A High-Throughput Screening Approach to Discovering Good Forms of
Biologically-Inspired Visual Representation.

Nicolas Pinto, David Doukhan, James J. DiCarlo, David D. Cox

Text S1: Search Space of Candidate Models

Candidate models were composed of a hierarchy of three layers, with each
layer including a cascade of linear and nonlinear operations that produce
successively elaborated nonlinear feature-map representations of the original
image. A diagram detailing the flow of operations is shown in Figure S2,
and, for the purposes of notation, the cascade of operations is represented as
follows:

Layer® :

Grayscale Normalize
Input — — 3N

Layer" :
NO Fﬁr Fl Acti_va)te Al PE)I Pl NOIE)HZB Nl
and generally, for all ¢ > 1:
Layer*
N£’1 FE)I‘ Fg Act'ﬁgte Ag Po_o)l Pg Normgize Ng
Details of these steps along with the range of parameter values included in
the random search space are described below. We varied 52 parameters (de-

scribed below), with a total of 2.807930 x 10* possible unique combinations
of parameter values.

1 Input and Pre-processing

The input of the model was a 200 x 200 pixel image. In the pre-processing
stage, referred to as Layer?, this input was converted to grayscale and locally
normalized:

N° = Normalize(Grayscale(Input)) (1)

where the Normalize operation is described in detail below. Because this
normalization is the final operation of each layer, in the following sections,
we refer to N*~! as the input of each Layer®® and N as the output.

2 Linear Filtering

Description: ~ The input N*~! of each subsequent layer (i.e. Layer®, (€
{1,2,3}) was first linearly filtered using a bank of k* filters to produce a
stack of k! feature maps, denoted F*. In a biologically-inspired context, this
operation is analogous to the weighted integration of synaptic inputs, where
each filter in the filterbank represents a different cell.

Definitions: The filtering operation for Layer? is denoted:
F‘ = Filter(N‘"*, &%) (2)
and produces a stack, F’, of k* feature maps, with each map, F}, given by:
Ff=N""@do! Vie{l,2,... k' (3)

where ® denotes a correlation of the output of the previous layer, N*! with
the filter ®¢ (e.g. sliding along the first and second dimensions of N*~1). Be-
cause each successive layer after Layer?, is based on a stack of feature maps,
N1 is itself a stack of 2-dimensional feature maps. Thus the filters con-
tained within ®¢ are, in turn, 3-dimensional, with the their third dimension
matching the number of filters (and therefore, the number of feature maps)
from the previous layer (i.e. k7).

Parameters:

e The filter shapes f,° x f,* x fi* were chosen randomly with f,° €
{3,5,7,9} and f;* = k1.

e Depending on the layer £ considered, the number of filters k* was chosen
randomly from the following lists:

— In Layer', k* € {16, 32,64}
— In Layer?, k* € {16, 32,64, 128}
— In Layer®, k3 € {16, 32,64, 128,256}

All filters were initialized to random starting values, and their weights were
then learned during the Unsupervised Learning Phase (described below; an
example of a set of learned filterbanks from one model instance is shown in
Figure S6).

3 Activation Function

Description: Filter outputs were subjected to threshold and saturation
activation function, wherein output values were clipped to be within a para-
metrically defined range. This operation is analogous to the spontaneous
activity thresholds and firing saturation levels observed in biological neu-
rons.

Definitions: = We define the activation function:
A’ = Activate(F) (4)
that clips the outputs of the filtering step, such that:

Activate(x) = ¢ Vmin' if T < Yin® (5)
T otherwise

Where the two parameters Ypmi,' and V..’ control the threshold and sat-
uration, respectively. Note that if both minimum and maximum threshold
values are —oo and +oo, the activation is linear (no output is clipped).

Parameters:
® Yin' was randomly chosen to be —oco or 0

® Ymas' was randomly chosen to be 1 or 400

4 Pooling

Description: The activations of each filter within some neighboring re-
gion were then pooled together and the resulting outputs were spatially down-
sampled.

Definitions: = We define the pooling function:
P’ = Pool(A") (6)

such that:

P!{ = Downsample,(p</(Af)p[O Lyrxat) (7)

L L

Where © is the 2-dimensional correlation function with 1,¢,,¢ being an a®xa
matrix of ones (a’ can be seen as the size of the pooling “neighborhood”).
The variable p’ controls the exponents in the pooling function.

Parameters:

e The stride parameter a was fixed to 2, resulting in a downsampling
factor of 4.

e The size of the neighborhood a was randomly chosen from {3, 5,7,9}.

e The exponent p® was randomly chosen from {1,2,10}.

Note that for p* = 1, this is equivalent to blurring with a a‘ x a* boxcar filter.
When p’ = 2 or p’ = 10 the output is the L -norm .

5 Normalization

Description: As a final stage of processing within each layer, the output
of the Pooling step were normalized by the activity of their neighbors within
some radius (across space and across feature maps). Specifically, each re-
sponse was divided by the magnitude of the vector of neighboring values if
above a given threshold. This operation draws biological inspiration from the
competitive interactions observed in natural neuronal systems (e.g. contrast
gain control mechanisms in cortical area V1, and elsewhere [1,2])

Definitions: We define the normalization function:

N’ = Normalize(P*) (8)
such that:
y pﬁ_Cf lf pe' HCE@lbéXbZXkZHQ <7'£
N = - ¢t otherwise (9)
ISR

!The L'%-norm produces outputs similar to a maz operation (i.e. softmaz).

4

with
P’ ® Lyt
bl - bt -kt

Where 6° € {0,1}, ® is a 3-dimensional correlation over the “valid” domain
(i.e. sliding over the first two dimensions only), and Ly, peype is a b° x b x
k' array full of ones. b’ can be seen as the normalization “neighborhood”
and 4% controls if this neighborhood is centered (i.e. subtracting the mean
of the vector of neighboring values) before divisive normalization. p’ is a
“magnitude gain” parameter and 7¢ is a threshold parameter below which
no divisive normalization occurs.

ct=pt -4 (10)

¢

Parameters:

e The size b* of the neighborhood region was randomly chosen from
{3,5,7,9}.

e The §° parameter was chosen from {0, 1}.

e The vector of neighboring values could also be stretched by gain values
p’ € {1071,10°,10'}. Note that when p’ = 10° = 1, no gain is applied.

e The threshold value 7° was randomly chosen from {1071, 10°, 10'}.

6 Final model output dimensionality

The output dimensionality of each candidate model was determined by the
number of filters in the final layer, and the x-y “footprint” of the layer (which,
in turn, depends on the subsampling at each previous layer). In the model
space explored here, the possible output dimensionalities ranged from 256 to
73,984.

7 Unsupervised Learning

Description: During the Unsupervised Learning Phase, filter weights are
learned from input video sequences. This procedure bears similarity to non-
parametric density estimation, e.g. online K-means clustering. The algo-
rithm for this phase additionally contains simple mechanisms for taking ad-
vantage of temporal information in a video sequence, and thus Unsupervised
Learning was conducted on sequences of video frames. In this work, 15,000
video frames were used.

Definitions: For each incoming video frame, an output for each filter at
each location was computed, and a “winning” filter ®* was selected:

winner

winner = arg max(F}) (11)

This winning filter was adapted to the input, by adding the corresponding
input patch, times a fixed learning rate A, to the filter weights:

et !

winner

=(1-)\) @

winner + AZ ’ patCh (12)
The resulting updated filter was then re-normalized to zero-mean and
unit-length:
oL, el
q)ﬁ]inner” _ wznnerl < wmnerl> (13>
[|@%imner = (Piinner)1

winner winner

Y "

winner

Where <(I)fuinner,> represents the mean of the winner’s weights and ®
is the filter carried forward into the next learning iteration.

The incoming patch could be normalized (i.e. ||patch||, = 1), or not,
under parametric control, and multiple patches could enter into one “round”
of competition at the same time (e.g. filter stack outputs corresponding
to multiple patches could be evaluated, and the largest output across all
patches could decide the winner). The selection of the number of patches
simultaneously competing was governed by the Competition Neighborhood
Size and Competition Neighborhood Stride parameters, which served tile a

set of competing filter stacks across the input.

Parameters:
e Learning rate parameter * € {1074, 1073, 1072}

e Patch Normalization: normalize patch to unit-length, or do not nor-
malize (2 choices)

e Competition Neighborhood Size € {1,3,5,7,9}
e Competition Neighborhood Stride € {1,3,5,7,9}

e “Rebalancing”: if the relative winning ratio ? of a given filter ®¢ is less
than {1%, 10% or 50%} (3 choices), its weights are reinitialized to the
values of the most-winning filter plus a random jitter. This prevents
filters from never winning.

2the number of times ®¢ won multiplied by the number of filters, divided by the running
count of completed updates

o “Temporal Advantage” (or “trace”, see also [3,1,5,0] for variants): the
output score of the last-winning filter is multiplied by {1, 2 or 4} (3
choices) prior to determining which filter “wins.” A value of 1 is the
equivalent of no advantage; a value of 2 doubles the effective output of
the filter for the purposes of competition, biasing it to win again.

8 Classification during Screening and Valida-
tion Phases

During the Screening and Validation Phases, the representations generated
during the Unsupervised Learning Phase were evaluated in a variety of object
recognition tasks (see main text). This Classification Phase consisted of the
following steps, with fixed parameters across all model instantiations:

e A random sampling of up to 5,000 outputs from the full representation
were taken (to accelerate processing).

e Dimensionality was further reduced by PCA (using training data only,
keeping the full eigensubspace projection, i.e. as many dimensions as
training examples).

e A linear SVM (using the libsvm® solver, with regularization parameter
C' = 10) was used with a 10-trial random subsampling cross-validation
scheme (150 training and 150 testing examples).

9 Random Exploration

Note that the parameters and parameter ranges described here are clearly
not the most comprehensive search space; rather they represent a starting
point intended to demonstrate the utility of the overarching approach. While
a brute force search procedure was used here, other more elaborate optimiza-
tion schemes (e.g. evolutionary algorithms [7]) could also be used.

* %k X

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm

7

http://www.csie.ntu.edu.tw/~cjlin/libsvm

References

1.

Geisler WS, Albrecht DG (1992) Cortical neurons: isolation of contrast
gain control. Vision Research 32: 1409-10.

Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford
University Press New York.

Foldiak P (1991) Learning Invariance from Transformation Sequences.
Neural Computation 3: 194-200.

Rolls ET, Milward T (2000) A Model of Invariant Object Recognition
in the Visual System: Learning Rules, Activation Functions, Lateral In-
hibition, and Information-Based Performance Measures. Neural Com-
putation 12: 2547-2572.

Einhduser W, Hipp J, Eggert J, Korner E, Konig P (2005) Learning
viewpoint invariant object representations using a temporal coherence
principle. Biological Cybernetics 93: 79-90.

Franzius M, Wilbert N, Wiskott L (2008) Invariant Object Recognition
with Slow Feature Analysis. Proc 18th Intl Conf on Artificial Neural
Networks, ICANN’08, Prague .

Deb K (2001) Multi-Objective Optimization Using Evolutionary Algo-
rithms. Wiley.

	Input and Pre-processing
	Linear Filtering
	Activation Function
	Pooling
	Normalization
	Final model output dimensionality
	Unsupervised Learning
	Classification during Screening and Validation Phases
	Random Exploration

