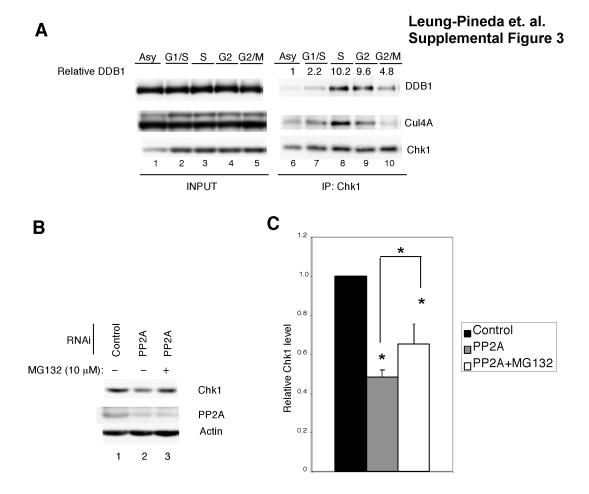
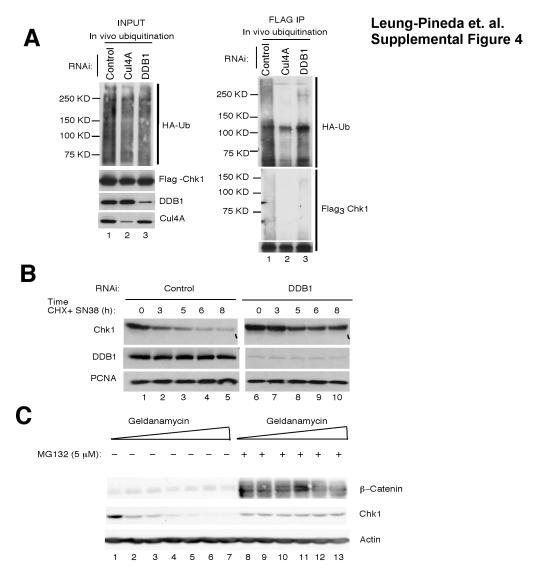

Leung-Pineda et. al. Supplemental Figure 1

$1\\ \text{MSYNYVVTAQKPTAVNGCVTGHFTSAEDLNLLIAK} \textbf{NTRLEIYVVTAEGLRPVK} \text{EVGMYGK}$
120 IAVMELFRPKGESKDLLFILTAKYNACILEYKQSGESIDIITRAHGNVQDRI GRPSETGI
180 IGIIDPECR MIGLRLYDGLFKVIPLDRDNKELKAFNIRLEELHVIDVKFLYGCQAPTICF
240 VYQDPQGRHVKTYEVSLREKEFNKGPWKQENVEAEASMVIAVPEPFGGAIIIGQESITYH
300 NGDKYLAIAPPIIKQSTIVCHNRVDPNGSRYLLGDMEGR LFMLLLEKEEQMDGTVTLK DL
360 RVELLGETSIAECLTYLDNGVVFVGSRLGDSQLVKLNVDSNEQGSYVVAMETFTNLGPIV
420 DMCVVDLERQGQGQLVTCSGAFKEGSLRIIR NGIGIHEHASIDLPGIK GLWPLR SDPNRE
$\underline{\textbf{TDDTLVLSFVGQTR}} \texttt{VLMLNGEEVEETELMGFVDDQQTFFCGNVAHQQLIQITSASVRLVS}$
540 QEPKALVSEWKEPQAKNISVASCNSSQVVVAVGRALYYLQIHPQELRQISHTEMEHEVAC
600 LDITPLGDSNGLSPLCAIGLWTDISARILKLPSFELLHKEMLGGEIIPRSILMTTFESSH
660 YLLCALGDGALFYFGLNIETGLLSDRKKVTLGTQPTVLRTFR SLSTTNVFACSDRPTVIY
720 <u>SSNHK</u> LVFSNVNLKEVNYMCPLNSDGYPDSLALANNSTLTIGTIDEIQKLHIRTVPLYES
780 PRKICYQEVSQCFGVLSSR IEVQDTSGGTTALRPSASTQALSSSVSSSK LFSSSTAPHET
840 SFGEEVEVHNLLIIDQHTFEVLHAHQFLQNEYALSLVSCK LGKDPNTYFIVGTAMVYPEE
900 AEPK QGRIVVFQYSDGKLQTVAEKEVKGAVYSMVEFNGKLLASINSTVRLYEWTTEKELR
960 TECNHYNNIMALYLKTKGDFILVGDLMR SVLLLAYKPMEGNFEEIAR DFNPNWMSAVEIL
1020 DDDNFLGAENAFNLFVCQKDSAATTDEERQHLQEVGLFHLGEFVNVFCHGSLVMQNLGET
1080 STPTQGSVLFGTVNGMIGLVTSLSESWYNLLLDMQNRLNKVIKSVGKIEHSFWRSFHTER
1140 KTEPATGFIDGDLIESFLDISRPKMQEVVANLQYDDGSGMKREATADDLIKVVEELTRIH

Supplemental Figure 1. DDB1 Protein Sequence.Peptides identified by mass-spectrometry are in bold and underlined.


Leung-Pineda et. al. Supplemental Figure 2



Supplemental Figure 2. Phosphorylation regulates interactions between Cul4/DDB1 and Chk1.

(A) Asynchronously growing HeLa cells were co-transfected with plasmids encoding Flag₃-Chk1, V5-DDB1 and V5-Cul4A. Cells were incubated in the absence or presence of HU (20 mM) for 4 h. In some cases, the HU-containing media was removed and replaced with fresh media and the cells were incubated for an additional 2 h. Flag-tagged Chk1 was isolated and precipitates were analyzed for the presence of DDB1 and Cul4A by Western blotting using anti-V5 antibodies. In addition, Chk1 phosphorylation on S317 was monitored. Relative levels of DDB1 are indicated. (B) HeLa cells expressing Flag₃-Chk1 and incubated with DMSO, wortmannin or caffeine for 2 h followed by HU and MG132 for 4 h. Lysates were either analyzed directly by Western blotting (input) or were first incubated with Anti-Flag M2-Agarose to isolate flag-tagged Chk1 prior to Western blotting. (C) Asynchronously growing HeLa cells were incubated with DMSO or Gö6976 for 2 h followed by HU and MG132 for 4 h. Lysates were incubated with affinity purified anti-Chk1 antibodies and analyzed by Western blotting with the indicated antibodies. Relative levels of DDB1 are indicated.

Supplemental Figure 3. Interactions between Chk1 and Cul4A/DDB1 throughout the cell cycle. (A) HeLa cells were synchronized by a double thymidine block and release protocol. Cells were collected at 0 h (G1/S), 2 h (S), 4 h (G2) and 6 h (G2/M) after the second release. A fraction of the cells were subjected to flow cytometry to determine cell cycle position (data not shown). The remaining cells were lysed and endogenous Chk1 was immunoprecipitated using affinity-purified Chk1 antibodies. Precipitates were resolved by SDS-PAGE and subjected to Western blotting with antibodies specific for DDB1 and Cul4A. (B) Asynchronously growing HeLa cells were treated with control siRNAs or PP2A-specific siRNAs for 48 h. Cells were then incubated with DMSO or MG132 (10 uM) for 6 h. Cells were harvested and analyzed by Western blotting (B). The data from 4 independent experiments is presented graphically in panel C. The data is presented as mean +/- standard deviation. The asterisk (*) indicates p < 0.05.

Supplemental Figure 4. DDB1 knockdown stabilizes Chk1 and geldanamycin promotes Chk1 degradation. (A) Asynchronously growing HeLa cells were co-transfected with plasmids encoding Flag3-Chk1 and HA-Ub together with the indicated siRNAs for 48 h and then treated with HU (20 mM) and MG132 (10 μ M) for 4 h. Cell lysates were prepared and analyzed directly by Western blotting (right panel) or flag-tagged Chk1 precipitates were isolated prior to SDS-PAGE and subjected to Western blotting with antibodies specific for HA (top right panel) or Flag (bottom right panel). (B) Asynchronously growing HeLa cells were transfected with control- or DDB1-specific siRNAs for 48 h followed by incubation with cycloheximide (CHX) and SN38 (1 μ M) for the indicated times. Lysates were prepared and analyzed by Western blotting. (C) Asynchronously growing HeLa cells were incubated with increasing concentrations of geldanamycin [50 nM (lane 8), 100 nM (lane 9), 250 nM (lane 10), 350 nM (lane 11), 500 nM (lane 12), 1 μ M (lane 13) with or without MG132 (5 μ M)] for 27 h. Cells lysates were subjected to Western blotting with the indicated antibodies.