vasculature in
roots, epidermis and vasculature in shoots), two different stringencies were applied (sheet e,
“additional queries”). Selection criteria for significantly enriched gene transcripts for each
pairwise comparison: >2-fold change; FDR <0.01. The number of significantly enriched

genes found in each pairwise comparison is given in sheet d. The overlap of the pairwise
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comparisons was recorded. Individual columns in sheet a indicate the genes that were
significantly higher or lower in the mRNA population sampled with a specific p:FLAG-
RPL18 construct. Additionally, the mean of the SLRs and the mean of the FDRs of all utilized
comparisons were calculated. Sheet ¢ contains numbers of enriched or depleted genes for each
cell type and comparison variant, and additional comparisons to literature cell-type data (21--
25). Sheets f--k, GO and TF family enrichment analysis of enriched gene lists for different
cell types. GO term enrichment was calculated with the GOHyperGAll function (27). First, all
GOs that were significantly enriched in a gene list (Padj<0.05) were recorded. Second, the
overlapping GO categories were reduced to remove nested GO terms with the Simplify
variant of the GOHyperGAIll function. TF enrichment was calculated accordingly, after
obtaining TF family gene lists from TAIR and AGRIS (30). Clusters with fewer than 10 genes
were not evaluated for GO enrichment. Sheet K, log-transformed adjusted P-values of GO

term enrichment that were used to make Fig. 2B and Fig. S6.

Dataset S3 (XLS): Analysis to Identify Genes That Are Enriched in Multiple Cell Types
(Sampled mRNA Populations). Fuzzy k-means clustering was done with the mean of
replicates of RMA normalized values, after filtering out low-varying genes, by use of the
FANNY function with the following settings: membership exponent = 1.1, cluster number =
60, cluster collapsing with HC = 0.05, membership coefficients cut off (probability to belong
to a cluster) = 0.4. Clustering was done for control (C) data, and separately for hypoxia (H)
data. For control samples, 17,468 genes were used for filtering, 11,273 genes were used for
clustering, 257 genes did not belong to any cluster, and 362 genes belong to two clusters.
Scaled values of RMA normalized data are added for easier visualization of cluster patterns,
as well as median expression values of each cluster are presented in sheet b. Data were used
to prepare Fig. 2. Sheets ¢ and d, GO and TF family enrichment analysis of fuzzy clusters.

GO term enrichment was calculated with the GOHyperGAll function (27). First, all GOs that
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were significantly enriched in a gene list (Padj<0.05) were recorded. Second, the overlapping
GO categories were reduced to remove nested GO terms with the Simplify variant of the
GOHyperGAll function. TF enrichment was calculated accordingly, after obtaining TF family
gene lists from TAIR and AGRIS (30). Clusters with fewer than 10 genes were not evaluated

for GO enrichment.

Dataset S4 (XLS): Comparison of Significantly Enriched mRNAs in mRNA Populations
Determined by Others, and This Study. Gene lists from the present study are from Dataset
S2, and are labeled with (A). Literature gene lists are from the following sources, and labeled
with (B): root cell types (25); shoot epidermis (21); guard cells (22); trichomes (23); shoot
vasculature (24). For all experiments, published .CEL files were used for a new RMA
analysis to compare cell type samples to references samples (or to non-overlapping root cell
types for ref. 25 according to the queries defined in sheet c) by LIMMA, regardless of
different treatments, by use of the selection criteria >2-fold change; FDR <0.01. For each of
the gene lists, GO enrichment was analyzed by the function GOHyperGALL (27). The
overlap between enriched GO lists for each comparison was determined and recorded in this

file. Sheets a--c: root cell types; sheets d--e: shoot cell types.

Dataset S5 (XLS): Differential Expression Analysis of the Hypoxic Response. RMA raw
data were used to do comparisons between H and C by use of LIMMA (R). Sheet a and b, For
each cell type, a comparison of hypoxia versus control was performed, and the SLR and FDR
were calculated. Genes that were significantly changed due to hypoxic stress were selected
with the criteria: >2-fold change; FDR <0.01. The “Core” response (ubiquitous hypoxia-
response) genes were defined as genes that were significantly induced or reduced in all cell
types of an organ. Sheet a shows number of hypoxia induced or reduced genes for each cell

type. Sheets c--f, GO and TF family enrichment analysis of the hypoxic response. GO term
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enrichment was calculated with the GOHyperGAll function (27). First, all GOs that were
significantly enriched in a gene list (Padj<0.05) were recorded. Second, the overlapping GO
categories were reduced to remove nested GO terms with the Simplify variant of the
GOHyperGAll function. Enriched GO terms of hypoxia induced genes that occur in multiple
cell types are marked with blue. TF enrichment was calculated accordingly, after obtaining
TF family gene lists from TAIR and AGRIS (30). Clusters with fewer than 5 genes were not
evaluated for GO enrichment. Sheet g, log-transformed adjusted P-values for GO term
enrichment that were used to make Fig. S9. Sheets h--1, "reduced genes": selection of genes
that show cell specificity under control conditions (see Dataset S2 for details) AND are
significantly reduced under H in that cell type. Sheets m--0, "hypoxic genes": selection of
genes that show cell specificity under control conditions (see Dataset S2 for details) AND are

hypoxia-induced in total RNA in the same organ.

Dataset S6 (XLS): Analysis to Identify Genes that are Differentially Changed During
Hypoxia Between Cell Types (Sampled mRNA Populations). Sheets a and b, Fuzzy k-
means clustering was done with the mean of replicates of RMA normalized values, by use of
the FANNY function with the following settings: membership exponent = 1.1, cluster number
= 100, cluster collapsing with HC = 0.05, membership coefficients cut off (probability to
belong to a cluster) = 0.4. For clustering, only genes were selected that showed significant up-
or down-regulation due to hypoxia in any cell type or organ (see Dataset S5 for details). 6,461
genes were used for clustering, 255 genes did not belong to any cluster, and 174 genes belong
to two clusters. Scaled values of RMA normalized data are added for easier visualization of
cluster patterns, as well as median expression values of each cluster are presented in sheet b.
Data were used to prepare Fig. 3. Sheets ¢ and d, For each cluster from fuzzy-k-mean
clustering, GO term enrichment was analyzed with the GOHyperGAll function (27). First, all

GOs that were significantly enriched in a gene list (Padj<0.05) were recorded. Second, the
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overlapping GO categories were reduced to remove nested GO terms with the Simplify
variant of the GOHyperGAIll function. TF enrichment was calculated accordingly, after
obtaining TF family gene lists from TAIR and AGRIS (30). Clusters with fewer than 10 genes

were not evaluated for GO enrichment.

Dataset S7 (XLS): Differential Gene Expression Analysis of SLR H vs. C Between Cell
Types. Sheets a--d, The goal of the comparison was to identify genes transcripts that are
differentially changed due to hypoxia in specific mRNA populations as compared to other
populations isolated from the same organ or region. RMA raw data were used to do
comparisons between cell types AND stresses by use of LIMMA (R) and the following
formula: (CT(hypoxia)-CT(control))-(ref(hypoxia)-ref(control)), while “ref” means all non-
overlapping cell types (comparisons see sheet b “queries”). Selection criteria for significantly
enriched gene transcripts for each pairwise comparison: >2-fold change; FDR <0.01. The
number of significantly enriched genes for each cell type is given in sheet c. The overlap of all
gene lists was recorded. Individual columns in sheet a indicate the genes that were
significantly higher or lower induced during hypoxia in the mRNA population sampled with a
specific p:FLAG-RPL18 construct. Additionally, the mean of the SLRs and the mean of the
FDRs of all utilized comparisons were calculated. Sheet d contains numbers of enriched or
depleted genes for pairwise comparison. Sheets e--h, GO and TF family enrichment analysis
of the cell-type specific hypoxic response. GO term enrichment was calculated with the
GOHyperGAll function (27). First, all GOs that were significantly enriched in a gene list
(Padj<0.05) were recorded. Second, the overlapping GO categories were reduced to remove
nested GO terms with the Simplify variant of the GOHyperGAll function. TF enrichment was
calculated accordingly, after obtaining TF family gene lists from TAIR and AGRIS (30).

Clusters with fewer than 10 genes were not evaluated for GO enrichment.
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