Biophysical Journal, Volume 97

Supporting Material

High-chloride concentrations abolish the binding of adenine nucleotides in the mitochondrial ADP/ATP carrier family

Eva-Maria Krammer , Stéphanie Ravaud , François Dehez , Annie Frelet-Barrand , Eva Pebay-Peyroula , and Christophe Chipot

High–chloride concentrations abolish the binding of adenine nucleotides in the mitochondrial ADP/ATP carrier family

Eva-Maria Krammer*, Stéphanie Ravaud[†], François Dehez*, Annie Frelet-Barrand[‡], Eva Pebay-Peyroula[†] and Christophe Chipot^{*†}

* Equipe de dynamique des assemblages membranaires, UMR No. 7565 CNRS-UHP, Nancy Université, BP 239, 54506 Vandœuvre-lès-Nancy cedex, France, [†] Institut de biologie structurale, UMR No. 5075 CEA-CNRS-UJF, Grenoble Université, 41, rue Jules Horowitz, 38027 Grenoble cedex 1, France and ‡Laboratoire de Physiologie Cellulaire Végétale, CNRS (UMR-5168)/CEA/INRA (UMR-1200)/UJF, CEA, DSV, iRTSV, 17 rue des Martyrs 38054 Grenoble Cedex 9, France; ^T Current address: Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews, Urbana, Illinois 61801

Supporting Information

Transport measurements on intact E. coli cells

DNA construct and heterologous expression of AAC in E. coli. The Arabidopsis thaliana ADP/ATP carrier 1 (AtAAC1) gene was cloned without the mitochondrial transit sequence corresponding to the first 63 residues [1]. The resulting cDNA coding for the mature form of AtAAC1 was amplified by PCR with the Phusion High Fidelity DNA polymerase (Finnzymes, Finland) from an Arabidopsis thaliana cDNA library using the following primers: AAC1-TOPO forward CACCATGGCTTCTCCCGTGTTTGTCCAAACC and AAC1-TOPO reverse CTACTTCTCGAATTGTGGGTGTGACCAGG CACCTCCTGATCCGTACTTCTT (the italics corresponds to a Strep-tag II, the start and stop codon are indicated in bold and the sequence of the cDNA is underlined). The PCR product was inserted into the entry vector pENTR-D-Topo, further transferred to the expression vector pDEST-17 by LR reaction (Invitrogen) and checked by sequencing. The nucleotide sequence of AtAAC1 is available under the accession numbers: At3g08580 (Arabidopsis Genome Initiative database) or P31167 (TrEMBL database). AtAAC1 (or control expression plasmid pET20b) were expressed in the E. coli cells C43 (DE3). Transformed E. coli cells were inoculated with a fresh overnight culture and grown at 37°C in LB medium [2]. Although the unfavorable codon usage of E. coli was anticipated to hamper expression of the carriers, leading to protein production in inclusion bodies [3, 4], AtAAC1 was expressed without significant retardation of E. coli cell growth. Protein expression was induced at an optical density (OD600) of 0.6-0.8 by the addition of 0.1 mM IPTG. Cells were grown overnight at 20°C and collected by centrifugation for 10 min at 5000 g. The pellets were resuspended in potassium phosphate buffer (50 mM, pH 7.0) to a final concentration of 100 μ g μ L⁻¹.

Uptake of radioactively labeled ATP. On account of the "positive–inside" rule, the N– and C–termini of AtAAC1 are probably located in the periplasm, hence orienting the CATR-cavity outwards [7, 8]. Uptake experiments were carried out according to Haferkamp *et al.* (2002),

Tjaden et al. (1998) and Thuswaldner et al. (2007) with a few modifications [2, 5, 6]. IPTG-induced E. coli cells $(30 \,\mu\,\text{L}, 100 \,\mu\text{g}\,\mu\text{L}^{-1})$ were incubated in 50 mM potassium phosphate buffer (pH 7.0) containing 50 μ M [α -³²P]ATP (3000 mCi/mmol; Perkin Elmer) at 25°C for indicated time periods. Uptake of nucleotides was quenched by addition of 1 mL of ice-cold potassium phosphate buffer [9, 10]. Subsequently, the cells were filtrated through a 0.45 μ m filter (Millipore, France) under vacuum and washed three times with 1-mL ice-cold potassium phosphate buffer. The radioactivity retained on the filters was quantified in 3.5 mL of water in a Multi-Purpose Scintillation Counter (Beckman Coulter, Fullerton, USA). To assess the effect of NaCl on the $[\alpha$ -³²P]ATP uptake by AtAAC1, cells were preincubated with either 0 M, 0.15 M, 0.5 M or 0.6 M NaCl. In Figure 1 in the main text, the control nucleotide uptake (control plasmid) in presence of NaCl was subtracted and the transport rate in the absence of NaCl was set to 100 %.

Molecular-dynamics simulations of bovine-heart AAC

Molecular assays. Three distinct assays were used to model AAC in its apo-form in a realistic environment with different chloride concentrations in solution. For the initial conformation of the AAC, the PDB structure 10KC [11] was used after removal of the inhibitor CATR bound to the crystal structure. Since the N- and C-terminal residues are not resolved in the crystal structure, the first residue was acetylated and the last residue amidated. The AAC was inserted in a thermalized, fully hydrated palmitoyloleylphosphatidylcholine (POPC) bilayer consisting of 228 lipid units in equilibrium with an aqueous phase formed by 9559 water molecules. The net excess charge of the apo-AAC was counter-balanced by adding 17 chloride counter ions. This corresponds to a chloride concentration of 0.1 M. An excess of NaCl was added to the previous system resulting in the second assay with a chloride concentration of 0.15 M. After equilibration of the 0.15 M NaCl assay, the salt concentration was further increased to 0.6 M, thus, forming the third assay.

For all three assays, the equilibrated cells have roughly the a dimension of $88 \times 81 \times 80$ Å³. The two systems, *viz*. 0.1 M and 0.15 M NaCl assays, are representative of AAC in low-salt conditions, whereas the 0.6 M NaCl assay models a high-concentration condition.

Molecular-dynamics simulations. All MD simulations were performed in the isothermal-isobaric ensembles using the program NAMD [12]. The AAC and its environment were described by the all-atom CHARMM27 force field [13, 14] and revision thereof for lipids [15]. For the protein, CMAP corrections were introduced [16]. For the computation of long-range electrostatic interactions, the particle-mesh Ewald method [18] was used. Short-range electrostatics and Lennard-Jones interactions were smoothly truncated. The equation of motions were integrated with a time step of 2 and 4 fs for short– and long-range forces, respectively, using the Verlet I *r*-RESPA multiple time-step propagator [19]. Covalent bonds involving hydrogen atoms were constrained to their equilibrium length by means of the Rattle algorithm [20]. To equilibrate the 0.1 M and the 0.15 M NaCl assays fully, the

FIGURE 1 The root-mean-square fluctuations (RMSF) of the AAC does not depend on the applied chloride concentration. The RMSF is mapped on the secondary structure of the AAC for the 0.1 M A), 0.15 M (B), and 0.6 M NaCl (C) simulation. Fluctuations range from 0.33 (blue) to 3.33 Å (red). The pictures are prepared with VMD [21]. The averaged backbone RMSF is plotted on a per residue basis (D) for the 0.1 M (dark), the 0.15 M (light) and the 0.6 M (black) assays.

А

FIGURE 2 The number of chloride ions inside the cavity increases with the NaCl concentration. (A) The number of chloride (black symbols) and sodium (light symbols) is depicted as a function of the NaCl concentration. Results from long simulations (30 ns simulation time; 0.1 M, 0.15 M, and 0.6 M NaCl assay) and from short simulations (4 ns simulation time; 0.25 M, 0.41 M, 0.61 M, 0.87 M, 1.17 M, 1.52 M, and 1.91 M NaCl) are shown as stars and crosses, respectively. (B) The local chloride concentration inside the cavity is shown as a function of the NaCl concentration.

system was first simulated for 60 ns with the protein frozen, 40/30 ns (0.1 M/0.15 M NaCl assay) with the backbone of the protein being held fixed and the side chain flexible, and finally 20 ns (for both assays) with the protein fully flexible. For the 0.6 M NaCl assay, the system was equilibrated after changing the NaCl concentration from 0.15 M to 0.6 M over an additional 2 ns. After equilibration, 30–ns trajectories were produced for each assay under constant-area conditions.

Structural deviations and fluctuations. For the 30 ns trajectory of the 0.1 M, 0.15 M, and 0.6 M NaCl assays, the time-averaged backbone distance root-mean-square deviation RMSD) from the X-ray diffraction structure (10KC) [11] is 1.5, 1.4, and 1.6 Å, respectively (with a standard deviation of 0.14, 0.13 and 0.15 Å respectively).

A 0.1 M NaCl

FIGURE 3 Change in the electric properties of *apo*-AAC as a function of the chloride concentration: of (A) 0.1 M NaCl, (B) 0.15 M NaCl, (C) 0.6 M NaCl. For each assay, the three-dimensional electrostatic isopotential map is shown after 30 ns of simulation time in (a). The protein and the cross-sectional view of the electrostatic potential (a) are also displayed. The cross-section of the three-dimensional map of the electric field is shown after 10 ns (b), 20 ns (c), and 30 ns (d). In all figures (b-d), the protein is oriented as in (a). The average number of chloride ions inside the cavity is 3.62/3.67/3.10 (10/20/30 ns) for the 0.1 M, 3.98/2.98/3.87 (10/20/30 ns) for the 0.15 M and 6.92/7.27/8.08 (10/20/30 ns) for the 0.6 M NaCl assays.

FIGURE 4 Number of chloride ions residing inside the cavity as a function of time differs between the two low- (0.1 M NaCl=dark line, 0.15 M NaCl=light line) and high-salt concentration assays (0.6 M NaCl=black line). The average number of chloride ions in the cavity, respectively 3.61/3.65/6.35 for the 0.1 M/0.15 M/0.6 M NaCl concentrations, 5 is depicted for each assay (dashed lines).

The RMSD of the 0.1 M NaCl system is lower than in previous studies of *apo*-AAC [22, 23, 24], which likely stems from different equilibration strategies. The calculated atomwise root mean-square fluctuations (RMSF), similar for the three assays (see Figure 1), further illustrate the relative rigidity of the protein along the MD trajectories.

Mapping electric properties. The three-dimensional maps of the electrostatic potential were generated for the different assays by solving numerically the Poisson equation with the PMEPot [25] module of VMD [21]. The electric potential was averaged over 200 ps segments taken at 10 ns, 20 ns, and 30 ns of the three different MD simulations (Figure 3). The electric field was derived from the electrostatic potential using OpenDX (http://www.opendx.org), an open-source visualization software package.

Number of chloride ions close to the basic patches. The number of chloride ions near the basic residues of the upper and the lower patches differs as a function of the salt concentration (see Figure 5). In average 3.6 and 6.3 chloride ions are bound in two low–salt and the high–salt simulation (see Figure 4).

Residence time of individual chloride ions. For both lowsalt simulations, the residence times of each individual chloride ion are consistent with our previous study [22]. Irrespective of the salt concentration, at least four chloride ions (Figure 6 and 7) have a residence time of more than 10 ns inside the cavity. These chloride ions interact with the residues of the lower basic patch. In the 0.6 M NaCl assay, a fifth chloride ion is monitored over 29.5 ns (Figure 7), complexed to residue R234 of the lower basic patch.

The number of ions inside the cavity is concentration dependent. The number of chloride ions inside the cavity and, A

FIGURE 5 The number of chloride ions near the basic residues of the upper (A) and the lower patches (B) as a function of time differs also between the two low– (0.1 M NaCI=dark line, 0.15 M NaCI light line) and high–salt concentration (0.6 M NaCI=black line) assays.

hence, the local chloride concentration increases, starting from an NaCl solution at 0.2 M (see Figure 2). Interestingly enough, this corresponds to a situation where ADP^{3-} transport is completely abolished [26]. A few sodium ions are shown to enter also the cavity. These ions are, however, located at the top of the cavity and do not appear to participate in the inhibition process.

The binding of ADP^{3-} depends on the chloride concentration. At 0.15 M NaCl, ADP^{3-} binds to residues of the upper basic patch (see Table 1 and Figure 8) in two of the three association assays. The association processes observed here are consistent with the earlier study of Dehez *et al.* [22]. In a series of nine ligand–association assays at 0.6 M NaCl, ADP^{3-} remains unbound (see Table 1 and Figure 9). In six of these experiments, ADP^{3-} does not enter the AAC cavity (see Figure 9C, D-H), whereas in the other three experiments, the nucleotide migrates into the cavity. Yet, the position of ADP^{3-} differs significantly from the earlier observed productive binding modes [22].

FIGURE 6 The mass-weighted isodensity map of chloride ions in the cavity of *apo*-AAC averaged over the 30 ns trajectory illuminates the portion of space occupied by chloride ions in the the 0.1 M (A) and the 0.15 M NaCl (C) assay. The upper and lower basic patches are also displayed, together with the residence time of those chloride ions found in the cavity of *apo*-AAC for the 0.1 M (B) and for the 0.15 M NaCl (D) assays.

FIGURE 7 Mass-weighted isodensity map of chloride ions in the cavity of *apo*-AAC averaged over the 30 ns trajectory illuminates the portion of space occupied by chloride ions in the 0.6 M assay (A). The upper and lower basic patches are also displayed, together with the residence time of those chloride ions found in the cavity of *apo*-AAC for the 0.6 M assay. Only those ions with the number 1 to 35 (B), 36 to 71 (C), and 72 to 106 (D) are shown.

Biophysical Journal: Biophysical Letters

Biophysical Journal: Biophysical Letters

NaCl	Setup	Orientation of ADP	t	Association after t
0.15 M	А	Phosphate moiety down	20 ns	0.2 ns (K95)
0.15 M	В	Phosphate moiety down	10 ns	-
0.15 M	С	Phosphate moiety down	30 ns	0.3 ns (K95)
0.6 M	А	phosphate moiety down	40 ns	-
0.6 M	В	adenosine moiety down	40 ns	-
0.6 M	С	adenosine moiety down	40 ns	-
0.6 M	D	both moieties down	40 ns	-
0.6 M	Е	both moieties down	30 ns	-
0.6 M	F	phosphate moiety down	30 ns	-
0.6 M	G	in plane	30 ns	-
0.6 M	Н	in plane	30 ns	-
0.6 M	Ι	in plane	30 ns	-
0.1 M*	А	phosphate moiety down	10 ns	2.1 ns (K95)
0.1 M*	В	adenosine moiety down	10 ns	0.4 ns (K95)
0.1 M*	С	adenosine moiety down	10 ns	2.2 ns (K91/K95)
0.1 M*	D	both moieties down	20 ns	1.2 ns (Y194)
0.1 M*	Е	both moieties down	10 ns	0.1 ns (K91)
0.1 M*	F	phosphate moiety down	10 ns	0.1 ns (K95)
0.1 M*	G	in plane	20 ns	0.9 ns (R187)
0.1 M*	Н	in plane	20 ns	2.7 ns (R104)
$0.1 \mathrm{M}^*$	Ι	in plane	20 ns	0.5 ns (Y190)

Table 1 Overview of all ligand-association assays at 0.15 M and 0.6 M NaCl. For the assays at 0.6 M NaCl, the association experiment is repeated without ionic concentration (marked by *). A association event is counted whenever the substrate interacts with a basic patch residues lining the internal cavity of the carrier.

patch	a.a.	occupancy		сy	conserv.	alternate a.a.
		0.1 M	0.15 M	0.6 M		
upper	K91	27	10	40	100	
	K95	5	15	25	96	R (3), Q(1)
	R187	21	13	43	99	P (1)
	K198	2	3	12	81	R (18), N (1)
lower	K22*	72	50	57	97	
	R79	63	78	92	99	S (1)
	R137	0	24	0	100	
	R234	52	2	87	99	S (1)
	R235	1	19	5	99	S (1)
	R279*	67	49	61	95	N (1), P (1), S (1)

* multiple-sequence alignment shows gaps at these positions.

Table 2 List of basic amino-acid (a.a.) residues interacting with the chloride ions. The percentile occupancy is defined as the fraction of time in the 30 ns simulations during which the amino acid intimately interacts with a halide ion. Percentile conservation (conserv.) and nature of the alternate amino acid occupying the same position are extracted from the MSA.

In the case example of experiment B (see Figure 10), the diphosphate moiety of ADP^{3-} interacts with K95 (after 0.9 ns), followed by binding to K91 (after 3.2 ns). The adenosine moiety is, however, not oriented towards the tyrosine ladder, but towards Q84. ADP^{3-} , therefore, appears to not be properly positioned with respect to the tyrosine ladder, which is a prerequisite for ADP^{3-} binding to and transport by the AAC.

Moreover, migration of ADP^{3-} does not lead to the exclusion of a single or several chloride ions (Figure 10). The same nine ligand–association assays have been repeated without an ionic concentration, while keeping the same initial position of the substrate. All these assays resulted in productive ADP^{3-} association (see Table 1). In two experiments ADP^{3-} even binds to residues of the lower basic patch (see Figure 9).

С

A

FIGURE 8 The series of three ligand-association assays leads to partial association of ADP^{3-} in presence of 0.15 M NaCl. In the setups A and C (A,C) ADP^{3-} binds to the upper basic patch whereas no binding (B) is observed in setup B. The starting and the final position of ADP^{3-} are represented as colored van der Waals spheres and as orange tubes. For the protein (white), the upper (light-blue) and lower patch (ice-blue), a molecularsurface rendering is used.

Conservation analysis of the basic patch residues in the AAC family

Multiple-sequence alignment. Starting from the sequence of the bovine-heart AAC isoform 1 (bAAC1), homologous sequences were searched using the BLAST [27] algorithm on the NCBI webpage [28]. Multiple entries of the same species, as well as sequences of hypothetical or predicted proteins were removed, and different isoforms of the same species were kept. A total of 74 sequences were considered, including the bAAC1 and AtAAC1. The origin of these sequences is listed in Table 3. All sequences carry the MCF and AAC motifs — PX(D/E)XX(K/R) and RRRMMM, respectively. No variations of the MCF motif have been witnessed in these sequences, but the AAC motif was slightly altered in six sequences (RRRLMM and SSRMMM in four and one species, respectively). These sequences were, nevertheless, kept. To obtain the multiple-sequence alignment (MSA), the 74 AAC sequences were aligned using ClustalW2 [29]. The resulting conservation analysis is summarized in Table 2.

FIGURE 9 The series of nine ligand-association assays at 0.6 M NaCl does only lead to association of the ADP^{3-} after removal of the ionic concentration. The starting position of ADP^{3-} is shown in colored van der Waals spheres. The final positions of ADP^{3-} in the presence and absence of 0.6 M NaCl are shown in green and orange tubes. For the protein (white), the upper (light-blue) and lower patch (ice-blue), a molecular-surface rendering is used.

FIGURE 10 In the illustrative ligand–association assay B, no productive association is achieved, even when ADP^{3-} migrates into the cavity. (A) Final position of ADP^{3-} is shown. Residues of the upper (green), lower patch (red), and tyrosine ladder (cyan) are depicted as tubes. ADP^{3-} (yellow) and chloride ions (cyan) are shown in molecular surface and van der Waals sphere representations. (B) The mass-weighted isodensity map of the chloride ions remains unchanged. (C) The number of chloride ions inside the cavity does not decrease in association assay B (light line) compared to the 0.6 M NaCl simulation (black line).

The basic patch residues are conserved in bovine-heart and Arabidopsis thaliana AAC. The bAAC1 and AtAAC1 (mature form) sequences share 49 % sequence identity and about 74 % of sequence homology. Most of the residues lying in the CATR-cavity are conserved as shown in Figure 11. In particular, all the residues of the two basic patches are conserved in AtAAC1 (with the exception of R106).

REFERENCES and FOOTNOTES

- 1. Heazlewood, J. L., K. A. Howell, J. Whelan, and A. H. Millar. 2003. *Plant Physiol*, 132:230–242.
- Haferkamp, I., J. H. Hackstein, F. G. Voncken, G. Schmit, and J. Tjaden. 2002. Eur. J. Biochem. 269:3172–3181.
- 3. Fiermonte, G., J. E. Walker, and F. Palmieri. 1993. *Biochem. J.* 294:293–299.
- Heimpel, S., G. Basset, S. Odoy, and M. Klingenberg. 2001. J. Biol. Chem. 276:11499–11506.
- Tjaden, J., C. Schwöppe, T. Möhlmann, P. W. Quick, and H. E. Neuhaus. 1998. J. Biol. Chem. 273:9630–9636.
- Thuswaldner, S., J. O. Lagerstedt, M. Rojas-Stütz, K. Bouhidel, D. C. N. Leborgne-Castel, A. Mishra, F. Marty, B. Schoefs, T. Adamska, B. L. Persson, and C. Spetea. 2007. *J. Biol. Chem.* 282:8848–8859.

Biophysical Journal: Biophysical Letters

- 7. von Heijne, G. 1992. J. Mol. Biol. 225:487-494.
- Bernsel, A., H. Viklund, J. Falk, E. Lindahl, G. von Heijne, and A. Elofsson, 2008. Proc. Natl. Acad. Sci. U S A 105:7177–7181.
- van der Giezen M., D. J. Slotboom, D. S. Horner, P. L. Dyal, M. Harding, G. P. Xue, T. M. Embley, and E. R. Kunji. 2002. *EMBO J.* 21:572– 579.
- Monné, M., A. J. Robinson, C. Boes, M. E. Harbour, I. M. Fearnley, and E. R. Kunji. 2007. *J. Virol.* 81:3181–3186.
- Pebay-Peyroula, E., C Dahout-Gonzalez, R. Kahn, V. Trézéguet, G. J. Lauquin, and G. Brandolin. 2003. *Nature* 426:39–44.
- Philipps, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. *J. Comp. Chem.* 26:1781–1782.
- MacKerell Jr., A. D., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Goa, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. J. Phys. Chem. B 102:3586–3616.
- Feller, S. E., and A. D. MacKerell Jr. 2000. J. Phys. Chem. B 104:7510– 7515.
- Hénin, J., W. Shinoda, and M. L. Klein. 2008. J. Phys. Chem. 112:7008– 7015.
- MacKerell Jr., A. D., M. W. Feig, and C. L. Brooks. 2004. J. Comput. Chem. 25:1400–1415.
- 17. Feller, S. E., Y. Zhang, R. W. Pastor, and B. R. Brooks. 1995. J. Chem. Phys. 103:4613–4621.
- Darden, T., D. York, and L. Pederson. 1993. J. Chem. Phys. 98:10089– 10092.
- Tuckerman, M., B. J. Berne, and G. J. Martyna. 1992. J. Chem. Phys. 97:1990–1999.
- 20. Andersen, H. C. 1983. J. Comput. Phys. 52:24-34.
- Humphrey, W., A. Dalke, and K. Schulten. 1996. J. Mol. Graph. 14:33– 38.
- Dehez, F., and E. Pebay-Peyroula, and C. Chipot. 2008. J. Am. Chem. Soc. 24:12725–12733.
- Wang, Y., and E. Tajkhorshid. 2008. Proc. Natl. Acad. Sci. USA 105:9598–9603.
- Johnston, J. M., S. Kahlid, and M. S. P. Sansom. 2008. Mol. Mem. Biol. 25:506–517.
- 25. Aksimentiev, A., and K. Schulten. 1995. Biophys. J. 88:3745-3761.
- Gropp, T., N. Brustovetsky, M. Klingenberg, V. Müller, K. Fendler, and E. Bamberg. 1999. *Biophys. J.* 77:714–726.
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. J. Mol. Biol. 215:403–410.
- 28. Wheeler, D. L., T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin, O. Khovayko, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, V. Miller, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, R. L. Tatusov, T. A. Tatusova, L. Wagner, and E. Yaschenkoet. 2006. *Nucleic Acids Res.* D5–D12.
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, P. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins. 2007. *Bioinformatics* 23:2947–2948.
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Nucleic Acids Res. 22:4673–4680.
- Gouet, P., and X. Robert, and E. Courcelle. 2003. Nucleic Acids Res. 31:3320–3323.

Gei	nInfo Identifier	Species	Isoform	Ge	nInfo Identifier	Species	Isoform
gi	157127675	Aedes aegypti		gi	13775208	Homo sapiens	AAC4
gi	92090585	Anopheles gambiae	AAC1	gi	67083835	Ixodes scapularis	
gi	129563830	Antechinus flavipes	AAC1	gi	225713100	Lepeophtheirus salmonis	AAC1
gi	58531215	Apis mellifera		gi	6942136	Lucilia cuprina	
gi	19883932	Arabidopsis thaliana	AAC1	gi	28207648	Manduca sexta	
gi	4836655	Ascaris suum		gi	124295296	Marsupenaeus japonicus	
gi	156089447	Babesia bovis		gi	156481748	Monochamus alternatus	
gi	158631166	Bombyx mori		gi	148747424	Mus musculus	AAC1
gi	39654366	Bos taurus	AAC1	gi	22094075	Mus musculus	AAC2
gi	32189334	Bos taurus	AAC2	gi	30409998	Mus musculus	AAC4
gi	32189336	Bos taurus	AAC3	gi	89213828	Myzus persicae	
gi	114051019	Bos taurus	AAC4	gi	22506695	Nyctotherus ovalis	
gi	33391179	Branchiostoma belcheri		gi	221665139	Oncorhynchus mykiss	AAC2
gi	170590562	Brugia malayi		gi	154091018	Oryctolagus cuniculus	AAC2
gi	71991728	Caenorhabditis elegans	AAC1	gi	225708582	Osmerus mordax	AAC2
gi	66359700	Cryptosporidium parvum		gi	187936979	Ovis aries	AAC1
gi	170039111	Culex quinquefasciatus	AAC2	gi	187936981	Ovis aries	AAC2
gi	47550717	Danio rerio	AAC1	gi	187936983	Ovis aries	AAC3
gi	192453566	Danio rerio	AAC3	gi	113204648	Pacifastacus leniusculus	
gi	122938545	Dendrolimus punctatus		gi	467989	Plasmodium falciparum	
gi	66827623	Dictyostelium discoideum		gi	82539417	Plasmodium yoelii	
gi	254728	Drosophila melanogaster		gi	197098206	Pongo abelii	AAC2
gi	17737302	Drosophila melanogaster	AAC2	gi	4115750	Rana rugosa	
gi	2655147	Drosophila pseudoobscura		gi	4567152	Rana sylvatica	
gi	2655149	Drosophila subobscura		gi	38014819	Rattus norvegicus	AAC1
gi	157929872	Epinephelus coioides		gi	32189350	Rattus norvegicus	AAC2
gi	225717008	Esox lucius	AAC2	gi	209732444	Salmo salar	AAC2
gi	15559050	Ethmostigmus rubripes		gi	197260782	Simulium vittatum	
gi	22506699	Euplotes sp.		gi	47523888	Sus scrofa	AAC3
gi	57530120	Gallus gallus	AAC1	gi	122131406	Tachyglossus aculeatus	AAC2
gi	54020693	Gallus gallus	AAC3	gi	57506724	Takifugu rubripes	AAC1
gi	1197164	Halocynthia roretzi		gi	57506722	Takifugu rubripes	AAC3
gi	154091282	Heliconius melpomene		gi	71030136	Theileria parva	
gi	151384885	Helicoverpa armigera		gi	13445807	Toxoplasma gondii	
gi	55749577	Homo sapiens	AAC1	gi	150036382	Trichostrongylus vitrinus	
gi	62089230	Homo sapiens	AAC2	gi	148224610	Xenopus laevis	AAC2
gi	156071462	Homo sapiens	AAC3	gi	45360477	Xenopus tropicalis	AAC1

Table 3 Sequences used for the MSA. For each sequence the GenInfo Identifier, the species and if available the isoform is listed.

FIGURE 11 Sequence alignment of bAAC1 and AtAAC1. Secondary structure elements of bAAC1 (PDB structure 10KC [11]) are indicated above. Basic residues of the upper patch (K91, K95, R104, R106, R187, K198) and of the lower patch (K22, K32, R79, R137, R234, R235, R279) are marked by green and red stars, respectively. Numbering is according to the sequence of bAAC1. The alignment was prepared with ClustalW [30] and rendered with ESPript [31].