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2
1. Experimental Section 

1.1. Chemicals 
Phenol (Merck, > 99,5 %) was used as received. Sodium dihydrogen phosphate dihydrate (Fluka, > 99%), boric acid (Aldrich) and 

citric acid (Aldrich, 99%) were used to prepare buffers. Solutions were prepared with either deionized water or deuterium oxide 
(Euriso-top, 99,90%). KNO3 (Aldrich, > 99 %) was used as supporting electrolyte.  

1.2. Instrumentation 
The working electrode was a 3-mm diameter glassy carbon electrode disk (Tokai) carefully polished with 3 μm and 1 μm DP-Paste, 

M (Struers) for 2 min and ultrasonically rinsed in ethanol 96% vol. for 1 min before each run. The counter-electrode was a platinum 
wire and the reference electrode an aqueous saturated calomel electrode (SCE). The potentiostat was an Autolab PGSTAT 12. The 
solution was deoxygenated by bubbling argon prior to each experiment and an argon flow was kept over the solution during the whole 
experiment. All solutions contained 0.5 M of the supporting electrolyte (KNO3).  

The pH measurements in H2O and D2O were done using a Hanna HI 221 pH-meter and a Bioblock combined glass/AgCl electrode (ø 
= 6 mm). pD is obtained by adding 0.4 to the value given by the glass electrode (1S). 
 
2. Self Inhibition 

Self-inhibition (2S) produces dramatic effects on the cyclic voltammetric responses as can be seen in figure 1S, which shows a rapid 
decrease of the current upon repetitive cycling.  
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Fig. 1S. Cyclic voltammetry of 1 mM PhOH in a 0.05 M Britton Robinson buffer at pH = 10.7. Self-inhibition produced by successive potential scans: 
from top to bottom: 1st, 2nd and 3rd scan respectively. The number on each diagram is the scan rate in V/s.  

 
The rate of self-inhibition decreases upon raising the scan rate, in line with the charge passed during the voltammogram, and hence 

the production of the inhibiting film, decreasing as 1/ scan rate  (3S). Self-inhibition during the first scan (figure 2S) is a decreasing 
function of the scan rate, v, and an increasing function of phenol concentration, C0.  
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Fig. 2S. Cyclic voltammetry of PhOH in a 0.05 M Britton Robinson buffer at pH = 10.7. Self-inhibition in the first potential scan as a function of phenol 
concentration (number in each diagram in mM) and scan rates: from left to right: 0.1, 0.2, 0.5, 1, 2, 5, 10 (V/s) with the exception of the first diagram 
where the scan rates are 1, 2, 5, 10 V/s. 

 
We see that the effects of inhibition can be neglected at concentrations below 1 mM and scan rates above 0.1 V/s. The validity of this 

estimation appears more precisely on the diagrams in figure 3S, which show the variation of the peak potential with scan rate and 
phenol concentration, taking into account that the peak potential is expected to obey equation (1), in the text, for a reaction in which 
fast and reversible electron and proton transfers precede a rate-determining dimerization. 
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Fig. 3S. Cyclic voltammetry of PhOH in a 0.05 M Britton Robinson buffer at pH = 10.7. A: variation of the peak potential with scan rate at various 
concentrations (mM); from bottom to top: 0.1, 1.1, 2.0, 12.2, 36. B: variation of the peak potential concentration at two scan rates (V/s): 0.2 (bottom), 
10 (top). C: verification the absence of self-inhibition at 0.2 mM and 0.2 V/s by checking equation (1) by means of the variation of the peak potential 
with scan over the pH range: from top to bottom: 3, 4, 5, 6, 7, 8, 9, 10, and 11 ( ( )/ log 22.0 2.5 mVpE v∂ ∂ = ± ) 
 



 

 

3
The slopes in the figure 3SA diagram are close to the theoretical value of 19.7 mV per decade of scan rate up to 2 mM phenol 

concentration. Figure 3SB shows that the theoretical slope of 19.7 mV per decade of concentration is observed over the whole 
concentration range at a scan rate of 10 V/s whereas this is only the case below 1 mM at a scan rate of 0.2 V/s. Figure 3SC shows the 
verification that self-inhibition is indeed negligible at 0.2 mM and 0.2 V/s by checking equation (1) by means of the variation of the 
peak potential with scan over the pH range. The slope of the linear variation of the peak potential with the log of scan rate, 
22.0 2.5 mV±  is indeed close to the theoretical value of 20 mV characterizing a rate-determining dimerization step following a 
Nernstian electron transfer step (4S). 
 
3. Theoretical Predictions for the Various Mechanisms 

3.1 General 
We examine in the next sections the main kinetic characteristics of each of the possible reaction pathways. Each section is organized 

so as to first state the main characteristics, followed by the demonstration of their validity. The present section is devoted to the 
principles, equations, definitions of variables and parameters common to all pathways.  

The concentrations of the various reacting species are time (t) and space functions that are assume to obey the Fick's second law of 
linear diffusion (planar electrode; x: distance to the electrode surface) with or without a kinetic term representing the coupling of 
diffusion with homogeneous reactions: 

[ ] [ ]2

reactant 2
reactant reactant

 D kinetic term
t x

∂ ∂
= +

∂ ∂
  ( reactantD : diffusion coefficient of the subscript species)

 
Dealing with cyclic voltammetry, one of the boundary conditions at the electrode solution-interface is, in all following cases, the 

expression of the linear scanning of the electrode-solution interface (x = 0): 

iE E vt= +  during the forward scan (v: scan rate, Ei: starting potential) and ( )f RE E v t t= + −  during the reverse scan (Ef: reversing 

potential, ( ) /R f it E E v= − : reversing time). 

In order to make the competition key-parameters emerge, it is useful to formulate the variables, parameters and equations in a 
dimensionless manner, starting with time and space: 

Fv t
RT

τ = , Fvy x
RTD

=   

D is the diffusion coefficient of phenol, which we assume to be practically equal to that of the phenoxyl radical and the phenoxide 
ion. When another reactant has an obviously different diffusion coefficient, as in the case of proton or OH- ion, its ratio with D is an 
additional dimensionless parameter to be taken into account: +H

/H D Dδ = , -OH
/OH D Dδ = , Z /Z D Dδ = . 

The dimensionless electrode potential is defined as: 

( )0F E E
RT

ξ = −  by reference to the standard potential, E0, of the pathway under examination. 

Having defined: 

R R
Fv t
RT

τ = , ( )0
i i

Fu E E
RT

= − , ( )0
f f

Fu E E
RT

= −  

The linear potential scanning conditions become: 
0 :   R iuτ τ ξ τ< < = +  

( )2 :   R R f Ruτ τ τ ξ τ τ< < = − −  

The concentrations of reactants are normalized toward the bulk concentration of phenol, C0:  
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The bulk concentrations of other reactants are also normalized toward the bulk concentration of phenol: 
0-

0
0

ArO
b

C

⎡ ⎤
⎣ ⎦= , 

0+
0

0

H
h

C

⎡ ⎤
⎣ ⎦= , 

0-
0

0

OH
oh

C

⎡ ⎤
⎣ ⎦= , whereas the bulk concentration of ArOi  is always equal to zero. 

The current flowing through the electrode, i, is in general the sum of two contribution representing the oxidation of phenol and 
phenoxide ion, respectively, which both produce the phenoxyl radical. Thus: 

[ ]
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0 0
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x x

i D D
FS x x x=
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 (S is the electrode surface area) 

The dimensionless current is defined as: 

0 0 0 0

a

y y y
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y y yFvFSC D

RT

ψ
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In the following, it will be useful to express the relationship between certain concentrations in the bulk and their counterpart in the 
solution, to introduce the convoluted dimensionless current with the function 1/ πτ , characteristic of linear diffusion: 

0

1 d
τ

ψψ η
π τ η

=
−∫I
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The above linear potential scanning conditions have to be taken into account in the calculation of the convolution integral. The 

procedures we used for numerical calculation of the integral equations expressing the cyclic voltammetric waves in dimensionless 
terms are described in section 3.6. In several cases, the dimensionless cyclic voltammograms may be alternatively simulated using 
commercial packages like DigiElch (5S) (the response of the EPT pathway in section 2.2 was simulated according to this procedure). 
This is not the case with concerted pathways, which involve a termolecular (electrode + two molecules, actually) step at least in one 
direction, which are not implemented in these type of packages.  

The above partial derivative equation may thus be writen: 

[ ] [ ]2

2
dimensionless conc. dimensionless conc.

  dimensionless kinetic term
t x

∂ ∂
= +

∂ ∂  
The rate constants in the dimensionless kinetic term are normalized as  

1stkRT
F v

λ = , for a first-order reaction and 
0

2ndk CRT
F v

λ =  for a 2nd order-reaction. In the case of the dimerization reaction, which is 

involved in all mechanisms that we consider:
02 dim

dim
k CRT

F v
λ = .  

Integration of these partial derivative equations, leading to the expression of the various time- and space-dependent reactant 
concentrations and hence to the sough expression of the current, requires taking into account the following set of initial and boundary 
conditions: 

0 0 00,  0 and : , 0 : 1, , 0, ,y y a b b c h h oh ohτ τ= ≥ = ∞ ≥ = = = = =  

0, 0 :y τ= ≥
0 0 0 0

a ( ), 0b c oh
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ψ
⎞ ⎞ ⎞ ⎞⎛ ⎛ ⎛ ⎛∂ ∂ ∂ ∂

+ = − = =⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜∂ ∂ ∂ ∂⎝ ⎝ ⎝ ⎝⎠ ⎠ ⎠ ⎠
 (the subscript 0 stands for y = 0),  

 and, in the case where the corresponding species are not involved directly in the electron transfer step, i.e. in the PET pathways: 

0 0 0
 0,  0,  0h zh z

y y y
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Otherwise: 
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Still for 0, 0 :y τ= ≥  another boundary condition is a relationship describing either the thermodynamics of the electron transfer step 
(Nernst law) if this is fast or its kinetics if not.  

As indicated in the manuscript, the electron transfer rate law has been approximated by a Butler-Volmer expression with a transfer 
coefficient equal to 0.5.  

In the case of the PET pathways:  

( ) ( )0 - 0
0 0

exp ArO ArO exp
2S x x

i F Fk E E E E
FS RT RT= =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭
i , 

corresponding to a "bimolecular" (electrode+ 1 molecule) step in both directions. 
and in the case of the CPET pathways:  
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i , 

corresponding to a "termolecular" (electrode+ 2 molecules) in both directions. In the case where Z is water, its concentration is 
replaced by its activity, equal to unity, by conventional definition of Sk , the standard rate constant. The forward step is then 
"bimolecular" and the reverse step, "termolecular" (for a discussion of termolecular kinetics in electron transfer reactions concerted 
with the breaking of a bond see references 6S and 7S). Then: 
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i  

The introduction of the standard concentration, SC  (that we take equal to 1 mol/L.), in the above equations allows one to keep the 
same definition, throughout the various cases, of the standard rate constant, Sk , with the same units (usually cm/s).  

The exact meaning of the standard rate constant, Sk , and of the standard potential 0E  depends on the particular pathway under 
examination as made clear in the following sections.  

In the first case, the dimensionless expression of the rate law is the following. 
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and in the second: 
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or, for water: 
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introducing a new dimensionless parameter that measures the competition between electron transfer and diffusion: 

Sk
FvD
RT

Λ =  

the definition of which remains the same whatever the case. 
3.2. The OH--PET pathway in unbuffered water 
The dimensionless expression of the cyclic voltammetric responses expected for this mechanism is given by the following integral 

equation. 

( )
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0 0 2 / 3 0
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1 exp
dim

OH dim
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oh oh oh
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I

I
                                      (1S) 

( )( )/ dim
dim PETF RT E Eξ = −  is a dimensionless expression of the driving force of the reaction as measured by the difference between 

the electrode potential, E, and a characteristic potential, 0dim
PET PETE E= − ( ) ( )( )0/ 3 ln 2 / 3 2 /dimRT F RT F k C v⎡ ⎤

⎢ ⎥⎣ ⎦
, which derives from 

the standard potential 0
PETE  by correcting for the follow-up dimerization, introducing its rate constant, 2 dimk  and the scan rate, v. 

dim
PETE  is immediately derived from the horizontal part of the plot in figure 1b by: , 0.903 /dim at v

PET p PETE E RT F= − .  

The other parameters are dimensionless measures of the initial pH and of the ratio of the diffusion coefficients 
00 +

ArOH / Hoh Kκ ⎡ ⎤= ⎣ ⎦ and ( )-
0

ArOH OH
/ /OH WK C D K Dκ δ =  ( WK : water autoprotolysis constant) 

How can one gets to this expression of the cyclic voltammetric response?  
The partial derivatives equations (Fick's second law) relative to the various reactants may be expressed in dimensionless form as: 

2
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In the latter equation, dimerization is so fast, and therefore dimλ  is so large in the range of scan rate considered here, that a steady-state  
is achieved in which diffusion and dimerization compensate each other leading to the so-called "pure kinetic" conditions (4). Then: 
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Integration leads to: 
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Since the protonation/ deprotonation reactions are fast: 
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It follows that: 
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Integration of these two equations leads to: 

0 0 1a b ψ+ = − I  and 0 0
0 0OH OHb oh b ohδ δ ψ+ = + − I . 

The coupled proton transfer reaction is assumed to be at equilibrium at all times and distances from the electrode: 
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The oxidation of phenol goes entirely through the phenoxide ion in the framework of the PET mechanism and we assume that the 
electron transfer is fast thus obeying the Nernst law, which reads in dimensionless terms 

( )0 0 expb c ξ= −
 

and therefore, on the one hand: 
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while, on the other: 0 0
0 0OH OHb oh b ohδ δ ψ+ = + − I ,  
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Combination of these two expressions of b0 finally leads to equation (1S), which can be solved numerically according to the 
procedure described in section 3.6. 

 
3.3. The H2O-CPET pathway in unbuffered water 
The main purpose here is to established equation 2S below  
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which corresponds to the horizontal set of data points in figure 3a. It is also the equation we used to make the successful simulation of 
the voltammetric responses in figure 4, leading to the determination of 

2,H O
CPET
Sk , which was made possible because p has an 

intermediate value (0.5 at 0.2 V/s) that reflects a mixed kinetic control by electron transfer and dimerization. 
With the same initial and boundary conditions as earlier and, noting that in the considered pH range ( ArOHpH pK<< ), the 

dimensionless partial derivatives equations of interest are now: 
2

2
a a

yτ
∂ ∂

=
∂ ∂

and 
2

2H
h h

y
δ

τ
∂ ∂

=
∂ ∂

 

leading, after integration to: 0 1a ψ= − I and 0
0

H
h h ψ

δ
= +

I . Dimerization of the phenoxyl radicals is involved in the same way as in 

the preceding section, leading similarly to ( )1/ 3 2 / 3
0 3/ 2 dimc λ ψ=  

Applying now the Butler-Volmer law, 

( ) ( )2 2
0

0,H O 0,H O
0 0 0exp exp

2 CPET CPET
S

F C FE E a c h E E
RT C RT

ψ Λ
⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= − − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

    with: 2,H O
CPET
Sk

FvD
RT

Λ =  

One obtain the following dimensionless expression of the voltammetric responses for the H2O-CPET pathway 

( )2 2
0

0,H O 0,H O2 / 3 0 2
exp 1 exp ln ln

2 3 3
dim

CPET CPET
S

F F RT C RTE E h E E
RT RT F C F

λψψ Λ ψ ψ
δ

⎡ ⎤⎧ ⎫⎡ ⎤⎞⎛⎞⎛ ⎪ ⎪⎡ ⎤ ⎢ ⎥⎢ ⎥= − − − + − − + − ⎟⎜⎨ ⎬⎟⎜⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭⎣ ⎦

II  

This is a general equation applicable over the whole pH domain ranging from 2 to 10 (see figure 3 in the main text)

 There are two limiting situations according to the magnitude of 0h : 

 If 0

H
h ψ

δ
>>
I , i.e.: 

0+ 0
HH /C D Dψ⎡ ⎤ >>⎣ ⎦ I : 

the initial concentration of protons is large enough for not being perturbed by their production from phenol oxidation, as it is the case 
below pH 3. Then, dimensionless expression of the voltammetric response is:  

( )2/3exp 1 exp
2
dim

dimp
ξ

ψ ψ ψ ξ
′⎛ ⎞ ⎡ ⎤′ ′= − − −⎜ ⎟ ⎣ ⎦⎝ ⎠

I  

with 

1/ 30

0+

4
3

ln
H /

dim

dim

S

k C RT
Fv

C
ξ ξ

⎧ ⎫⎞⎛⎪ ⎪⎟⎜
⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠′ = + ⎨ ⎬
⎪ ⎡ ⎤ ⎪

⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

 and 
( ) ( )

2

1/ 2 1/ 200 ++ ,H O

1/ 3 1/ 61/ 31/ 2 0

H /H /
'

2 / 4 / 3
3

CPET
S SS

dim dim

k CC
p

D Fv RT k C
Λ

λ

⎧ ⎫ ⎞⎛ ⎡ ⎤⎪ ⎪⎡ ⎤ ⎟⎜ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎝ ⎠= =⎨ ⎬
⎞⎪⎛ ⎪
⎟⎜⎪ ⎪⎝ ⎠⎩ ⎭

 

The parameter p' is a measure of the competition between dimerization ( 'p → ∞ ) and electron transfer ( ' 0p → ) for the kinetic 
control of the whole process. The peak potential dimerization-controlled wave obtained in the first case follows the dimerization- 
modified Pourbaix variation with pH that was indeed observed over the whole pH range in buffered medium and below pH 3 in 
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unbuffered water. That dimerization controls the overall kinetics in these circumstances is essentially the result of the large value of 

2,H O
CPET
Sk , 25 cm/s as will be established further on. The value of the parameter p' in unbuffered water at pH 3 is indeed 7 (using the 

parameter values in Table 1 of the main text) leaving no chance to electron transfer to participate in the kinetic control. 
 A more interesting situation for our purpose of characterizing the kinetics of the H2O-CPET pathway is when, conversely, 
0

H
h ψ

δ
<<
I  , i.e.: 

+

0+ 0

H

H DC
D

ψ⎡ ⎤ <<⎣ ⎦ I , leading to equation (2S). 

 
3.4. The PO4H2--PET pathway 
Derivation of the dimensionless expression of the voltammetric responses under the assumption that electron transfer is so fast that it 

remains at equilibrium, obeying the Nernst law, is similar to the derivation in section 3.2. The rate-limiting factors are then phenoxyl 
dimerization and diffusion of the buffer components when these are in low concentration. The pertinent partial derivative equations are, 
in dimensionless form: 

( ) ( )2

2
a b a b

yτ
∂ + ∂ +

=
∂ ∂

, 
( ) ( )2

2
Z Zb z b z

y

δ δ
τ

∂ + ∂ +
=

∂ ∂
, 

( ) ( )2

2
z zh z zh

yτ
∂ − ∂ −

=
∂ ∂

 

leading after integration to: 

0 0 1a b ψ+ = − I , 0 0
0 0 Zb z b zδ δ ψ+ = + − I  

and, considering for simplicity that the pH is set at the pK of the buffer, i.e. [ ] [ ]0 0ZHZ = ,to: 
0 0 0 0

0 0 2 2z zh z zh z zh+ = + = =  
The fate of the phenoxyl radical is the same as in section 3.2 leading to: 

1/3
2 /3

0
3

2 dim
c ψ

λ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Application of the dimensionless Nernst law leads to a first equation relating 0b to ψ : 

( )2 / 3
0 exp dimb ψ ξ= −  

where 
02 41 1ln ln

3 3 3 3
dim dim

dim
k C RT

Fv
λ

ξ ξ ξ
⎞⎛⎞⎛ ⎟⎜= + = +⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 is the same dimerization-corrected dimensionless potential scale as introduced 

earlier.  
A second important, already mentioned, equation relates 0b , 0z  and ψ  

0 0
0 0 Zb z b zδ δ ψ+ = + − I   

A third equation, relating 0b , 0z  and ψ  is obtained from the assumption that coupled protonation/ deprotonation reaction is at 
equilibrium at all times and distances from the electrode, and particularly at the electrode surface:  

0 0

0 0

b zh
a z

κ
×

=
×

, with ArOH

ZH

K
K

κ =  (we note that, in the bulk, 0
1

b κ
κ

=
+

) 

and therefore using the 0 0,a b  and 0 0,z zh  relationships already established: 

( ) ( )

0
0

0
0

2
1 1

z b
z

bκ κ ψ
=

− + − I
 

Therefore: 

( ) ( )

0
00

0
0

2
1 1 1 Z

z b
b z

b
κδ δ ψ

κ κ ψ κ
+ = + −

− + − +
I

I  

This equation can be simplified since in our case 310 1κ −= <<  (phosphate and phenol): 
Finally leading to the dimensionless expression of the voltammetric responses: 

( ) ( )
( ) ( )

0 2 / 3
2 / 3 0

2 / 3
2 exp

exp
exp 1

dim
dim Z Z

dim

z
z

ψ ξ
ψ ξ δ δ ψ

ψ ξ κ ψ

−
− + = −

− + −
I

I
                                                 (3S) 

providing (see section 3.6) the successful simulations shown in figures 5a and b.  
Since ArOH ZH/K Kκ =  is the ratio between to acid dissociation constants, it is not expected to vary significantly from H2O to D2O.  

 
3.5. The PO4H2--CPET pathway 
We establish here the conclusion that, in the buffer concentration range relevant to the results displayed in figures 5a and b, the 

voltammetric response for the PO4H2--CPET pathway is kinetically controlled by the CPET electron transfer owing to the 
involvement buffer concentration in the framework of a termolecular process (the electrode+ two molecules) in both directions.  

With the same initial and boundary conditions as earlier and, noting that in the considered pH range ( ArOHpH pK<< ), the pertinent 

dimensionless partial derivatives equations are now: 
2

2
a a

yτ
∂ ∂

=
∂ ∂

, leading, after integration to: 0 1a ψ= − I . 
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2 2 2

2 2 2,  ,  H Z Z
h h z z zh zhh z zh h z h z h z h z

y y y
δ λ λ δ λ λ δ λ λ

τ τ τ+ − + − + −
∂ ∂ ∂ ∂ ∂ ∂

= − × + = − × + × = + × − ×
∂ ∂ ∂∂ ∂ ∂

 

where λ+  and λ−  are the dimensionless rate constants the protonation and deprotonation associated with the buffer couple.  
Combination of these three equations and integration leads to: 

0 0 0 0 0 0
0 0 0 0 0 0,     ( )H H H H

Z Z
z h z h zh h zh h z zh z zhψ ψδ δ δ δ

δ δ
− = − − + = + − + = +

I I  

Since the protonation and deprotonation reactions are fast, equilibrium is maintained: 
00 0

0
 ( / )Z

h z
K C

zh
κ

×
= =  

With the simplification that ZHpH pK=  and therefore 0 0z zh= : 

0
0 0

0

2 2H H

Z
z z

z z

δ κ δ κ ψ
δ

− = − −
I

 
In the conditions of our study, 1κ << , and therefore: 

0 0
0 0,  z z zh zψ ψ

δ δ
− = +� I I   

Dimerization of the phenoxyl radicals is involved in the same way as in the preceding section, leading similarly to 

( )1/ 3 2 / 3
0 3/ 2 dimc λ ψ= .  
Applying now the dimensionless the Butler-Volmer law:  

( )
0

0 0 0 0exp exp
2S

C a z c zh
C

ξψ Λ ξ⎞⎛= − −⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
 with: 

2-
40,PO H

2 CPET
F E E
RT

ξ ⎞⎛= −⎜ ⎟
⎝ ⎠

and 
2-

4,PO H
CPET
S

k

FvD
RT

Λ =  

leads to: 

( ) ( )
0

2 / 3
1/ 6 0 0exp 1 1 1 exp

22
3

dim
dim

Sdim

Z
C z z

ξΛ ψ ψψ ψ ψ ξ
δ δλ

⎡ ⎤⎞ ⎞⎛ ⎛⎞⎛= − − − + −⎢ ⎥⎟ ⎟⎜ ⎜⎟⎜
⎝ ⎠ ⎢ ⎥⎝ ⎝⎠ ⎠⎞⎛ ⎣ ⎦

⎟⎜
⎝ ⎠

I II  

with, as earlier: 
02 41 1ln ln

3 3 3 3
dim dim

dim
k C RT

Fv
λ

ξ ξ ξ
⎞⎛⎞⎛ ⎟⎜= + = +⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

There are two limiting case of interest: 

 Relatively large buffer concentrations, more precisely: 0

Z
z ψ

δ
>>
I , leading to: 

( ) ( )2-
4

  . 2 / 3
,PO H

exp 1 exp
2

large buffer conc dim
dimCPET

p
ξ

ψ ψ ψ ξ
−

⎞⎛ ⎡ ⎤= − − −⎟⎜ ⎣ ⎦⎝ ⎠
I  

with an electron transfer/ dimerization competition parameter: 

2-
4

2-
4

0
0 ,PO H  .

1/ 6 1/ 6PO H 01/ 3
1/ 2

2 4
3 3

CPET
Slarge buffer conc

CPET Sdim dim

k ZZp
C k CFvD

RT

Λ

λ−
= =

⎞ ⎞⎛ ⎛⎞⎛⎟ ⎟⎜ ⎜⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, 

the involvement of the CPET pathway increasing, as expected, proportionally to the buffer concentration. In the conditions of the 
experiment in figure 5b ( 0 0.5 mMZ = ), 2-

4,PO H
CPET
S

k  should be as large as 140 cm s-1 for the kinetic control to pass from electron 

transfer to dimerization. Since 2-
4,PO H

CPET
S

k  is obviously much smaller, we may conclude that the reaction is kinetically controlled by the 

CPET electron transfer step and should therefore exhibit a significant H/D isotope effect, if this pathway were actually followed. 

 In the converse situation of low buffer concentrations, more precisely: 0

Z
z ψ

δ
<<
I : 

( ) ( ) ( )2-
4

  . 2 / 3
PO H

' exp 1 ' ' 1 ' exp
2

'
low buffer conc 'dim

dimCPET
p

ξ
ψ ψ ψ ψ ξ

−

⎞⎛
⎡ ⎤⎟⎜= − − + −⎢ ⎥⎜ ⎟ ⎣ ⎦

⎝ ⎠
I I  

with: 0'
Zz

ψψ
δ

= , ( )02 ln
3

'
dim dim Zzξ ξ δ= −  and a competition parameter:  
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2-
4

1/ 3 2 / 30 0
1/ 3 2 / 30 0

  .
1/ 6 1/ 6PO H 01/ 31/ 3 1/ 6 1/ 3

2 4
3 3

CPET
S

low buffer conc S
CPET Sdim dimZ Z

Z Ck
CZ Cp

C k CFvD D
RT

Λ

λ
δ

−
= =

⎞ ⎞⎛ ⎛⎞⎛⎟ ⎟⎜ ⎜⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

In the conditions of the experiment in figure 5b ( 0 0.5 mMZ = ), 2-
4,PO H

CPET
S

k  should be as large as 240 cm s-1 for the kinetic control to 

pass from electron transfer to dimerization. Since 2-
4,PO H

CPET
S

k  is obviously much smaller, we may conclude that the reaction is 

kinetically controlled by the CPET electron transfer step and should therefore exhibit a significant H/D isotope effect.  
At 0.5 mM buffer, the situation is actually midway between the above two estimations leading to the same conclusion as to the 

prediction of a significant H/D isotope effect, if the PO4H2--CPET pathway were actually followed.  
 
3.6. Procedures for numerical simulations 

3.6.1. Calculation of ψI

 The integral domain is divided into small intervals within which the current is approximated by a linear function between the values 
at the ends of the interval. τ is divided into p divisions with width h:.  
 

( ) ( ) ( )

1

1

10

1 1
j

j

n
j j j j

n
j

d d
h

ττ

τ

ψ η τ ψ τ ηψ η
ψ η η

π τ η π τ η
−

−

=

− + −
= =

− −∑∫ ∫I  

thus: 

( ) ( )

1

1
1 1 1

1 2 4
3 3

n

p

n p n n
n n n n n

n

h hd
h

τ

τ

ψ η τ ψ τ η
ψ η ψ ψ

π ππ τ η
−

−
− − −

− + −
= = + = + +

−∫I I I I  

and 

( ) ( ) ( ) ( ) ( ) ( )3 2 3 2
1 1 1

1

2 1 2 1 1
3

n

n j j j j

j

h n j n j n j n j n j n jψ ψ ψ ψ
π− − −

=

⎡ ⎤ ⎡ ⎤= − − + − − + − + − − − + − −⎣ ⎦⎢ ⎥⎣ ⎦∑I  

 
3.6.2. Numerical simulations for H2O-CPET:  

Starting with equation (2S): 

( )
*

2/3 *exp 1 exp
2
dim

dimp
ξ

ψ ψ ψ ψ ξ
⎛ ⎞ ⎡ ⎤⎜ ⎟= − − −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

I I The general equation of the voltammetric response is :  

( ) ( ){ }2/3 0exp 1 exp
2

p hψ ψ
ξψ ψ δ ξ

′⎛ ⎞ ′= − − + −⎜ ⎟
⎝ ⎠

I I  

The current may be approximated by a linear function between the values at the ends of the interval, since the integral domain is 
divided into small intervals. τ is divided into n intervals of width h: 

( )
*

2 / 3 *exp 1 1 exp
2

n dim
n n dimp

ψ ξ
ψ ξ

⎞⎛
⎡ ⎤⎟⎜ − = − + −⎢ ⎥⎜ ⎟ ⎣ ⎦

⎝ ⎠
I  

with 

1 1
2 4
3 3n n n n

h hψ ψ
π π− −= + +I I  

Thus 

( )
*

2 / 3 *
1 1

2 4exp 1 1 exp
2 3 3

n dim
n n n n dim

h h
p

ψ ξ
ψ ψ ψ ξ

π π− −

⎞⎛ ⎞⎛ ⎡ ⎤⎟⎜ − = − + + + −⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
I  

( )

*

5 / 3 *
1

exp
24 4exp 1 0

3 3

dim

n dim n n
h h

p

ξ

ψ ξ ψ
π π −

⎡ ⎤⎞⎛
⎢ ⎥⎟⎜ −

⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠ ′− + + − − =⎡ ⎤⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

I  

with 1 1 1
2
3n n n

hψ
π− − −′ = +I I  

This non-linear algebraic equation has the following form. 
5/3 2/3
p p pA B Cψ ψ ψ+ + =  
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where A, B and C depends on the previously computed values of the ψ  function. These equations were solved by the “chord” 
iteration technique, noting that the solution sought is unique in the interval [0 - C/B], so that these two limits can be taken as starting 
values for the iteration.  
3.6.3. Numerical simulations for OH--PET: 
The ψ  value at a given dimξ  is given by equation: 

( )
( )

( )
2 / 3 0

2 / 3 0
2 / 3 0

exp
exp

1 exp 1
dim

dim
dim

oh oh
oh

ψ ξ κ κ ψ ξ ψ κ
δψ ψ ξ κ

⎞⎛−
= − − − +⎟⎜⎜ ⎟− − − +⎝ ⎠

I
I

 

or by the coupled equations: 

( )

0
0

00

0 0
0

00

1
1

1
1

OH

OH

oh b oh
oh

b
oh b oh

oh

κ κ ψ κ
δ κ

ψ
κ κ ψ κ

δ κ

⎞⎛
− − +⎟⎜⎜ ⎟+⎝ ⎠= −

⎞⎛
+ − − +⎟⎜⎜ ⎟+⎝ ⎠

I

I

I

                                 (4S)  

( )0 0 2 / 3
0 exp dimb b b ψ ξ− = − −                                                             (5S)  

The numerical simulation is done by an iterative solving of the coupled equations: ψI is first calculated taking 1n nψ ψ −= , leading 

to 1 12n n n
hψ ψ
π− −= = +I I I . 0b  is then calculated by means of equation (4S) and nψ  by means of equation (5S). ψI  is 

recalculated next taking this new nψ  value into account and the whole procedure is restarted until convergence for nψ  is reached.  
A similar procedure was followed to solve numerically equation (3S) in the PO4H2--PET case. 
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