SUPPORTING INFORMATION

A Versatile Photoactivatable Probe Designed to Label the Diphosphate Binding Site of Farnesyl Diphosphate Utilizing Enzymes

Olivier Henry^{*a*}, *Fernando Lopez-Gallego*^{*b*}, *Sean A. Agger*^{*b*}, *Claudia Schmidt-Dannert*^{*b*}, *Stephanie Sen*^{*c*}, *David Shintani*^{*d*}, *Katrina Cornish*^{*e*} and *Mark D. Distefano*^{*a**}

^aDepartment of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455

^bDepartment of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108

^cDepartment of Chemistry, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628

^dDepartment of Biochemistry, University of Nevada, Reno, NV 89557

^eYulex Corporation, 37860 W. Smith-Enke Road, Maricopa, AZ 85238

*Corresponding author. Tel.: 612-624-0544; fax: 612-626-7541. E-mail address: diste001@umn.edu

Table of Contents

¹H NMR of Compound **6a**

¹H NMR of Compound **7a** ³¹P NMR of Compound **7a**

¹H NMR of Compound **7b** ³¹P NMR of Compound **7b**

¹H NMR of Compound **8a** ³¹P NMR of Compound **8a**

¹H NMR of Compound **8b** ³¹P NMR of Compound **8b**

¹H NMR of Compound **4a** ³¹P NMR of Compound **4a** HPLC of Compound **4a** HR ESI MS of Compound **4a**

¹H NMR of Compound **4b** ³¹P NMR of Compound **4b** HPLC of Compound **4b** HR ESI MS of Compound **4b**

Stereo Pictures of 4b Bound to FPP-Utilizing Enzymes

Table of Residues within 4 Å of Distal Phosphate (FPP) or Phosphonate (4b)

56

1.0

Det 166 oh-meta-final

Pump Gradient B oh-meta-final

8

100

Bruker Daltonics DataAnalysis 3.1

printed: 03/31/06 15:03:20

Page 1 of 1

D:\32Karat\Projects\Default\2008\OH\oh-1-9712-11-2008 5-27-50 PM, Pump Gradient B

Bruker Daltonics DataAnalysis 3.1

03/30/06

Figure. Modeling of **4b** in the active sites of FPP-utilizing enzymes. This Figure contains stereo views of the pictures shown in Figure 8 in the text. Only the Enzyme•4b complexes are shown. These correspond to the pictures on the right side in Figure 8 (Top Right, Middle Right and Bottom Right). The legend from Figure 8 is reprinted below.

Figure 8. Modeling of 4b in the active sites of FPP-utilizing enzymes. Top Left: Crystal structure of NrPFTase (1JCR) with bound FPP. Shown, are residues H248β, R291β, K294β, Y300β, K164α (colored by element; carbon in grey), FPP (colored by element; carbon in green) and Zn (cyan). The yellow dashes illustrate potential hydrogen bonding or electrostatic interactions (within 4Å) of the distal phosphate. Top <u>Right</u>: Crystal structure of NrPFTase with 4b built on the bound FPP. The color scheme is the same as that for Top Left. Middle Left: Crystal structure of EcFPPSase (1RQ1) with FPP built by modifying the existing bound IPP. Shown, are residues K66, R116, R117, K258 (colored by element; carbon in grey), FPP (colored by element; carbon in green) and Mg (purple). The yellow dashes illustrate potential hydrogen bonding or electrostatic interactions (within 4Å) of the distal phosphate. Middle Right: Crystal structure of EcFPPSase with 4b built on the bound IPP. The color scheme is the same as that for Middle Left. Bottom Left: Crystal structure of StSTSase (Pentalenene synthase, 1PS1) with FPP docked in the active site of the enzyme. Shown, are residues R173, N219 (colored by element; carbon in grey), FPP (colored by element; carbon in green) and Mg (purple). The yellow dashes illustrate potential hydrogen bonding or electrostatic interactions (within 4Å) of the distal phosphate. Bottom Right: Crystal structure of StSTSase with 4b docked in the active site of the enzyme. The color scheme is the same as that for Bottom Left.

RnPFTase

Ligand FPP	Residue	Dist in A	Ligand Benzophenone	Residue	Dist A
O2A	NZ (K164, α)	2.9	O2A	NZ (K164, α)	2.8
O1A	NZ (K164, α)	3.3	O1A	NZ (K164, α)	3.0
O1A	NZ (K294, β)	3.3			
O1B	NZ (K294, β)	2.8	O1B	NE2 (H248, β)	2.7
O2B	NZ (K294, β)	3.8	O1B	ΟΗ (Υ300, β)	2.7
O2B	NH2 (R291, β)	3.2			
O2B	NE2 (H248, β)	3.0			
O3B	NE2 (H248, β)	4.0	O3B	NZ (K294, β)	2.5
O3B	OH (Y300, β)	2.7	O3B	NH2 (R291, β)	3.7
O3A	OH (Y300, β)	3.8			
O1A	NH2 (R291, β)	2.9			
O2B	NE (R291, β)	2.8			

EcFPPSase

Ligand FPP	Residue	Dist in A	Ligand Benzophenone	Residue	Dist A
08	NZ (K258)	2.6	O9	NH2 (R116)	2.1
06	NZ (K258)	3.1	08	NZ (K258)	2.6
09	NZ (K66)	2.6	O6	NZ (K66)	3.9
O10	NZ (K66)	3.5	O10	NZ (K66)	3.6
OUKN1	NZ (K66)	2.6	012	NZ (K66)	2.4
OUKN1	N (K66)	3.5	012	N (K66)	3.6
O12	NH2 (R117)	3.1	O14	NE (R117)	2.6
O12	NE (R117)	2.6			
O14	NE (R117)	4.0			

StSTSase

Ligand	Residue	Dist in A	Ligand	Residue	Dist A
FPP			Benzophenone		
03	NH2 (R173)	3.4	O2	ND2 (N219)	3.0
01	NH2 (R173)	3.5	O4	MG701 (Mg1)	1.8
01	NH1 (R173)	3.0	0	MG701 (Mg1)	2.6
01	ND2 (N219)	3.9	02	MG701 (Mg1)	3.7
0	ND2 (N219))	3.5	05	MG702 (Mg2)	2.0
02	MG702 (Mg2)	2.0	0	MG702 (Mg2)	3.3
0	MG702 (Mg2)	2.8	O3	MG702 (Mg2)	2.0
06	MG702 (Mg2)	1.8	01	MG702 (Mg2)	3.1
04	MG702 (Mg2)	3.8			
05	MG701 (Mg1)	1.8			
0	MG701 (Mg1)	3.0			
01	MG701 (Mg1)	3.6			