Construction of Multifunctional Cubeoctahedra via Coordination-Driven Self-Assembly

Koushik Ghosh[†], Jiming Hu^{†, ϕ}, Henry S. White^{†*}, Peter J. Stang^{†*}

†Department of Chemistry, University of Utah, 315 South 1400 East, Room, 2020, Salt Lake City, Utah, 84112 ^ф*Department of Chemistry, Zhejiang University, Hangzhou 310027, China* stang@chem.utah.edu

Table of Contents

General Procedure for the Preparation of Cubeoctahedra 4 and 5:

To a 0.5 mL acetone-*d6* solution triflate (for **1**, 5.0 mg, 0.0037 mmol; for **2**, 3.95mg, 0.0037 mmol) was added a 0.5 mL CD₂Cl₂ solution of the tritopic donor precursor 3 drop by drop with continuous stirring (10 min). The reaction mixture was stirred for 12 hrs at room temperature. The solution was evaporated to dryness, and the product was collected. **4.** Yield: 6.54 mg (orange solid), 95%. ¹H NMR (CD₂Cl₂, 500 MHz): δ = 8.81 (d, 48H, Hα-Py), 8.08 (s, 24H, Ar-H), 7.96 (s, 48H, Ar*H*), 7.12-6.99 (m, 36H, Ar*H*), 4.96 (s, 24H, H_{Fc}), 4.62 (s, 24H, H_{Fc}), 4.36 (s, 60H, H_{Fc}), 1.96 (m, 288H, PC*H*₂CH₃), 1.25 (m, 432H, PCH₂CH₃). ³¹P{¹H} NMR (CD₂Cl₂, 121.4 MHz): $\delta = 16.9$ (s, ¹J_{Pt-P} = 2311.5 Hz). Anal. Calcd for $C_{780}H_{984}F_{72}Fe_{12}N_{24}O_{96}P_{48}Pt_{24}S_{24}$: C, 44.17; H, 4.68; N, 1.59. Found: C, 44.20; H, 4.87; N, 1.57.

5. Yield: 5.71 mg (white solid), 98%. ¹H NMR (CD₂Cl₂, 500 MHz): δ 8.66 (brs, 48H, H_a-Py), 8.08 (s, 24H, Ar*H*), 7.86 (brs, 48H, Hβ-Py), 7.68 (s, 12H, Ar*H*), 7.1-6.89 (m, 60H, Ar*H*), 4.23-4.08 (m, 96H, α-CH₂), 3.91-3.85 (m, 96H, β-CH₂), 3.75 (m, 96H, γ-CH₂), 1.8 (m, 288H, PC*H*₂), 1.23 (m, 432H, PCH₂C*H*₃). ³¹P {¹H} NMR (CD₂Cl_{2,} 121.4 MHz): δ =18.1 (s, ¹J_{Pt-P} = 2729.31 Hz). Anal. Calcd for C₉₄₈H₁₂₄₈F₇₂N₂₄O₁₉₂P₄₈Pt₂₄S₂₄: C, 46.75; H, 5.16; N, 1.38. Found: C, 46.87; H, 5.20; N, 1.41.

Figure S1. A) ¹H and B) ³¹P NMR Spectra of cubeoctahedra 4 in CD_2Cl_2

 \bf{B}

Figure S2. A) ¹H and B) ³¹P NMR Spectra of Cubeoctahedra 4 in Acetone- d_6

B.

Figure S3. A) ¹H and B) ³¹P NMR Spectra of Cubeoctahedra 4 in CD_3NO_2

B.

Figure S4. A) ¹H and B) ³¹P NMR Spectra of Cubeoctahedra 5 in CD_2Cl_2

Figure S5. A) ¹H and B) ³¹P NMR Spectra of Cubeoctahedra 5 in Acetone- d_6

Figure S6. A) ¹H and B) ³¹P NMR Spectra of Cubeoctahedra 5 in CD₃NO2

Figure S7: ESI Mass Spectrometry of 4:

PGSE Measurement:

Pulsed gradient spin-echo (PGSE) NMR diffusion measurements were done by pulsesequence developed by Stejskal and Tanner 1 .

$$
\ln(I/I_0) = -\gamma_X^2 \delta^2 G^2 (\Delta - \delta/3) D \tag{1}
$$

 $\gamma_{\rm x}$ = gyromagnetic ratio of the X nucleus; δ = length of the gradient pulse; $G =$ gradient strength; Δ = delay between the midpoints of the gradients; $D =$ diffusion coefficient

Temp: 298K

Instrument: Inova 500 MHz

Stokes-Einstein Equation: The molecular size is obtained from the diffusion coefficient via the Stokes-Einstein equation where k_B is the Boltzmann constant, T is the absolute temperature and r_H is the hydrodynamic radius of the species under investigation.

$$
D = \frac{k_B T}{6\pi\,\eta\,r}
$$

Gradient Calibration: The gradient strengths need to be carefully calibrated to obtain accurate D values to fit equation 1. Gradient strengths were calibrated using the width (in Hz) of a sample of known length along the NMR-tube (Z) axis, back-calculation of the coil constant from a diffusion experiment on D₂O using D = 1.9 X 10⁻⁵ cm²/s for D₂O at $298K²$ was used to calculate the gradient strengths of both the probes.

Issue of Viscosity: The effect of variable viscosity in different batch of same solvents was examined using the D values observed for the residual protons of the solvent resonance.

Pulse sequence: Stejskal-Tanner Pulse sequence

Diffusion Coefficients in different solvents:

Cyclic Voltammetry.

Cyclic voltammetry (CV) was performed in a Faraday cage using a 3-electrode cell and a potentiostat (Pine Instrument Co., RDE4). The working electrode was a platinum disk embedded in glass with surface area of about 1 mm². A Ag/AgCl (3.0M KCl) electrode was used as reference electrode and a Pt wire as the counter. Voltammetric data were recorded using in-house virtual instrumentation written in LabVIEW 8.0 (National Instrument).

The CV measurements were carried out in a acetone solution containing 0.1 M tetra-*n*-butylammonium hexafluorophosphate $(n-Bu_4NPF_6)$. The concentration of redox molecule in solution was: (4) cubeoctahedra, 2.0×10^{-6} M, Scan rates are indicated in the figures.

Figure S8. Cyclic voltammetric response of 2.0×10^{-6} M cubeoctahedra 4 in acetone containing $0.1M n-Bu_4NPF_6$.

Steady-State Measurements using Pt microdisk electrodes.

Steady-state voltammetric measurements were made using the same solution, but a two electrode compartment using a 26 µm diameter Pt disk with the diameter of as the working and a Ag/AgCl electrode as the counter and reference). A PAR (Princeton Applied Research) model 175 Universal Programmer and Dagan Cornerstone Chem-Clamp Potentiostat were used for potential generation and current measurement, respectively. The size of this micro-Pt disk was determined by steady-state voltammetric measurement using an acetonitrile solution containing 5.0 mM ferrocene and 0.1M $TBAPF₆$.

. The limiting current can be calculated from the equation:

$$
i_{\text{lim}} = 4n \text{F}Da \text{C} \theta_{\text{sites}} \tag{1}
$$

where *n* is the number of electrons transferred per ferrocene $(=1)$, F is the Faraday constant C is the bulk concentration, θ_{sites} is the number of reacting ferrocenyl sites per the redox molecule, and *a* is the radius of the electrode.

To determine if the oxidation of the compounds correspond to independent serial electron transfer reactions, the current function $log[(i_{\text{lim}}-i)/i]$ from the steady-state voltammograms was plotted vs *E*. For this compound, the slope (ca 1mV) corresponded closely to the one-electron value, $(59 \text{ mV}$ for $n = 1)$ supporting the conclusion that oxidation of the ferrocenyl groups occurs independently of one another.

Figure S9. Plot of $log[(i_{\text{lim}}-i)/i]$ vs *E* from the steady-state measurements using a Pt microelectrode: Dots are the experimental data and black lines represent best fit lines to the data.

Chronoamperometry Measurements

Chronoamperometry was performed by stepping the electrode potential from a value where no electron transfer occurred to a value where the oxidation of the redox molecule was diffusion limited. The normalized time-dependent current with respect to the steady-state limiting current (i_{lim}) of a microdisk can be expressed as:³

$$
\frac{i(t)}{i_{\text{lim}}} = 1 + (2/\pi^{3/2})a(Dt)^{-1/2}
$$

Thus, by plotting $i(t)/i_{\text{lim}}$ vs $t^{-1/2}$, *D* can be evaluated from the slope when *a* is known. Figure S7 shows two examples of $i(t)/i_{\text{lim}}$ vs $t^{1/2}$ plots. The fitted slope value is 0.365 (s^{0.5}). D is then calculated from equation (4) as 2.18×10^{-6} cm²/s. By using D value, θ_{sites} can be obtained from Eq. (3).

Figure S10. Plot of the experimental ratio $i(t)/i_{\text{lim}}$ vs $t^{-1/2}$ for the oxidation of 4 in acetone containing $0.1M n$ -Bu₄N⁺PF₆ using a 13 μ m microelectrode.

Molecular Modeling Procedures:

 The molecular structures of multiferrocene complex **4** and multi-crownether complex **5** were constructed within the input mode of the program Maestro v8.0.110 with the OPLS force-field.⁴ and MMFF force field respectively. A 1.0 ns molecular dynamics simulation (0.05 fs timestep) at a simulation temperature of 300 K was used to equilibrate each structure. Following each molecular dynamics simulation a full energy minimization was used to obtain the final optimized structures.

Figure S11. Simulated molecular model of multiferrocene **4** optimized with the OPLS force-field. All other hydrogen atoms have been removed for clarity.

Figure S12. Simulated molecular model of multicrownether **5** optimized with the MMFF force-field. All other hydrogen atoms have been removed for clarity.

References:

- 1. Stejskal, E. 0.; Tanner, J. E. *J. Chem. Phys.* **1965,** 42**,** 288.
- 2. Longsworth, L. G. *J. Phys. Chem.* **1960**, *64*, 1914.
- 3. Denault, G.; Mirkin, M. Bard, A. J.; *J. Electroanal. Chem.,* **1991**, *308*, 27

4. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.;

Chang, G.; Hendrickson, T.; Still, W. C. *J. Comput. Chem.* **1990**, *11*, 440.

1.