
S Supporting Information

S.1 Stability condition for behavioral equilibrium2

In order for a candidate behavioral equilibrium, a∗1 and a∗2, that solves the equations in (5) to

represent a local maximum for each individual’s objective function and to be locally stable under4

the behavioral dynamics given in (4), the candidate equilibrium must satisfy two conditions. The

first guarantees that a∗1 and a∗2 represent local maxima and is given by two equations:6

∂2x1

∂a2
1

∣∣∣∣a1=a∗1
a2=a∗2

< 0

∂2x2

∂a2
2

∣∣∣∣a1=a∗1
a2=a∗2

< 0 .

(S1)

The second condition is found by analyzing the conditions for the local stability of a rest point

for the gradient dynamics given in (4). The local stability of this rest point is determined by the8

eigenvalues, λ1 and λ2 of the Jacobian matrix defined by

J =

 ∂2x1

∂a2
1

∂2x1
∂a1∂a2

∂2x2
∂a1∂a2

∂2x2

∂a2
2

 (S2)

when J is evaluated at a∗1 and a∗2. A sufficient condition for the stability of this rest point is that

the real parts of both λ1 and λ2 are less than zero [1]; this condition holds when

Tr(J) =
∂2x1

∂a2
1

+
∂2x2

∂a2
2

< 0

and10

|J | =
∂2x1

∂a2
1

∂2x2

∂a2
2

− ∂2x1

∂a1∂a2

∂2x2

∂a1∂a2
> 0 , (S3)

where Tr(J) and |J | are evaluated at a∗1 and a∗2. The equations in condition (S1) guarantee that

Tr(J) < 0, so our second condition is equation (S3).12

Moreover, we can specify more stringent conditions that guarantee the uniqueness and global

stability of the behavioral equilibrium defined by (5). Let A be the set of allowable actions, i.e.14

(a1, a2) ∈ A × A where × denotes the Cartesian product. Suppose that A is convex. Then if the
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local stability conditions (S1) and (S3) hold not only at the equilibrium point but also hold for

all (a1, a2) ∈ A×A, the behavioral equilibrium defined by (5) is unique and globally stable under2

the dynamic given in (4). A proof of this result would follow Rosen [2] noting that Rosen’s result

guarantees that the equilibrium is unique and globally stable when J + JT is negative definite,4

where T denotes matrix transpose; J is stable (i.e. all eigenvalues of J have negative real parts) if

and only if J + JT is negative definite [3, p. 160]6

S.2 Derivation of the first and second order ESS conditions

First, we establish that one can express the behavioral equilibrium actions a∗1 and a∗2 as functions8

of β1 and β2. Remember that the behavioral equilibrium is given by the equations in (5), which say

that the derivative of both individuals’ objective functions with respect to their own actions vanish10

at the behavioral equilibrium. Note also that the objective function of an individual is a function of

the payoffs, and consequently, of actions, but also depend on the genetically determined trait β of12

each individual. Thus, we can take the functions x1(a1, a2) and x2(a1, a2) as instances of a family

of functions parametrized by β, X(a1, a2, β). Moreover, since both the payoff and the objective14

functions are symmetric with respect to the two individuals, we can write, x1(a1, a2) = X(a1, a2, β1)

and x2(a1, a2) = X(a2, a1, β2). In this way, we can express the behavioral equilibrium conditions16

as:

∂x1

∂a1

∣∣∣∣a1=a∗1
a2=a∗2

=
∂X(a1, a2, β1)

∂a1

∣∣∣∣a1=a∗1
a2=a∗2

= 0 (S4)

∂x2

∂a2

∣∣∣∣a1=a∗1
a2=a∗2

=
∂X(a2, a1, β2)

∂a2

∣∣∣∣a1=a∗1
a2=a∗2

= 0 . (S5)

Thus, we have two equations with four variables (a∗1, a∗2, β1 and β2) and we can use the implicit18

function theorem to express two of them as functions of the other two. Specifically, the implicit

function theorem says that, for J in (S2), as long as |J | ̸= 0, we can solve for a∗1 and a∗2 in terms20

of β1 and β2. Furthermore, the first derivatives of a∗1 and a∗2 with respect to β1 and β2 exist. Now,
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we take the total derivatives of equations (5) with respect to β1 at the behavioral equilibrium:

d

dβ1

[
∂x1

∂a1

]
=

∂2x1

∂a2
1

∂a∗1
∂β1

+
∂2x1

∂a1∂a2

∂a∗2
∂β1

+
∂2x1

∂β1∂a1
= 0

d

dβ1

[
∂x2

∂a2

]
=

∂2x2

∂a1∂a2

∂a∗1
∂β1

+
∂2x2

∂a2
2

∂a∗2
∂β1

+
∂2x2

∂β1∂a2
= 0 ,

In these equations, all partial derivatives of x1 and x2 are evaluated at the behavioral equilibrium2

(a∗1, a
∗
2).

From these equations, one can solve for ∂a∗1/∂β1 and ∂a∗2/∂β1 to obtain4

∂a∗1
∂β1

= −
[

1
|J |

∂2x2

∂2a2

∂2x1

∂β1∂a1

]
a1=a∗1
a2=a∗2

(S6)

∂a∗2
∂β1

=
[

1
|J |

∂2x2

∂a1∂a2

∂2x1

∂β1∂a1

]
a1=a∗1
a2=a∗2

, (S7)

which uses the fact that ∂2x2
∂β1∂a2

= 0. These derivatives give us the necessary ingredients to write

down the change in an individuals fitness when that individual’s β is increased or decreased. As6

explained in the text, in order for β∗ to be an ESS, it must be the case that no mutant individual

with a value of β ̸= β∗ can obtain a higher fitness than a resident individual with the evolutionarily8

stable value β∗ when the population is nearly fixed for β∗. To write the ESS condition, we adopt

the convention that individual 1 is always the mutant individual, and individual 2 is the resident,10

i.e. β1 = βm and β2 = βr. Substituting the derivatives (S6) and (S7), we can write for the ESS

condition (equation 7):12

dwm

dβm
=

∂u1

∂a1

−1
|J |

∂2x2

∂a2
2

∂2x1

∂β1∂a1
+

∂u1

∂a2

1
|J |

∂2x2

∂a1∂a2

∂2x1

∂β1∂a1
= 0 .

Rearranging, we get:

dwm

dβm
=

1
|J |

∂2x1

∂β1∂a1

(
∂u1

∂a2

∂2x2

∂a1∂a2
− ∂u1

∂a1

∂2x2

∂a2
2

)
= 0 . (S8)

Again, all partial derivatives with respect to a1 and a2 are evaluated at the behavioral equilibrium.14

For this equation to hold, the term in the parentheses has to be zero since ∂2x1
∂β1∂a1

̸= 0, so we have

the condition in equation (8).16
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The second order condition for the candidate ESS is that the wm is a fitness maximum, and

not a minimum, at βm = βr = β∗. Using the implicit function theorem again and the first order2

condition (8), this second order condition can be shown to be (after considerably more algebra):

d2wm

dβ2
m

=

(
∂2x1

∂β1∂a1

|J |

)2

[
∂2x2

∂a2
2

,− ∂2x2

∂a1∂a2

]
·

H(u1) +

(
∂u1
∂a1

∂2x1
∂a2∂a1

− ∂u1
∂a2

∂2x1

∂a2
1

)
|J |

H(
∂x2

∂a2
)

 ·
[
∂2x2

∂a2
2

,− ∂2x2

∂a1∂a2

]T

< 0 , (S9)

where H(·) is a Hessian matrix with respect to a1 and a2 of the function that is its argument.4

Likewise, the convergence stability condition is [4–6]

d2wm

dβ2
m

+
d2wm

dβmdβr
< 0 , (S10)

where the first term on the right hand side is given by equation (S9) and the second term is given6

by

d2wm

dβmdβr
=

∂2x1
∂β1∂a1

∂2x2
∂β2∂a2

|J |2[
∂2x2

∂a2
2

,− ∂2x2

∂a1∂a2

]
·

H(u1) +

(
∂u1
∂a1

∂2x1
∂a2∂a1

− ∂u1
∂a2

∂2x1

∂a2
1

)
|J |

H(
∂x2

∂a2
)

 ·
[
− ∂2x1

∂a2∂a1
,
∂2x1

∂a2
1

]T

+
∂2x1

∂β1∂a1

(
∂u1
∂a1

∂2x1
∂a2∂a1

− ∂u1
∂a2

∂2x1

∂a2
1

)
|J |2

[
∂2x2

∂a2
2

,− ∂2x2

∂a1∂a2

]
·
[

∂3x2

∂β2∂a2
2

,
∂2x2

∂β2∂a1∂a2

]T

(S11)

S.3 Complementarity and mutual regard8

In this section, we find sufficient conditions for β > 0 to be evolutionarily stable when individuals

have generic other-regarding objectives and the payoff functions characterize a social interaction10

similar in spirit to a prisoner’s dilemma. Let x2 be the objective of individual 2. We assume that

individual 2 is both “other-regarding” and “self-regarding”, so x2 = G(u1, u2), for some function12

G, is increasing in both u1 and u2 and that x2 is bounded and concave with respect to the payoffs

u1 and u2; i.e., all pure second derivatives of x2 with respect to u1 and u2 are negative. These14

conditions are given in the first row of (S12). Payoffs u1 and u2 are decreasing functions of the
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action of the focal individual and increasing functions of the partner’s action. We also assume that

the actions of individual 2 incur accelerating costs to individual 2 itself and yield benefits with2

diminishing returns to individual 1. The conditions on payoffs are given in the second and third

rows of (S12).4

∂x2
∂u1

> 0 ∂x2
∂u2

> 0 ∂2x2

∂u2
1

< 0 ∂2x2

∂u2
2

< 0

∂u1
∂a1

< 0 ∂u1
∂a2

> 0 ∂2u1

∂a2
2

< 0

∂u2
∂a1

> 0 ∂u2
∂a2

< 0 ∂2u2

∂a2
2

< 0

(S12)

The response coefficient ρ is given by:

ρ = −
(

∂2x2

∂a1∂a2

/
∂2x2

∂a2
2

)
a1=a∗1
a2=a∗2

.

The necessary condition for x2 to be an ESS objective function is that ρ is positive, which means6

that there is positive feedback between the actions of the individuals. We will show that ρ is

positive when,8

∂2x2

∂u1∂u2
> 0 (S13)

∂2u1

∂a1∂a2
≥ 0

∂2u2

∂a1∂a2
≥ 0 . (S14)

The inequality in condition (S13) says that the payoffs have to be complementary inputs into the

objective x2. This is exactly how we defined “conditional regard” in equation (3) for the other-10

regarding objective function given in equation (2). The two inequalities in condition (S14) say that

the actions have to be complementary inputs into payoffs.12

To show ρ > 0, we will first calculate ∂2x2
∂a1∂a2

and show that its positive. If the objective x2 is a

function of u1 and u2, we can write using the chain rule:14

∂2x2

∂a1∂a2
=

∂x2

∂u1

∂2u1

∂a1∂a2
+

∂x2

∂u2

∂2u2

∂a1∂a2

+
∂u1

∂a1

(
∂2x2

∂u2
1

∂u1

∂a2
+

∂2x2

∂u1∂u2

∂u2

∂a2

)
+

∂u2

∂a1

(
∂2x2

∂u1∂u2

∂u1

∂a2
+

∂2x2

∂u2
2

∂u2

∂a2

)
.

(S15)
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Given our previous assumptions in (S12), the conditions (S13) and (S14) guarantee that ∂2x2
∂a1∂a2

> 0.

Next, we calculate the denominator, ∂2x2

∂a2
2

, which must be negative for the behavioral equilibrium2

to be stable (see equation (S1)):

∂2x2

∂a2
2

=
∂x2

∂u1

∂2u1

∂a2
2

+
∂x2

∂u2

∂2u2

∂a2
2

+
∂2x2

∂u2
1

(
∂u1

∂a2

)2

+
∂2x2

∂u2
2

(
∂u2

∂a2

)2

+ 2
∂2x2

∂u1∂u2

∂u1

∂a2

∂u2

∂a2
.

(S16)

Our assumptions in (S12) and the condition (S13) guarantee that ∂2x2

∂a2
2

< 0.4

We find that the additive payoff functions given in equation (1) and multiplicative objective

given in equation (2) meet both our assumptions in (S12) and our complementarity conditions in6

(S13) and (S14). Other simple objective functions do not necessarily generate the positive feedback

of actions between individuals necessary for mutual regard. For example, suppose the objective8

function of individual 2 is given by

x2(a1, a2) = u2(a1, a2) + β2u1(a1, a1) . (S17)

In this case, x2 is an other-regarding objective for positive β2, which can still be thought of as a10

measure of the strength of that other-regard. However, using the same payoff functions defined in

equation (1), equation (S15) shows that ρ = 0. The first two terms of (S15) are zero since the mixed12

second derivatives of the payoff functions are zero, and the linearity of the objective function means

that the two terms in parentheses in (S15) are also zero. Thus, the additive objective function in14

(S17) generates no positive feedback and cannot support an evolutionarily stable level of mutual

regard β > 0.16

S.4 Some results about Pareto efficiency at the behavioral equilibrium and ESS

outcome18

First, we write the condition for an outcome to lie on the Pareto boundary, which is the set of

payoff pairs that are Pareto efficient, i.e. payoff pairs for which no player can increase its payoff20

without decreasing the payoff of another player. This means that for a fixed u1, u2 is maximized

on the Pareto boundary, and likewise u1 is maximized for a fixed u2. If we set u2(a1, a2) = χ where22
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χ is a constant, the Implicit Function Theorem says that there exist some g(a1, χ) = a2 for which

u2(a1, g1(a1, χ)) = χ. We maximize u1 at this value by differentiating2

du1(a1, g(a1, χ))
da1

=
∂u1

∂a1
+

∂u1

∂a2

∂g

∂a1
= 0 . (S18)

Now, we can get ∂g
∂a1

by differentiating u2, which by construction of the function g, must be constant:

du2(a1, g(a1, χ))
da1

=
∂u2

∂a1
+

∂u2

∂a2

∂g

∂a1
= 0 . (S19)

Substituting ∂g
∂a1

from (S19) into (S18) and rearranging gives:4

∂u1

∂a1

∂u2

∂a2
=

∂u1

∂a2

∂u2

∂a1
(S20)

Pareto-efficiency implies concordance of objectives

First, we need to specify precisely what we mean by concordance of objectives. Remember that6

∂x1
∂a1

measures how much and in which direction individual 1 changes its action. Now consider

the quantity ∂x2
∂a1

, which by the same interpretation, measures how much and in which direction8

individual 2 would change a1, if only it had control over it. Thus, the difference ∂x1
∂a1

− ∂x2
∂a1

can be

thought of as measuring how much individuals 1 and 2 differ in their preference over a1. Similarly,10

the difference ∂x2
∂a2

− ∂x1
∂a2

is the difference between individuals in preferences over a2. If ∂x1
∂a1

− ∂x2
∂a1

=

∂x2
∂a2

− ∂x1
∂a2

= 0, the two individuals do not differ in their preferences over which direction and how12

much they should adjust their actions; their objectives are concordant. The concordance conditions

can hold locally at a single action pair, or globally over the entire action space. Because we focus14

near the behavioral equilibrium, we will deal with local concordance of objectives.

Consider now the following class of objectives that are functions of u1 and u2: x1 = x1(u1, u2),16

x2 = x2(u1, u2). The first-order conditions for the behavioral equilibrium is:

∂x1

∂a1
=

∂x1

∂u1

∂u1

∂a1
+

∂x1

∂u2

∂u2

∂a1
= 0 (S21)

∂x2

∂a2
=

∂x2

∂u1

∂u1

∂a2
+

∂x2

∂u2

∂u2

∂a2
= 0 (S22)
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Now, from (S20), we can substitute ∂u1
∂a1

= ∂u1
∂a2

∂u2
∂a1

/∂u2
∂a2

into (S21), and get:

∂x1

∂u1

∂u1

∂a2

∂u2

∂a1
+

∂x1

∂u2

∂u2

∂a1

∂u2

∂a2
= 0 (S23)

Canceling ∂u2
∂a1

, we end up with:2

∂x1

∂u1

∂u1

∂a2
+

∂x1

∂u2

∂u2

∂a2
=

∂x1

∂a2
= 0 (S24)

Thus, at a Pareto optimal behavioral equilibrium, individual 1’s objective is (locally) concordant

with respect to individual 2’s action a2. Note that this also means that individual 1’s objective4

function x1 is a local peak (subject to second order conditions) at this behavioral equilibrium. One

can show using the same argument that it must be ∂x2
∂a2

= ∂x2
∂a1

= 0, such that the individuals’6

objectives are concordant over a1 as well at the Pareto optimal equilibrium.

Conditions for a Pareto-efficient ESS outcome and objectives8

Now, we focus our attention specifically to the Pareto-efficient behavioral equilibrium of two indi-

vidual that have an evolutionarily stable objective function. The game is symmetric (u1(a1, a2) =10

u2(a2, a1)). We further assume that the individuals’ objective functions are functions of their pay-

offs: x = x(u1, u2). Even though both individuals have the same objectives, we concentrate on12

individual 2 with its objective x2 for consistency; the analysis is equally valid for x1. Because the

game is symmetric, the behavioral equilibrium in a monomorphic ESS also has to be symmetric,14

i.e. a∗1 = a∗2 = a∗. We have three equations that this outcome has to satisfy. First, the Pareto

efficiency in a symmetric outcome implies that it maximizes u2(a, a) = u1(a, a):16

du2(a, a)
da

=
[
∂u2

∂a1
+

∂u2

∂a2

]
a1=a2=a∗

=
[
∂u1

∂a1
+

∂u1

∂a2

]
a1=a2=a∗

= 0 (S25)

We denote the value of a satisfying equation (S25) by â; i.e., a∗ = â. The Pareto-efficient action â

must also satisfy the behavioral equilibrium conditions, which for individual 2 reads:18

[
∂x2

∂a2

]
a1=a2=â

=
[
∂x2

∂u1

∂u1

∂a2
+

∂x2

∂u2

∂u2

∂a2

]
a1=a2=â

= 0 (S26)
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Finally, we have the ESS condition:

[
∂u1

∂a1
−
(

∂2x2

∂a1∂a2

/
∂2x2

∂a2
2

)
∂u1

∂a2

]
a1=a2=â

= 0 (S27)

The Pareto efficiency condition (S25) and the symmetry of the payoff functions yield the fol-2

lowing relations at the Pareto optimal outcome:

∂u1

∂a1
= −∂u1

∂a2
= −∂u2

∂a1
=

∂u2

∂a2
(S28)

With these relations, we can immediately see that the response coefficient ρ = −∂u1
∂a1

/∂u1
∂a2

= 1.4

This is a slight generalization of the result from André and Day [7], who showed that the response

coefficient at the payoff-maximizing equilibrium is equal to 1 for the continuous iterated Prisoner’s6

Dilemma game. With −∂u1
∂a1

/∂u1
∂a2

= 1, the ESS condition can be re-arranged and expanded using

the chain rule:8

−

[
∂2x2

∂u2
1

(
∂u1

∂a2

)2

+
∂2x2

∂u1∂u2

∂u1

∂a2

∂u2

∂a2
+

∂x2

∂u1

∂2u1

∂a2
2

+
∂2x2

∂u2
2

(
∂u2

∂a2

)2

+
∂2x2

∂u1∂u2

∂u1

∂a2

∂u2

∂a2
+

∂x2

∂u2

∂2u2

∂a2
2

]
a1=a2=â

=

[
∂2x2

∂u2
1

∂u1

∂a1

∂u1

∂a2
+

∂2x2

∂u1∂u2

∂u1

∂a2

∂u2

∂a1
+

∂x2

∂u1

∂2u1

∂a1∂a2

+
∂2x2

∂u2
2

∂u2

∂a1

∂u2

∂a2
+

∂2x2

∂u1∂u2

∂u1

∂a1

∂u2

∂a2
+

∂x2

∂u2

∂2u2

∂a1∂a2

]
a1=a2=â

(S29)

Using the relations in (S28), we can cancel the terms involving the second derivatives of x2 with

respect to u1 and u2. We can also see using these relations that (S26) reduces to: ∂x2
∂u1

= ∂x2
∂u2

. Thus,10

equation (S29) can be re-written as:

−
[
∂x2

∂u1

(
∂2u1

∂a1∂a2
+

∂2u2

∂a1∂a2

)]
a1=a2=â

=
[
∂x2

∂u1

(
∂2u1

∂a2
2

+
∂2u2

∂a2
2

)]
a1=a2=â

, (S30)

or, equivalently12 [
∂x2

∂u1

(
∂2u1

∂a1∂a2
+

∂2u1

∂a2
2

+
∂2u2

∂a1∂a2
+

∂2u2

∂a2
2

)]
a1=a2=â

= 0 . (S31)
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This equation can only be satisfied if the terms in the parentheses add up to 0, or if ∂x2
∂u1

= 0.

Since the payoff function in a game is exogenously specified, the former case is non-generic and2

not likely to hold. Thus, we conclude that at an Pareto-efficient behavioral equilibrium whose

objective functions are evolutionarily stable, the objective function must have a critical point in4

the u1 direction. By repeating the same argument, but substituting ∂x2
∂u1

instead of ∂x2
∂u2

, we can

conclude that x2 must also have a critical point in the u2 direction at (â, â). With the further6

assumptions that ∂2x2

∂u2
1

< 0 and ∂2x2

∂u2
1

< 0 from section S.3, we can conclude that the objective

function x2 has to have a local peak at the Pareto efficient behavioral equilibrium, if it is to be an8

ESS.
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Figure S1: Contour plot of the action of individual 1 at the behavioral equilibrium, a∗1, which is
obtained by plugging the payoff functions in (1) and the objective functions in (2) into the equations
in (5) and solving numerically for a∗1 and a∗2. The value of a∗1 is given by the contour labels. Since
the payoff and objective functions are symmetric, the plot of a∗2 can be obtained by simply rotating
this plot about the β1 = β2 line. Using the resource sharing example, a∗1 can be thought of as
the donation level of individual at the behavioral equilibrium. This level is an increasing function
of both β1, the level of other-regard the focal individual 1 has for its partner, and β2, the level
of other-regard the partner has for the focal individual. ∂a∗

1
β1

is generally larger than ∂a∗
1

β2
, as one

might expect given that the two individuals do not perfectly mirror each other’s actions, though
this difference decreases as both β1 and β2 increase.
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