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1 Markov chain formalism and solutions

As described in the main text, we consider an asexual population of fixed size N that
evolves according to the Wright-Fisher model in the limit of low mutation rates [1, 2]. The
type of an individual is determined solely by its fitness. Since under the weak-mutation
limit the population is monomorphic except for negligibly brief periods when a mutation
sweeps to fixation, the state of the population as a whole is completely described by the
current fitness of its individuals. Φx(y)dy denotes the fitness parametrized landscape, i.e.
the probability that the mutation arising in an individual with fitness x has a fitness in
[y, y + dy]. sx(y) = y/x− 1 is the selection coefficient of such a mutation in a population
with fitness x. The probability of fixation of the mutant is then given by [3]

πx(y) = π(sx(y)) =
1− e−2sx(y)

1− e−2Nsx(y)
, (S1)

which, in the infinite population size limit becomes πx(y) = 1−e−2sx(y) for y > x and zero
otherwise. If the mutation is fixed, the population transitions instantaneously from fitness
x to new fitness y. The adaptive walk is then described by a stationary continuous-time
Markov chain with state space [0,+∞). The population waits for the next mutation on
average θ−1 generations where θ = µN is per locus per generation mutation rate scaled
by population size. If time t is measured in the expected number of arrived mutations,
the instantaneous transition rate from state x to state y is

Q(y|x) = Φx(y)πx(y). (S2)

We are interested in the probability P (y, t|x) of finding the population at fitness value
y after time t given initial fitness x at time zero and in the probability Pi(t|x) for the
population to accumulate i substitutions by time t given initial fitness x. Here we present
the general operator-based formulation which is well-suited for the mathematical analysis
and for analytic calculations with simple fitness landscapes. We also derive recursion re-
lations appropriate that are convenient for the numerical computation of the distributions
P (y, t|x) and Pi(t|x) as well as their moments.

1.1 Formal solutions

Define the forward and backward operators by(
K̂ff(·)

)
(y) =

∫ ∞
0

(
f(ξ)Q(y|ξ)− f(y)Q(ξ|y)

)
dξ, (S3)(

K̂bf(·)
)
(x) =

∫ ∞
0

Q(ξ|x)
(
f(ξ)− f(x)

)
dξ, (S4)
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respectively. It follows from the standard Markov chain theory that P (y, t|x) satisfies the
forward and backward Kolmogorov equations

∂P

∂t
(y, t|x) =

(
K̂fP (·, t|x)

)
(y) (S5)

∂P

∂t
(y, t|x) =

(
K̂bP (y, t|·)

)
(x), (S6)

with the initial condition
P (y, 0|x) = δ(y − x), (S7)

where δ(z) is the Dirac delta-function. The formal solutions to the equations (S5)–(S7)
can be written as

P (y, t|x) =
(

exp{t K̂f}P (·, 0|x)
)
(y), (S8)

P (y, t|x) =
(

exp{t K̂b}P (y, 0|·)
)
(x), (S9)

where the operator exponentiation is defined as exp{F̂} =
∑∞

i=0 F̂
i/i!.

The equations for Pi(t|x) are more cumbersome. In the next section we show that
Pi(t|x) satisfy recursive equations

∂P0

∂t
(t|x) = −q(x)P0(t|x), (S10)

∂Pi
∂t

(t|x) = −q(x)
(
Pi(t|x)− Pi−1(t|x)

)
+
(
K̂bPi−1(t|·)

)
(x), i = 1, 2, . . . (S11)

with the initial condition
Pi(0|x) = δi0, (S12)

where δij is the Kronecker delta and

q(x) =

∫ ∞
0

Q(y|x) dy (S13)

is the expected fixation probability of a mutant that occurs in the background x (see also
equation (3) in the main text),

The solution to equations (S10)–(S12) is given by

P0(t|x) = e−q(x)t (S14)

Pi(t|x) =

∫ t

0

dτ

∫ ∞
0

e−q(x)(t−τ)Q(ξ|x)Pi−1(τ |ξ) dξ,

for i = 1, 2, . . . (S15)
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1.2 Derivation of the distribution Pi(t|x)

In order to derive the equations (S10), (S11), note that the probability P (y, t|x) of
observing the population at fitness y at time t given that it had fitness x at time zero can
be expressed as a sum of the probabilities of reaching fitness y from fitness x in time t
with any possible number of substitutions,

P (y, t|x) =
∞∑
i=0

Pi(y, t|x).

Pi(y, t|x) is the probability for the population to reach fitness y by time t in exactly i
substitution events, given the initial fitness x. Then the probability of having accumu-
lated exactly i substitutions by time t is Pi(t|x) =

∫∞
0
Pi(y, t|x)dy. It is easy to derive

the recursion relations for Pi(y, t|x) from the following considerations. First note that
after zero substitutions the population must have the initial fitness x and, since the first
substitution will occur with rate q(x), we have

P0(y, t|x) = δ(y − x)e−q(x)t. (S16)

After integrating this expression over y we obtain (S14). Now, in order for the population
to be in fitness y at time t after exactly i substitutions, the first substitution must have
occurred at some time τ < t which moved the population to some fitness ξ after which
another i− 1 substitutions brought it to fitness y in the period of time between τ and t.
So, conditioned on ξ and τ , the probability of finding the system in state y at time t is the
product of three probabilities: (a) the probability of the first substitution occurring at
time τ , q(x)e−q(x)τ , (b) the probability that the first substitution moves the population to
fitness ξ, Q(ξ|x)/q(x), and (c) the probability that i−1 substitutions move the population
from fitness ξ to fitness y in the time period t− τ , Pi−1(y, t− τ |ξ). Therefore, integrating
over all τ and ξ,

Pi(y, t|x) =

∫ ∞
0

dξ

∫ t

0

e−q(x)τQ(ξ|x)Pi−1(y, t− τ |ξ) dτ, for i = 1, 2, . . . (S17)

It is easy to show that
∑∞

i=0 Pi(y, t|x) with Pi(y, t|x) defined by equations (S16), (S17)
satisfies the backward Kolmogorov equation (S6). To compute the number of substitutions
at time t, we rewrite the recursion equation (S17) as

Pi(y, t|x) =

∫ ∞
0

Q(ξ|x) dξ

∫ t

0

e−q(x)(t−τ)Pi−1(y, τ |ξ) dτ

from which (S15) follows after integration with respect to y. Equations (S10), (S11) follow
from (S14), (S15) by differentiating with respect to t.

1.3 Fitness and substitution trajectories

We call the expected value of the distribution P (y, t|x) the fitness trajectory F (t, x)
and we call the expected value of the distribution Pi(t|x) the substitution trajectory
S(t, x).

4



1.3.1 General equations for the fitness and substitution trajectories

Multiplying the backward equation (S6) by y and integrating it with respect to y, we
obtain

∂F

∂t
(t, x) =

(
K̂bF (t, ·)

)
(x) (S18)

with the initial condition
F (0, x) = x, (S19)

whose formal solution is given by

F (t, x) =
(

exp{tK̂b}I(·)
)
(x), (S20)

where I(x) = x is the identity function. Analogously, from equations (S10), (S11) follows
that the substitution trajectory satisfies the equation

∂S

∂t
(t, x) = q(x) +

(
K̂bS(t, ·)

)
(x). (S21)

with the initial condition
S(0, x) = 0, (S22)

whose solution is given by

S(t, x) =
∞∑
i=0

(
K̂i

bq(·)
)
(x)

(t)i+1

(i+ 1)!
. (S23)

An obvious result follows immediately from equation (S21): if the rate rate of substitutions
is the same for all fitnesses, i.e., if q(x) = q0 = const, then the substitutions accumulate
linearly with time. Indeed, since

(
K̂bq0

)
(x) ≡ 0, equation (S21) becomes an ordinary

differential equation whose solution is S(t, x) = q0t.

1.3.2 Approximate equations for the fitness and substitution trajectories

In this section we derive equations (1)–(2) in the main text. We assume that the advec-
tion approximation holds and the r(x) and q(x) functions are sufficiently smooth. First,
we notice that on landscapes for which mutations of large effect become increasingly un-
likely as the fitness of the parent increases, most of the contribution to the integral (S4)
comes from values ξ ≈ x and we can write f(ξ) − f(x) ≈ f ′(x)(ξ − x). Consequently,(
K̂bf(·)

)
(x) ≈ r(x)f ′(x), where r(x) is given by equation (3) in the main text. Under

this so-called advection approximation, equations (S18), (S21) become

∂F

∂t
(t, x) = r(x)

∂F

∂x
, F (0, x) = x (S24)

∂S

∂t
(t, x) = r(x)

∂S

∂x
+ q(x), S(0, x) = 0, (S25)

where q(x) is defined by equation (4) in the main text (or equation (S13) above).
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In fact, equations (S24) and (S25) are equivalent to equations equations (1)–(2) in the
main text. To see this, first, let

χ(x0, x, t) =

∫ x

x0

dξ

r(ξ)
+ t.

This function is monotonic in x and in x0 as long as r(ξ) does not change sign. Since we
are interested in adaptation, we always have r(ξ) > 0, so that we can solve the equation
χ(x0, x, t) = 0 with respect to x0. Denote the solution as x0 = u(x, t). Analogously, we
obtain the solution of the same equation with respect to x, x = v(x0, t).

Both equations (S24) and (S25) have the same characteristic which is given by equation

dx

dt
= −r(x), x(0) = x0.

The solution of equation (S24) does not change along this characteristic, and therefore it
is given by F (t, x) = u(x, t). Using the implicit function differentiation rules, it is easy to
see that F (t, x) satisfies equation (1) in the main text.

The solution of equation (S25) changes along this characteristic according to equation

dS

dt
= q(v(x0, t)), S(x0, 0) = 0,

and therefore it is given by

S(t, x) =

∫ t

0

q(v(u(x, t), τ))dτ =

∫ F (t,x)

x

q(ζ)

r(ζ)
dζ.

Here we used the fact that v(x0, 0) = x0 and v(u(x, t), t) ≡ x. Now it is easy to see that
S(t, x) satifies equation (2) in the main text.

1.4 Numerical algorithm

Only in some special cases can the formulas (S8), (S9), (S14), (S15) be effectively used
for evaluating the distributions P (y, t|x) and Pi(t|x). We propose the following recursion
equations for the efficient numerical implementation.

1.4.1 Computing distribution P (y, t|x)

The basic idea behind the recursion is to write the probability P (y, t|x) as the sum over
all possible paths connecting the initial fitness x with fitness y at time t, each with a
particular number m = 0, 1, . . . of mutations.

P (y, t|x) =
∞∑
m=0

Um(t) Vm(y|x). (S26)
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Here, Um(t) is the probability of observing m mutations during time interval [0, t], and
Vm(y|x) is the probability for a change in fitness from initial value x to final value y that
takes exactly m mutational attempts. Because the mutations arise independently, Um(t)
is the Poisson distribution with parameter t,

Um(t) =
(t)m

m!
e−t. (S27)

Note that the sum in equation (S26) runs over all possible numbers of mutations, some
of which will fix and some of which will not; if we conditioned on the mutations having
been fixed, the distribution U would no longer be Poisson.

The sequence Vm(y|x) can be written as follows:

V0(y|x) = δ(y − x), (S28)

Vm(y|x) =

∫ ∞
0

Q(y|ξ)Vm−1(ξ|x) dξ + Vm−1(y|x)

∫ ∞
0

(1− πy(ξ))Φy(ξ) dξ

for m = 1, 2, . . . . (S29)

The relations (S29) have a simple intuitive interpretation. For each m but m = 0, the
distribution of fitnesses after exactly m mutations is a sum of two terms. The first term
accounts for the situation when m− 1 mutations preceding the current one have brought
the population into state ξ. This term equals the probability that a mutation with fitness
y arises and is successfully fixed in the population with the intermediate fitness ξ. The
second term accounts for the situation when fitness y has already been reached with the
preceding m− 1 mutations. In order for the final fitness to still be y, the m-th mutation
whose fitness is ξ must fail to fix.

In practice, one computes the distribution of the number of mutations from equation
(S27) to find the range of m over which U is non-negligible, evaluates by recursion the
terms in equation (S29) in the relevant range, and finally sums them up according to
equation (S26). A Matlab implementation of this algorithm is available upon request.

Now we show that the solution to the recursion relations (S26)–(S29) in fact coincides
with the solution (S8) of the forward equation (S5). First, note that equations (S29) can
be written in the form

Vm(y|x) = Vm−1(y|x) +
(
K̂fVm−1(·|x)

)
(y)

for m = 1, 2, . . . Now it is easy to see that, in fact,

Vm(y|x) =

(
m∑
i=0

(
m

i

)
K̂i

fV0(·|x)

)
(y). (S30)

Substituting (S27) and (S30) into (S26) and changing the order of summation, we obtain

P (y, t|x) =

(
∞∑
i=0

(tK̂f)
i

i!
V0(·|x)

)
(y),

which coincides with (S8).
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1.4.2 Computing distribution Pi(t|x)

To compute the distribution Pi(t|x), let us first write it as

Pi(t|x) =
∞∑
m=i

Um(t)Wm(i|x), (S31)

where Wm(i|x) is the probability that out of m mutations exactly i have fixed, given the
initial fitness x; clearly Wm(i|x) ≡ 0 if i > m. First, note that the probability wj that
the j-th mutation has fixed, is given by the first term of equation (S29) integrated over
all final fitnesses y,

wj(x) =

∫ ∞
0

dy

∫ ∞
0

Q(y|ξ)Vj−1(ξ|x) dξ, j = 1, 2 . . .

Let us describe the fate of m mutations by a vector σm = (σ1, σ2, . . . , σm) where σj = 1
if the j-th mutation has fixed, and σj = 0 if it was lost. The event that out of m mutations
exactly i have fixed encompasses all events that are described by vectors σm such that∑m

j=1 σj = i. Denote the set of all such elementary events by Σm,i = {σm :
∑m

j=1 σj = i}.
For example, the event that, out of 2 mutations, exactly one has fixed can be realized by
σ2 = (1, 0) where the first mutation has fixed and the second has not and by σ2 = (0, 1)
where the second mutation has fixed and the first has not; therefore Σ2,1 = {(1, 0), (0, 1)}.
Then, since all members of the set Σm,i are mutually exclusive,

Wm(i|x) =
∑
Σm,i

m∏
j=1

w
σj

j (x)(1− wj(x))1−σj . (S32)

Of course, if wj(x) were equal for all j, this expression would reduce to the binomial
probability with parameters m and wj(x). In general, wj(x) are not equal, and equation
(S32) is difficult to evaluate. We conjecture, however, that the sum in (S32) is usually
dominated by a small number of terms, which one could try to find knowing each wj(x)
from the recursion relations.

Fortunately, calculating some lower order statistics, like the mean of the distribution
Pi(t|x), or its variance, is much easier. The expected number of fixations of the j-th
mutation is 1 ·wj(x)+0 ·(1−wj(x)) = wj(x). Thus, the expected number of substitutions
that occurred after m mutations took place is

∞∑
i=0

iWm(i|x) =
m∑
j=1

wj(x). (S33)

The substitution trajectory can then be finally written as

S(t, x) =
∞∑
m=0

Um(t)
∞∑
i=0

iWm(i|x) =
∞∑
m=1

Um(t)
m∑
j=1

wj(x). (S34)

The variance in the number of substitutions can be similarly calculated, taking into ac-
count that the variance in the expected number of fixations of the j-th mutation equals
wj(x)(1− wj(x)), and the total variance is the sum over individual mutational steps.
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2 The role of neutral and deleterious mutations in

adaptation

In this section we investigate how the distributions P (y, t|x) and Pi(t|x) change if a
constant fraction of neutral or deleterious mutations is added to the NFD.

2.1 Neutral mutations

Suppose that on the fitness landscape Φx the distribution of fitnesses at time t is
P (y, t|x) and the distribution of the number of accumulated substitution is Pi(t|x). Let

Φ̃x = νδx + (1− ν)Φx (S35)

where δx is a point mass centered at x, be a new fitness landscape with a fraction ν of
neutral mutations. Let the distribution of fitnesses at time t on this landscape be P̃ (y, t|x)
and let the distribution of substitutions be P̃i(t|x). We claim that

P̃ (y, t|x) = P (y, (1− ν)t|x) (S36)

P̃i(t|x) =
i∑

j=0

Uj(N
−1νt)Pi−j

(
(1− ν)t|x

)
, (S37)

where Uj(N
−1νt) is, as before, the Poisson distribution with parameter N−1νt. Expression

(S36) shows that the evolution of the distribution P (y, t|x) proceeds on the landscape Φ̃x

with mutation rate θ exactly as on the landscape Φx with a smaller mutation rate (1−ν)θ.
Expression (S37) shows that, if the random variables Qt and Q̃t describe the number of
substitutions that occurred by time t on the fitness landscapes Φx and Φ̃x, respectively,
then Q̃t = Q(1−ν)t + Rνt, where Rt is a Poisson process with rate N−1. In other words,
neutral mutations simply add an independent Poisson counting process to the original
substitution process.

To show that (S36) and (S37) hold, we substitute (S35) into (S4) and (S13) and obtain

(
K̃bf(·)

)
(x)

def
=

∫ ∞
0

Φ̃x(ξ)πx(ξ)
(
f(ξ)− f(x)

)
dξ = (1− ν)

(
K̂bf(·)

)
(x), (S38)

q̃(x)
def
=

∫ ∞
0

Φ̃x(ξ)πx(ξ) dξ = νN−1 + (1− ν)q(x). (S39)

From (S38) follows that the backward equation for P̃ (y, t|x) differs from the backward
equation for P (y, t|x) only by the scaling factor 1− ν. Now,

∂P̃0

∂t
(t|x) = −N−1νU0(N−1νt)P0

(
(1− ν)t|x

)
− (1− ν)q(x)U0(N−1νt)P0

(
(1− ν)t|x

)
= −q̃(x)P̃0(t|x),
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and

∂P̃i
∂t

(t|x) =
i∑

j=0

[
−N−1νUj(N

−1νt)Pi−j
(
(1− ν)t|x

)
− (1− ν)Uj(N

−1νt)q(x)Pi−j
(
(1− ν)t|x

)]

+ N−1ν
i∑

j=1

Uj−1(N−1νt)Pi−j
(
(1− ν)t|x

)
+ (1− ν)q(x)

i−1∑
j=0

Uj(N
−1νt)Pi−j−1

(
(1− ν)t|x

)
+ (1− ν)

i−1∑
j=0

Uj(N
−1νt)

(
K̂bPi−j−1

(
(1− ν)t| ·

))
(x)

= −
(
P̃i(t|x)− P̃i−1(t|x)

)
+
(
K̃bP̃i(t|·)

)
(x)

which implies that P̃i given by equation (S37) satisfy equations (S10), (S11) for the
landscape Φ̃x. As a consequence, the fitness trajectory S̃(t, x) on the landscape Φ̃x is
given by

S̃(t, x) = S
(
(1− ν)t, x

)
+ νN−1t,

which can also be obtained directly by substituting expression (S39) into solution (S23).

2.2 Deleterious mutations

In general, it is hard to predict how deleterious mutations would influence the dynam-
ics of adaptation. However, their effect becomes negligible as the population size goes
to infinity, at least in the weak-mutation limit. Indeed, the fixation probability (S1) of
deleterious mutations quickly tends to zero as the population size increases. For example,
the probability of fixation of a moderately deleterious mutation with the selective disad-
vantage of 0.1% is less than 10−3 for a population of size of 103 and is less than 10−11 for
a population of size of 104. Thus, even in moderately large populations, the vast majority
of deleterious mutations will not go to fixation. Therefore, on the long time scale, all dele-
terious mutations are equivalent to being lethal. Intuitively, this means that if we add a
fraction d of deleterious mutations to the NFD of all genotypes, this fraction of mutations
will simply be wasted and only the remaining fraction 1− d will be potentially utilized in
the process of adaptation. To illustrate that this indeed is happening, we add a fraction d
of deleterious mutations to the non-epistatic and stairway to heaven landscapes. We call
the resulting landscapes NEPI+d and STH+d, respectively. The fitness and substitution
trajectories for these landscapes are shown in Figure S1. As expected, the analytical
approximations calculated under the assumption that deleterious mutations are wasted
gives an excellent fit to simulations.

An important consequence of this observation is that the weak mutation theory holds
when θb � (4 logN)−1 instead of the more stringent θ � (4 logN)−1, where θb ≡ (1−d)θ.
If the genomic rate of beneficial mutations µb is 10−5 [4], then this condition is satisfied
for population sizes smaller than 1000.
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Figure S1: Dynamics of adaptation on the continuous additive Mount Fuji landscape
(MTF), the non-epistatic landscape with deleterious mutations (NEPI+d) and the stair-
way to heaven landscape with deleterious mutations (STH+d). Notations are as in Figure
1 in the main text. Parameter values used: N = 1000, µ = 10−5 (θ = 0.01), L = 1000,
number of replicate simulations = 103. MTF landscape: xmax = 5, a = 1; NEPI+d land-
scape: d = 0.5 and a = 1. STH+d landscape: d = 0.5 and a = 0.42. The same analytical
approximations were used here for the NEPI+d and STH+d landscapes as in the main
text, but time was rescaled by θ(1− d) instead of θ.
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3 Classical landscapes

Recall that we employ the following definitions (see main text).

1. The house of cards or the uncorrelated landscapes are the landscapes on which the
NFD is the same for all genotypes (and fitnesses),

Φx(y) dy = Ψ(y) dy.

2. The non-epistatic landscapes are landscapes on which the distribution of fitness
effects Ψ(v) remains the same for all genotypes, so that the NFD is given by

Φx(y) dy = Ψ(y − x) dy.

3. The stairway to heaven landscapes are the landscapes on which the distribution of
selection coefficients of mutations, Ψ(s), is the same for all genotypes, so that the
NFD is given by

Φx(y) dy =
1

x
Ψ

(
y − x
x

)
dy.

In the main text we considered special cases of these landscapes when the distribution Ψ
was of exponential form (see Table 1 in the main text),

House of cards Φx(y) =
1

a
exp

{
−y
a

}
, y ≥ 0 (S40)

Non-epistatic Φx(y) =
1

a
exp

{
−y − x

a

}
, y ≥ x (S41)

Stairway to heaven Φx(y) =
1

ax
exp

{
−y − x

ax

}
, y ≥ x (S42)

3.1 Correlation structure

The house of cards, non-epistatic, and stairway to heaven landscapes differ by the
correlation structure between parent and offspring fitnesses. By definition, there is no such
correlation on the house of cards landscape. By contrast, the offspring fitness is positively
correlated with the parent fitness on both non-epistatic and stairway to heaven landscapes.
Let X be the fitness of the parent that is drawn randomly from some distribution, and Y
be the fitness of the offspring.

On non-epistatic landscapes, Y = X + V , where V is the fitness increment which is
drawn from distribution Ψ(v) independently of X. Then

Cov(X, Y ) = E
[
(X − X̄)(X − X̄ + V − V̄ )

]
= Var(X) > 0,
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where, X̄ and Var(X) are the mean and the variance of the distribution from which the
parent is drawn, and V̄ > 0 is the mean of the distribution of fitness increments.

On the stairway to heaven landscapes, Y = X(1 + S), where S is the selection coeffi-
cient which is drawn from distribution Ψ(s) independently of X. Then

Cov(X, Y ) = E
[
(X − X̄)(X − X̄ +XS − X̄S̄)

]
= Var(X) (1 + S̄) > 0,

where S̄ > −1 is the mean of the distribution of selection coefficients.

3.2 Approximate solution for the exponential house of cards
landscape

On the house of cards landscape (S40) we have, for large population sizes and for large
x,

q(x) =
1

a
e−

x
a

∫ ∞
x

e−
y−x

a

(
1− e−2 y−x

x

)
dy =

2a

x+ 2a
e−

x
a ≈ 2ae−

x
a

r(x) =
1

a
e−

x
a

∫ ∞
x

(y − x)e−
y−x

a

(
1− e−2 y−x

x

)
dy =

4a2(x+ a)

(x+ 2a)2
e−

x
a ≈ 4a2e−

x
a .

The last approximate inequality for q(x) and r(x) is not very accurate since it neglects
the term of order x−1,but it captures the fact the exponential decay in both q(x) and r(x)
will dominate the power-law decay as x gets large. After substituting these functions into
equations (1), (2) in the main text, we solve them using the method of characteristics
to obtain expressions for the fitness and substitution trajectories presented in Figure 1
(main text).

3.3 Approximate solution for the exponential non-epistatic land-
scape

On the non-epistatic landscape (S41) we have, for large population sizes, and for large
x,

q(x) =
1

a

∫ ∞
x

e−
y−x

a

(
1− e−2 y−x

x

)
dy =

2a

x+ 2a
≈ 2a

x

r(x) =
1

a

∫ ∞
x

(y − x)e−
y−x

a

(
1− e−2 y−x

x

)
dy =

4a2(x+ a)

(x+ 2a)2
≈ 4a2

x
.

After substituting these functions into equations (1), (2) in the main text, we solve them
using the method of characteristics to obtain expressions for the fitness and substitution
trajectories presented in Figure 1 (main text).
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3.4 Exact solution for an arbitrary stairway to heaven landscape

It is possible to solve equations (S18)–(S22) for an arbitrary stairway to heaven land-
scape, Φx(y) = x−1Ψ(y/x − 1). First note that the expected fixation probability of a
mutation, q(x) =

∫∞
−1

Ψ(s)π(s) ds = 〈π(s)〉, is independent of the fitness x of the parental

genotype. In addition, r(x) = x
∫∞
−1
sΨ(s)π(s) ds = x〈π(s)s〉, which suggests, after ex-

ploring the advection approximation, the ansatz F (t, x) = f(t)x and S(t, x) = g(t) for
the equations (S18)–(S22). With this ansatz we obtain

(
K̂bF (t, ·)

)
(x) =

∫ ∞
0

1

x
Ψ

(
ξ − x
x

)
πx(ξ)f(t)(ξ − x) dξ = 〈π(s)s〉 F (t, x),(

K̂bS(t, ·)
)
(x) = 0,

where 〈π(s)s〉 is the expected selection coefficient of a random mutation to any genotype,
weighted by its fixation probability. Equations (S18)–(S22) become simple ODE’s whose
solutions are given by

F (t, x) = xe〈π(s)s〉t (S43)

S(t, x) = 〈π(s)〉t, (S44)

Expressions for the fitness and substitution trajectories presented in Figure 1 (main text)
follow from expressions (S43), (S44) by noting that, for large population sizes,

〈π(s)〉 =
1

a

∫ ∞
0

e−
s
a

(
1− e−2s

)
ds =

2a

1 + 2a
,

〈π(s)s〉 =
1

a

∫ ∞
0

s e−
s
a

(
1− e−2s

)
ds =

4a2(1 + a)

(1 + 2a)2
.

It can be shown analogously that the k-th moment of the distribution of fitnesses,
Mk(t, x), evolves according to

Mk(t, x) = xneκnt,

where κn =
∑n

j=1

(
n
j

)
〈π(s)sj〉. In particular, the relative width of the distribution of

fitnesses increases with time, M2(t, x)/F 2(t, x) = e〈π(s)s2〉t − 1.

3.5 Mount Fuji landscape

In addition to the classical fitness landscape considered above, the class of fitness
parametrized landscapes encompasses many other landscapes. To demonstrate this, we
present here a version of the “Mount Fuji” landscape. On this landscape, the fitness
decreases monotonically with the Hamming distance from the single optimal genotype,
so that the fitness of the genotype that differs by h mutations from the optimal one is
(1 − s)h, where 0 < s < 1. If formulated in terms of neighbor fitness distributions,
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such multiplicative mount Fuji landscape would be defined for a discrete set of fitnesses
x ∈ {1, 1− s, · · · , (1− s)L}, where L is the genome size,

Φx(y) = bhδx(1−s)−1(y) + (1− bh)δx(1−s)(y).

Here, δz is, as before, a point measure centered at z, and bh is the probability of a
beneficial mutation to a genotype with h mutations. These probabilities can be easily
calculated knowing the genome length L and the alphabet size |A|. For instance, b0 = 1,
b1 = (|A|L)−1and bL = 1.

A continuous version of the additive Mount Fuji landscape can also be defined, for
example, as follows.

Φx(y) =

{
1
a
, if y ∈

[
x(1− a

xmax
), x(1− a

xmax
) + a

]
0, otherwise

On this landscape, the fraction of beneficial mutations decreases linearly from 1 to 0 as
the fitness changes from 0 to the maximum value xmax. Parameter a defines the width of
the NFD. The dynamics of adaptation on this landscape is shown in Figure S1.

4 Relaxation of the weak-mutation limit

In this section we investigate, by means of simulations, the validity of our theory
outside of the weak-mutation limit. We perform full stochastic simulations of the infinite
alleles Wright-Fisher model with N = 1000 individuals. We vary the mutation rate from
µ = 10−5 to µ = 10−2 per individual per generation, which corresponds to θ ranging from
θ = 0.01, where our theory should well describe the Wright-Fisher model, up to θ = 10,
where clonal interference and piggybacking effects cannot be ignored.

In the simulations, each individual is characterized by its allelic type z (a float number
between 0 and 1); xz is the fitness of allele z, kz is the number of mutations that have
occurred on the line of descent of an individual of type z. A mutant offspring of individual
of type z has type z′ which is drawn randomly from [0, 1]; fitness xz′ is then drawn from
the distribution Φxz , and kz′ = kz + 1.

At each time point t the population is characterized by a collection of K(t) types
z1, z2, . . . , zK(t) and their frequencies f1, f2, . . . , fK(t). We use the shorthand notations
xi ≡ xzi

and ki ≡ kzi
. In the simulations we track four summary statistics:

1. The mean fitness of the population
∑K(t)

i=1 xifi

2. The mean number of mutations since the initial time point
∑K(t)

i=1 kifi

3. The population heterozygosity 1−
∑K(t)

i=1 f 2
i

4. The number of alleles present in the population, K(t)
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Figure S2: Dynamics of adaptation in the full Wright-Fisher model with µ = 10−5,
N = 103 on three classical landscapes. The first and second columns show the fitness and
substitution trajectories (see text for details). Black lines correspond to the predictions of
our theory; gray lines show the results of the Wright-Fisher simulations; dashed lines show
a linear function, for reference. The third column shows the evolution of heterozygosity,
and the fourth column shows how the number of alleles in the population changes over
time (see text for details). Note that time is measured in generations. Parameter values
are the same as in Figure 1 in the main text, except number of replicate simulations is
103; at time zero the population is monomorphic with a type with fitness 2. Simulations
are terminated prematurely if the fitness of an indiviual exceeds 10100.
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Figure S3: Dynamics of adaptation in the full Wright-Fisher model with µ = 10−4,
N = 103. Notations as in Figure S2.
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Figure S4: Dynamics of adaptation in the full Wright-Fisher model with µ = 10−3,
N = 103. Notations as in Figure S2.
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Figure S5: Dynamics of adaptation in the full Wright-Fisher model with µ = 10−2,
N = 103. Notations as in Figure S2.
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Figure S6: Variance of the ensemble distribution of fitnesses (top row) and substitutions
(bottom row) for classical landscapes. Notations and parameter values are as in Figure 1
in the main text.

Figures S2–S5 show the average values of these statistics across 1000 independent replicas.
For θ = 0.01 (Figure S2) and even for θ = 0.1 (Figure S3), our theory accurately describes
the dynamics of adaptation, as expected. For θ = 1 (Figure S4) and θ = 10 (Figure S5),
the quantitative predictions of our theory are poor. Indeed, when θ > 1, the population
is polymorphic most of the time—this can be seen in the graphs showing the population
heterozygosity and the number of coexisting alleles. Thus, in simulations with θ > 1
clonal interference and piggybacking certainly occur. Surprizingly, even in this regime the
qualitative predictions of our theory still hold. In particular, we observe that, even though
the curvature of the fitness and substitution trajectories depends on the mutation rate,
its sign does not. In other words, landscapes that give rise to concave (convex) fitness
(substitution) trajectories in the weak-mutation limit continue to give rise to concave
(convex) fitness (substitution) trajectories even in the presence of clonal interference and
piggybacking. This implies that we can use the weak mutation theory to obtain qualitative
conclusions about the fitness landscape, even if the observed trajectories were generated
under high mutation rates.
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