Supporting Information

Johnson et al. 10.1073/pnas.0904695106

SI Text

Molecular Sequence Data and Phylogenetic Inference. PCR products were directly sequenced when possible with the primers used to isolate the gene. Sequencing was performed by using an ABI 3730xl DNA sequencer and Big-Dye protocols (Applied Biosystems). Indel allelic length variants were detected at *PgiC* for a small number of species. In these cases we cloned the PCR products by using the pGEM-T Easy Vector System (Promega) and sequenced 4–6 clones per product to identify the alleles. No individuals showed >2 alleles, consistent with previous results that show *PgiC* is present as a single copy within *Oenothera* (1). Multiple sequences from each species were initially included in phylogenetic analyses, but because alleles from the same species consistently clustered together, we randomly selected a single representative sequence for each species for the final dataset.

We assessed the combinability of the datasets by using 2 methods. First, we conducted incongruence length difference (ILD) tests (2) between all pairs of genes. These tests were conducted in PAUP 4.0b10 (3) using 500 replicate partitions, each subjected to heuristic searches with simple taxon addition, TBR branch swapping, and keeping no more than 500 trees per replicate. ILD tests revealed that 2 plastid regions (*trnL-trnF* and $rps16$) could be combined $(P = 0.08)$ as could the nuclear datasets (ITS, ETS, and *PgiC*) (*P* 0.10). However, the ILD suggested conflict between the nuclear and plastid datasets ($P =$ 0.002). To further examine this potential conflict, we conducted bootstrap analyses of the nuclear and plastid datasets and examined consensus trees from these analyses for evidence of hard incongruence, i.e., bootstrap support 70% for conflicting clades (4). Bootstrap analyses were conducted with 500 replicates and heuristic searches with 10 random taxon addition sequences, keeping 100 trees per replicate. We observed no instances of hard incongruence between plastid and nuclear datasets within clades that contained PTH and sexual species; thus, we chose to combine the datasets for final analyses.

Bayesian analyses of the combined dataset comprised 2 independent runs with 4 linked chains executed with MrBayes v. 3.1.2 (http://mrbayes.csit.fsu.edu/index.php). Chains proceeded for 5 million generations, sampling every 100 generations. Convergence was assessed by examining the diagnostics in the sump output and comparing consensus topologies and branch lengths from the independent runs. We conservatively discarded the first 20% of trees as burn-in, leaving 40,000 trees for subsequent analyses.

Experimental Details. Experimental species were selected to maximize the number of independent transitions between sexual and PTH reproduction from across the phylogeny. In selecting sexual plant species we favored species that are partially outcrossing. Although a comprehensive dataset of outcrossing rates does not exist for *Oenothera* and *Gayophytum*, experimental crosses show that of the 16 sexual plant species studied here, 8 are selfincompatible (SI), 5 are self-compatible (SC) and at least partially outcrossing, and 2 are polymorphic for SI and SC (http://botany.si.edu/onagracceae/index.cfm).

All experimental plants were started as seed that originated from single plant populations or were propagated from plants collected from a single site. Whenever possible, we used seeds bulk collected from 10 maternal plants growing in large natural populations (100 plants). In the lab experiment, seeds from all species were germinated simultaneously on moistened filter paper and then transplanted to 250-mL pots containing Farfard 4P Mix soil (Conrad Fafard) , supplemented with 4 Osmocote slow release fertilizer pellets (14:14:14, N/P/K; The Scotts Company). Plants were randomized within a single growth room at Duke University set at 24 °C and a 16:8-h light/dark cycle. Plants were grown for 9 weeks before assaying susceptibility.

In the field experiment, plants were germinated from seed in April 2008, grown for 3 weeks in the growth chamber as before, and transplanted into a single large field in May 2008, located in Durham, NC. Plants were planted directly into the soil with 1-m spacing between rows and columns and watered periodically to prevent mortality caused by drought. To account for the effects of natural environmental variation, we randomized plants into 4 contiguous spatial blocks that were each $\approx 8 \times 15$ m in size. Before phylogenetic regression analyses, we tested for the effect of spatial block on percentage of herbivory. When there were significant block effects, we saved the residuals and performed phylogenetic regression analyses on these residuals; these data were transformed back to the original units by adding the experiment-wide average herbivory to all residual values.

Susceptibility to the specialist beetle (*Alticus foenae*) was assayed by using tissue collected from plants in the field experiment. Larvae of this beetle are only known to feed on *Oenothera* spp., and the adults specialize on *Oenothera* spp. as well but are able to colonize other Eurosids (e.g., apple) when their primary host plant is in short supply. Adult beetles were collected with an aspirator from several species of *Oenothera* (*O. biennis, O. humifusa*, *O. laciniata*, *O. simulans*) growing in Fort Macon State Park (Atlantic Beach, NC) where a population outbreak had occurred. We assayed susceptibility in early June 2008 by excising a single leaf from each plant grown in the field experiment, which were used for no-choice Petri dish assays as before. Individual beetles were allowed to feed for 22 h before removal; the amount of leaf tissue consumed was measured as described.

We measured five plant traits from plants grown in growth chambers during the initial lab experiment. Leaf toughness (reps: $2-32$ plants/species; mean = 22) was measured as the grams of force required to penetrate a leaf using a force gauge penetrometer (Type 516: Chatillon, Kew Gardens, New York). Tannin concentrations (reps: $2-17$ plants/species; mean = 10) was determined according to Hagerman's radial diffusion method (5) using finely ground leaf tissue. Tannin concentration was quantified as millimeters of precipitate formed by 20 μ L of a 10% extract (w/v) of soluble phenolics added to a 1% agarose gel containing 0.1% BSA. Percent leaf water content (reps: 1–32 plants/species; mean = 20) was estimated from 0.26 -cm² leaf discs cut using a hole punch from the leaf away from the midvein. Specific leaf area (SLA) (reps: 1–32 plants/species; mean = 20) was calculated as $0.26 \text{ cm}^2/\text{dry}$ mass (g) of each leaf disc; all measurements were taken on a 10-6g microbalance (Mettler Toledo, Columbus, OH). Trichome density (reps: 2–9 plants/ species; mean $= 5$) was measured as the average number of leaf hairs on the upper and lower surface of leaf discs.

Phylogenetic Regression Analyses. We used phylogenetic comparative methods that incorporate measurement error within species (i.e., standard error of a species' mean trait value) using the programs: MEUnivarPHYSIG (estimates of K*), MECorr-PHYSIG (estimates of r_{phylo}) and MERegPHYSIG (effects of PTH/sex on susceptibility and traits) in MATLAB 7.7 (The Mathworks) as described by Ives and colleagues (6). Specifically, we used restricted maximum likelihood to estimate parameters while incorporating information about the phylogeny, mean variation in traits among species, and standard errors associated with each mean trait value. These methods model trait evolution according to Brownian motion evolution or trait evolution that is independent of phylogeny. The statistical significance of parameter estimates were estimated by parametric bootstrapping, whereby REML estimates of parameters were used to simulate 2,000 new datasets, from which new estimates of parameters were derived from these simulations and the distribution of these values were used to calculate approximate *P* values. Based on our *a priori* predictions, we performed 1-tailed tests of significance when testing the effects of sex on herbivore susceptibility, and 2-tailed tests otherwise. All analyses utilized

IAS.

JAC
J

- 1. Ford VS, Gottlieb LD (2007) Tribal relationships within Onagraceae inferred from *PgiC* sequences. *Syst Bot* 32:348–356.
- 2. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. *Cladistics* 10:315–319.
- 3. Swofford DL (2002) PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods) Version 4.0 Beta (Sinauer, Sunderland, MA).
- 4. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). *Syst Biol* 45:524–545.

mean trait values, the standard error of mean values, and the variance-covariance matrix calculated from the single maximum likelihood phylogeny inferred by RAxML (7) ultrametricized using NPRS in TreeEdit (http://tree.bio.ed.ac.uk/software/ treeedit). PTH and sexual reproduction were coded as 0/1 dummy variables, respectively, with 0 standard error. Estimates of K^* (8), where 1 corresponds to Brownian motion evolution of traits and 0 corresponds to trait evolution independent of phylogeny – and comparisons with models that relax the assumption of Brownian motion evolution, showed that Brownian evolution typically provided a good fit to the data.

- 5. Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. *J Chem Ecol* 13:437–449.
- 6. Ives AR, Midford PE, Garland Jr. T (2007) Within-species variation and measurement error in phylogenetic comparative methods. *Syst Biol* 56:252–270.
- 7. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22:2688–2690.
- 8. Blomberg SP, Garland Jr. T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. *Evolution* 57:717–745.

Fig. S1. Phylogenetic relationship of PTH and sexual plant species used in experiments. Four representative measures of susceptibility to arthropod herbivores are shown to illustrate variation among PTH (red) and sexual (blue) plant species for: consumption by the generalist caterpillar (*A*), proportional survival of mites (*B*), the proportion of herbivory on plants in the field (*C*), and consumption by the specialist beetle (*D*). Phylogenetically adjusted mean values are shown at the far right.

Table S1. Species of Onagraceae included in phylogenetic analyses

PNAS PNAS

Our sampling included 113 species in the Onagreae tribe and 8 additional outgroup (O) species from the Onagraceae. We indicate the reproductive system of species according to whether a species predominantly uses a PTH genetic system or exhibits functional recombination and segregation among 2 or more pairs of chromosomes (Sex). For each gene we indicate the source of the data, according to Genbank accession numbers, species newly sequenced in this study (*), or whether data were obtained (-). Species used in experiments are denoted by † .

PNAS PNAS

For each variable we show phylogenetically adjusted mean values for PTH and sexual species, estimated by restricted maximum likelihood in MERegPHYSIG as described by Ives et al. (1). We show P values estimated by parametric bootstrapping to assess the statistical significance of the difference between mean values. Effect sizes indicate the percentage of increase/decrease in susceptibility on PTH species relative to sexual plant species. The phylogenetic signal in each trait was estimated according to K* (2); an estimate of 1 indicates signal consistent with Brownian motion evolution and 0 indicates no phylogenetic signal. We use * to indicate K* values that were significantly different from 1 and not signifcant (n.s.) for values that did not significantly deviate from 1.

1. Ives AR, Midford PE, Garland T, Jr (2007) Within-species variation and measurement error in phylogenetic comparative methods. *Syst Biol* 56:252–270.

2. Blomberg SP, Garland T, Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. *Evolution* 57:717–745.

NAS PNAS

Table S3. Correlations in the susceptibility of herbivores when feeding on *Oenothera* **and** *Gayophytum* **species**

Correlation coffecients (r_{phylo}) were estimated by REML in MECorrPhysig of Ives et al. (1) assuming a Brownian motion model of trait evolution across the phylogeny. Lower (L) and upper (U) 95% confidence intervals (CI) were estimated by parametric bootstrapping.

*Cat refers to beet armyworm caterpillar *Spodoptera exigua*.

PNAS PNAS

†Seasonwide maximum herbivory measured on individual plants.

1. Ives AR, Midford PE, Garland T, Jr (2007) Within-species variation and measurement error in phylogenetic comparative methods. *Syst Biol* 56:252–270.

Table S4. Correlations between herbivore susceptibility and the traits of *Oenothera* **and** *Gayophytum* **spp. used in experiments**

Correlation coffecients (*r*phylo) were estimated by REML in MECorrPhysig assuming a Brownian motion model of trait evolution across the phylogeny. Lower (L) and upper (U) 95 confidence intervals (CI) were estimated by parametric bootstrapping. Correlation coefficients where *P* 0.05 (based on CI) are shown in bold.

*Cat refers to beet armyworm caterpillar *Spodoptera exigua*.

PNAS PNAS

Table S5. Primers used in this study

PNAS PNAS

Primer sequences are written 5′ to 3′ and are given only when designed specifically for this study. Primers labeled with the letter "i" denote internal primers. Primers labeled with the letter ''b'' denote primers designed to amplify *PgiC* from *Fuchsia* and *Ludwigia*.

1. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. *Plant Mol Biol* 17:1105–1109.
2. Douzery EJP, et al. (1999) Molecular phylogenetics of Dise

Table S6. Herbivore susceptibility data used in phylogenetic regression analyses

PNAS PNAS

1. Wagner WL, Hoch PC, Raven PH (2007) Revised classification of the Onagraceae. *Syst Bot Monog* 83:1–222.

Table S7. Plant trait data used in phylogenetic regression and correlation analyses

PNAS PNAS

We show the means and standard errors for all plant traits measured from *Oenothera* species. The methods used in collecting data and the units of each variable are provided in *[SI Text](http://www.pnas.org/cgi/data/0904695106/DCSupplemental/Supplemental_PDF#nameddest=STXT)*. The reproductive system used by each species is given in Fig. 1 and [Table S1.](http://www.pnas.org/cgi/data/0904695106/DCSupplemental/Supplemental_PDF#nameddest=ST1)