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Appendix A 

Model including the stiffness of the proteins 

Protein states can be viewed as oscillating about a minimum energy configuration. In this 

model, each protein can exist in either a contracted (CN) or an expanded (EX) state, and to 

each state corresponds a particular stiffness which is the curvature of the energy well. The 

stiffness is a property of the state and is independent of any external factor. 

The minima of energy (i.e. the contracted and expanded states) are displaced on the area axis 

towards larger areas as tension increases (Fig. S1), because of the curved shape of the energy 

landscape around the energy minima (assumed to be parabolic). The same reasoning applies 

to the barrier except that since it is a maximum, the displacement upon application of tension 

is towards smaller areas. In this section, the work by Markin and Sachs [38] is followed. 

Sukharev and Markin [35] assume that the transition occurs at the point where the energy 

parabolas for each state intersect. The position of the barrier thereby becomes linked to the 

stiffness of the closed and opened states. Although it can be valid as a first approximation, 

there is no a priori reason why the transition should occur at the intersection of the two wells. 

A barrier state is hence added to the model as a parameter, just like in the model without the 

stiffness of the states. The stiffness of the barrier, B*, is also not a function of the stiffness of 

the contracted state, BCN, nor of the expanded state, BEX. 

Modeling the precise energy landscape is not necessary. What are required are the initial 

positions of the minima and the maximum and the curvature around these points. These 

values enable the elaboration of a model for a spandex protein incorporating stiffness. Only 

the difference in energy between the initial state and the barrier for the transition (expansion 

or contraction) are relevant to the kinetics. 

Generalizing Eq. 1, the rate equations are: 
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where k0EX and k0CN are taken to be the same and equal to k0. 

Assuming the energy is parabolic around the minima and maximum, the energies of the states 

and of the barrier are now given by: 
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where ACN
0
, AEX

0
 and A*

0
 are the areas associated with each state and E0 and E*

0
 are the 

energies of the expanded and barrier states at zero tension. The states are displaced by the 

application of tension. A is the area of the protein when oscillating around the energy extrema 

ACN
0
, AEX

0
 and A*

0
. 

Taking the derivative of these energies as a function of the area, A, to find the area where the 

energy is a minimum (or a maximum in the case of the barrier) for each state: 
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These areas (with the superscript 'min') correspond to the areas of each state when the bilayer 

is under tension. The change in area between the contracted and expanded states is now given 

by: 
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Since the states do not necessarily have the same stiffness, the area change upon expansion is 

no longer a constant but a function of the bilayer tension, γ. For MscL this could allow for 

reconciliation of the x-ray structure which predicts an area change of about 20 nm
2
 and kinetic 

models that give an estimate of 6 nm
2
 [36]. 

Replacing the values from Eq. S3 into Eq. S2 to get the energies of the minima and the 

maximum as a function of tension only, which can then be re-written in terms of energy 

difference between each state and the barrier: 
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Interestingly, since the energies are second-order functions of the tension, there are 

mathematically two values for the midpoint, γ0.5. The midpoint occurs at the tension which 

allows an equal occupation of the two possible states, that is, when both states have the same 

energy. However the larger value must be considered unphysical because it occurs when the 

value of ACN has become larger than the value of AEX. Remember that the minima not only 

decrease in energy when there is no bilayer tension, but are also displaced towards larger 

areas and the softer states are displaced towards larger areas faster than the stiffer states. The 

midpoint is then given by: 
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Figure S1 : Energy of the spandex protein as a function of its area, including the stiffness of the states. A: Energy of each state 

separately: the full line corresponds to the contracted state, the dashed line to the expanded state, the grey line to the barrier. 

The actual energy landscape is a composition of these three states, but the precise shape of the energy landscape is not 
important, only the position and height of the maximum and minima as well as the curvature around them are important for 

the kinetics of transition of the spandex protein. B: Energy of the three states at a tension larger than the midpoint tension. 

The area of the contracted and expanded states increase and the area of the barrier decreases. However the expanded state 

moves towards larger areas slower than the contracted state because it is stiffer (i.e. its parabolic shape is more pronounced). 

E*
0 is the barrier height, E0 the energy of the expanded state when there is no bilayer tension, ACN

0, A*
0 and AEX

0 are the areas 

of the contracted, expanded and barrier states at zero tension. The zero of energy is set at the energy of the contracted state at 
zero tension. 

 

By increasing their size, even protein that remain in the contracted state partially relieve 

bilayer tension. Taking this into account, the expected average tension is: 
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Taking the derivative with respect to time and noting that AEX
min
 and ACN

min
 are functions of 

the tension γ from Eq. S3, Eq. S7 becomes: 
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For clarity, the values of ACN
min
 and AEX

min
 have not been substituted with their values from 

Eq. S3 (even though they have been taken into account in the derivative). Also, like in the 

previous section, ∆am/am is the strain imposed on the bilayer plus protein system and is 

independent of any protein properties. 
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The tension where the time constant is maximum cannot be found analytically in this model, 

but it can be readily obtained through simulation. Once this γτmax is obtained the value of τmax 

can be set by adjusting the values of k0 and E*
0
 (in Eq. 7). 

The model including the stiffness of the protein states is solved numerically in a similar way 

as the model without the stiffness of the protein states. The parameters used are the same 

adding just the parameters: BCN, BEX and B*. 

 

Appendix B 

Protein under tension including the stiffness of the proteins 

Including the stiffness of the proteins, the probability of being in the contracted (CN) and 

expanded (EX)  states and the time constant are now not only  functions of tension but of the 

stiffness of the states and of the barrier. 

The value of B* was taken to be 5 kBTr. There are no values in the literature, but the barrier 

should be stiff so that when it moves to smaller area under the action of tension it does not go 

below the contracted state area which increases. The stiffness values given by Sukharev and 

Markin [35] were taken as reference values for BCN and BEX. As above, the value of Cprot was 

set to zero to avoid the effect of protein expansion on tension. 

Our model imposes a lower limit on the stiffness of the contracted state. Under biologically 

relevant tensions, the contracted state must not cross the barrier nor the expanded state. Hence 

it must be stiff enough to avoid this. 

 

 

Figure S2 : Varying the stiffness of the contracted state, BCN, and keeping the stiffness of the expanded state, BEX, and of the 

barrier state, B*, constant, the energy of the protein is shown as a function of tension, γ for the different protein states. A: The 

energy of the expanded and contracted states cross twice when the expanded state is stiffer than the contracted state. There 

are two midpoints, two tensions where the occupancy of the states is 0.5. B: When the contracted state is stiffer than the 

expanded state, the energies only intersect once, at the midpoint. 
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Fig. S2 shows that the energies of the contracted and expanded states will intersect (on the 

tension scale) once or twice depending on which state is stiffer. Having the energies intersect 

twice means that there will be two midpoints. This situation is probably unphysical as it 

results from the assumption that the energy well of a state is parabolic at any tension. 

 

 

 

Figure S3 : Changing the stiffness of the contracted state, BCN, changes the probability of being in the expanded state, PEX as a 

function of bilayer tension,γ. The curve becoming shallower with a smaller BCN, the protein appears to have a smaller 

expansion upon transition (∆A). If the contracted state is softer than the expanded state, then it may, at sufficiently high 

tension, become bigger than the expanded state. This is shown by the curve for PEX curving down with increasing tension. 

BEX was set to infinity. 

 

As can be seen from Fig. S3 a stiffer contracted state makes the transition less shallow (more 

abrupt) because as tension increases the expanded states moves to larger areas faster than the 

contracted state, thus increasing the effective change in area upon expansion (∆A).  

If all the states are very stiff, the model is essentially the same as the model without stiffness 

as the area difference between the states remains practically constant. 

Now if the contracted state is made very stiff and the expanded state soft, as in Fig. S4, the 

results show a slope at the midpoint giving a larger area change upon expansion than that at 

zero tension (i.e. the curve in Fig. S4 is steeper for smaller values of BEX). This is because the 

soft expanded state, upon tension increase, will move towards larger areas faster than the stiff 

contracted state thus giving a larger spandex area change. 
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Figure S4: Changing the stiffness of the expanded state, BEX, the probability of being in the expanded state, PEX, varies as a 

function of bilayer tension. The area of the expanded state increases faster with tension than the area of the contracted state, 

thus making the curve for PEX steeper, giving the impression of a larger change in area between states than the actual value. 

BEX was set to infinity. 

However, this picture of protein stiffness is not complete. A protein cannot expand 

indefinitely in the plane of the membrane, there is a maximum beyond which the protein 

structure would be destroyed or the chemical bonds would break. To correct this, the energies 

of the states should be calculated in more detail: although the parabolic approximation is 

accurate close to the zero-tension states, it is probably not valid at larger tensions. 




