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Materials and Methods. Behavior and electrophysiology. Each of two
monkeys was fitted with a head post, a recording chamber whose
position was determined after MRI analysis, an eye coil and,
intermittently, digastric electromyographic (EMG) electrodes
that had been surgically implanted according to National Insti-
tutes of Health and Massachusetts Institute of Technology
guidelines for animal experimentation (1). Eye position was
recorded with conventional search coil techniques (2), and eye
and licking movements were sampled at 1 kHz. The monkeys
were trained to make saccades in response to visual targets
presented sequentially on a computer screen in front of them.
The screen displayed a 9 X 9 grid of gray potential visual targets
spaced at 5° of visual angle. In each trial of the standard task (the
RSQ4 task), the monkey had to fixate for 1 sec a central red
fixation spot and then was required to make saccades to a series
of 0.8° red target spots that were illuminated at 400-msec
intervals in up, down, right, or left directions at adjacent points
on the grid. Four targets were chosen in pairs (for example, right
followed by up or down, up followed by left or right) so that
targets never appeared at the edges of the 9 X 9 target display.
Each target remained illuminated for 400 msec and then was
extinguished when the next target turned red. The monkey was
required to acquire the targets with an eye position accuracy of
2°. If the monkey performed correctly, then, after a randomly
varied 400- to 800-msec delay, it received a drop of water or juice
delivered from a spout in front of the monkey’s mouth. If the
monkey broke fixation or did not respond to a target accurately
within 400 ms, the trial was terminated and was treated as an
error trial. The intertrial interval (ITI) was 1.5 sec for both
correct and error trials. Trials of a given condition were pre-
sented in blocks of 30-40 trials. In the standard RSQ4 task,
different sequences were presented in pseudorandom order.
These blocks of trials predominated in the ~800 trials per day
recording sessions. Other sequences with fixed sequences of
target presentation, other target presentation intervals (600- or
800-msec intervals) or randomly varying target intervals (400,
600, or 800 msec), or randomly varying target intervals and
randomly varying directions, were given, along with some blocks
in which the amount or timing of reward varied (3-4). These are
referred to as non-RSQ4 tasks.

Multiple (up to 24) tungsten electrodes (1-2 MOhm) were
implanted in the prefrontal cortex and caudate nucleus bilater-
ally. Electrodes were implanted chronically and used for up to
1-3 months. Recordings were made on average for five sessions
per week. Neural activity was acquired at a sampling rate of 32
kHz. Spike activity was sorted into clusters by Autocut under
manual control and was analyzed with custom software (3—4).
Peri-event time histograms. The spikes of each single unit accepted
for initial analysis were analyzed for each recording session.
Spikes were aligned with fixation onset. The time span of —100
msec to 5,000 msec relative to fixation onset was divided into
10-msec bins, and spikes in each bin were summed across the
multiple trials of RSQ4 blocks. The firing rate at a bin was
obtained by dividing the number of spikes in the bin by 10 ms,
which produced the peri-event time histograms (PETH) of the
single unit aligned at the fixation onset. We also aligned spikes
with other events, including task start, the onset of each target
(Go signal), saccade onsets, offset of the last saccade target, and
reward delivery. Corresponding PETHs were similarly con-
structed.

Jin et al. www.pnas.org/cgi/content/short/0909881106|

Criteria for selecting single units. For some single units, the maxi-
mum firing rate in the PETH of the RSQ4 block of trials was <2
Hz. We excluded these units from the analysis. Some single units
had gradual drifts of trial-by-trial firing rates during the record-
ing sessions. These drifts could have resulted from unstable
recording, or from the effects of changes in attention, adaptation
or learning. We excluded single units with large variations in
trial-by-trial spike rates, based on the van der Waerden normal-
scores test for k independent samples (5). This statistical pro-
cedure tests whether samples are drawn from the same under-
lying distribution. For each single unit, there were four to five
blocks of the standard RSQ4 task presented at different times
during the session. For all of the RSQ4 trials in a session, we
calculated the average spike rates during the fixation period. We
then tested the hypothesis that the firing rates in the different
RSQ4 blocks of the session were drawn from the same distri-
bution. If the hypothesis was rejected with P = 10719, it was
highly unlikely that the firing rates obeyed the same distribution
in the different blocks. The recordings were then assumed to be
unstable, and the single unit was excluded from further analysis.
Some single units had noisy firing patterns, and their PETHs did
not have task-related structures that were significantly beyond
the noisy fluctuations. We decided that the activity of a single
unit would be designated as noise if the maximum of its
corresponding smoothed PETH was <1 Hz or one standard
deviation of the noisy fluctuations obtained by subtracting the
smoothed PETH from the PETH. These noisy single units were
excluded from further analysis.

In our recordings, the electrodes were either not moved daily
or were advanced as little as possible. This raised the possibility
that single units recorded from the same electrode on consec-
utive days might be the same neuron. It is not yet possible to
resolve this issue unambiguously, but we used the following
approximate method to eliminate putative repeat neurons. We
collected all single units recorded from one electrode within a
period during which the electrode was not moved by >42 pum. If
the period exceeded 2 weeks, it was broken into consecutive
2-week spans. For each single unit, we calculated the smoothed
PETH. We then computed the Pearson’s product-moment cor-
relation coefficient between the smoothed PETHs of the col-
lected single units. The single units with correlations that
exceeded 0.8 were considered as putative repeat units—possibly
the same neuron. Among them, the one with the largest firing-
rate range in the smoothed PETH was selected to represent the
cell, and all others were excluded from analysis. Table S1 shows
the results of these analyses.

Smoothing. PETHs are smoothed to improve the estimate of the
underlying firing rate changes (6). The smoothing is done by
using the least-square fitting to the PETH with B-form cubic
splines. It was important to correlate the density of the knots for
the splines to the shape of the PETH. More knots were placed
at the peaks than at the slowly varying parts of the PETH. To
accomplish this, we first smoothed the PETH with a Savitzky—
Golay FIR filter of second order (7) using window size 15. The
resulting curve was further smoothed with the robust fitting
method LOWESS (8) with window size 60. The second smooth-
ing finds the slowly varying part of the PETH by weighting less
those points with large deviations from the mean. We used the
difference between these two smoothed curves to place more
knots at peaks of the PETH relative to the slowly varying parts.
To counter the possibility that the features in the smoothed
curve from the B-form cubic splines were due to fluctuations in
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the spike trains, we created 50 bootstrap samples of the spike
trains and averaged the smoothed curves. Fig. S1 shows an
example of the smoothed curve.

Clustering. To determine the similarity of the smoothed PETHs
(sPETHSs) of the single units, we used a clustering algorithm
modified from the shared nearest-neighbor clustering method
(9). Each sPETH is considered as a point in the N-dimensional
space, where N is the number of time bins in the sSPETH. The
similarity of two sSPETHs is quantified by the distance, defined
as one minus the Pearson’s product-moment correlation coef-
ficient between the SPETHs with the means subtracted. The
clustering algorithm, which we call the “core point clustering
algorithm,” consists of the following steps. (i) Construct the
neighborhood structure of each point by listing the nearby points
with a distance of <0.15. (ii) Among the points that are not yet
part of a cluster, select the one with the maximum number of
neighbors as the core point of a new cluster. (iii) All points that
are the neighbors of the core point and are not yet clustered are
assigned to the new cluster, and the center of all points in the new
cluster is calculated by taking the mean of the positions of the
points. (iv) Go through all points that are not clustered, in the
descending order of the number of neighbors. For each point and
its neighboring points, compute the center. If the distance from
the center to that of the new cluster is <0.15, the point and all
its neighbors not yet clustered are included in the new cluster.
The center of the new cluster is updated. This is done until no
more points can be merged into the new cluster. (v) Repeat from
step ii onward until no new cluster can be created. (vi) Merge
clusters whose centers are within a distance of 0.2. (vii) Go
through all points with no neighbors and assign them to the
cluster with the nearest distance to the center if the distance is
<0.4. The number of clusters depends on the parameters in the
algorithm. The number is selected such that, according to
subjective judgments, points with similar profiles are not split
into different clusters, and those with different profiles are not
joined into the same clusters. The exact number is not important.
There are points that are not assigned to any cluster, because
they are sufficiently far from any other points according to the
distance measure criterion. Most of these points have noisy firing
patterns.

Peak detection. To assess the phasic responses of the single units,
we used an in-house peak detection algorithm on the smoothed
PETHs aligned with various events. The peak detection proce-
dure for a curve y(x) was as follows. We fitted the curve to an
asymmetric Gaussian function with a linear base by using the
least square method. The formula of the fit function was
biexp(—ba(x — bg)*/(1 + bs(x — b4))?) + bs, + bex, where b, i =
1,..., 6 are the fitting parameters. The peak position (or the
latency) is taken as the position of the maximum of the fitted
curve. The peak height was defined as the maximum value of the
fitted curve. The relative height of the peak is the difference
between the peak height and the height of the inflection point,
which is defined as the larger of the minima of the two halves of
the fitted curve divided at the peak position. The width is the
interval of the fitted curve above the inflection point. The
half-width is the interval of the fitted curve above the value
obtained by the height minus half of the relative height.

To avoid fitting fictitious peaks to noisy fluctuations, we
rejected the peak if (i) the product of the width and the relative
height was less than the product of the bin size (10 msec) and the
noise threshold, set as twice the standard deviation of the
difference between sSPETH and PETH; or (ii) the relative height
was less than the noise threshold; or (iii) the difference between
the height and the value of the second highest point in the
smoothed y outside of the peak was smaller than the noise
threshold; or (iv) the peak position was less than five times the
bin size to either boundary of the span of the curve.
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Robustness of peak. A peak in a PETH could arise because of
incidental alignments of random spikes in a subset of trials. Such
a random peak is fragile and tends to disappear if different
combinations of trials are used for constructing the PETH.
Moreover, when a random peak appears in some of the combi-
nations, its position should vary randomly. We therefore as-
sessed the robustness of a peak by creating 100 sets of trials by
using the bootstrap re-sampling technique. A bootstrap sample
of a set of n trials is created by randomly selecting # times one
of the trials in the set. We constructed PETH for each set of
trials, and detected peaks. The peak was considered robust if the
peak was accepted in >50% of the samples, and the standard
deviation of the peak positions was <50 msec. We have tested,
using random spike trains, that these two criteria reject all
random peaks.

Distinguishing sensory and motor responses. A peak in the firing rate
after a visual signal could be related to the visual signal itself
(sensory) or the associated saccade (motor). To distinguish
between these possibilities, we took advantage of the fact that the
saccade timing relative to the visual signal is dispersed from trial
to trial (Fig. 1B). If the peak were related to the saccade, its
height should be smaller than the original value if the spikes are
aligned with the saccade timings shuffled among the trials. For
each set of shuffled saccade timings, we constructed the PETH
and computed the peak height. The distribution of these peak
heights, denoted as Ds, was constructed by using 200 sets of
shuffled timings. We tested (z test, one-tailed) the null hypoth-
esis that the peak height aligned with the original saccade
timings, peak saccade» 18 drawn from the distribution Ds. If the null
hypothesis is rejected (P = 0.05) and rpeak saccade 1S larger than the
mean of Ds, the peak is judged as tightly locked to the saccade,
because shuffling saccade timings significantly reduces the peak
height. On the other hand, if the null hypothesis is not rejected,
the peak is not tightly locked to the saccade; it is highly likely that
the peak is due to the visual signal. We assigned the peak as
sensory-related in this case. Thus, although we could not dis-
tinguish intermediate states between the initial sensory response
and the ultimate motor response, we were able to use locking to
saccade onset to identify “motor”-related units, and for simplic-
ity we termed the remaining units as “sensory.” An example of
a single unit responding to the first saccade rather than to the
first Go signal is shown in Fig. S3. Fig. S4 illustrates an example
of a neuron that responded to the first Go better than to the first
saccade.

Population coding of time. The diversity of the response profiles that
we found made it an attractive possibility that the population
activity might be distinctive at each time point during the task.
A decoding neuron driven by the population of neurons might be
able to detect such distinctions, and thus would be able to tell the
time by firing only at one time point. A simple model of the
decoding neuron is the perceptron (10-11). This simple and
widely used model for the decoding neuron mimics the neural
integration and firing processes. We used this model to test our
hypothesis of time encoding by populations of DLPFC and CN
neurons.

In the perceptron, the firing rates of input neurons are
weighted and summed, and the perceptron fires if the sum
exceeds a threshold. Mathematically, a perceptron corresponds
to a hyperplane in a M-dimensional space, in which each
dimension represents the firing rate of one of the M input
neurons. The firing rates of the input neurons at one time are
represented as a point in the space. The hyperplane separates the
points at different times into two groups, one for the population
profiles that make the perceptron fire, the other for those that
do not. The weights and the threshold, respectively, determine
the orientation and the position of the hyperplane. If suitable
weights and a threshold can be found such that the hyperplane
separates one point from all others, the perceptron fires only at
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one time-point during the task. If this can be done for all points,
perceptrons can be constructed to distinguish all times. This
result can be achieved in general if the number of input
single-units N is large enough compared to the total number of
time points, and the firing profiles of the single units are
sufficiently distinctive (12).

The weights and thresholds can vary within some range
without altering the response property of the perceptron to a
given group of points. A useful concept for distinguishing these
functionally equivalent weights and thresholds is the separation
margin, which is the sum of the smallest distances to the
hyperplane from the two separated groups of points. The
separation margin is a measure of the robustness of the per-
ceptron against the noisy fluctuations of the input firing rates.
From trial to trial, the firing rates of inputs fluctuate, and hence
the positions of the points jitter. A small margin makes the
perceptron prone to inconsistent responses because of such
fluctuations. The set of weights and thresholds that maximizes
this margin gives the most robust decoder. Such a perceptron is
also called a support vector machine (13). The maximum margin
that can be achieved for a given set of points also indicates the
degree of separation between the two groups that the perceptron
distinguishes. To minimize the impact of noise fluctuations of
the firing rates on the maximum margin, the firing rates of each
input neuron is scaled with the noise level of the neuron before
the weights and thresholds are computed. We describe below the
mathematical process of calculating the maximum margin.

Let R; = (ri1,ri2,--.in) be the input profile of the ith neuron
obtained by aligning spikes with the fixation, smoothing the
PETH (sPETH) and further scaled with the noise level defined
as the standard deviation of the difference between the PETH
and the SPETH (if the standard deviation is <1 Hz, the noise
level is set to 1 Hz). Here r;; is the scaled firing rate at the jth time
bin, and n = 510 is the total number of time bins (the duration
of profile is from —100 msec to 5,000 msec relative to the fixation
onset, and the time bin is 10 msec). Let M be the number of the
neurons. At the jth time bin, the population profile of the neural
responses is given by the firing rates of the M neurons at that time
point: P; = (ryj,r2,...ra). Consider N perceptrons, each getting
inputs from the M single units. The response Dj; of the kth
decoder at the jth time bin is determined by the population
profile P; of the M input neurons at that time:

Dk] = H(Wk * P] - bk),

where Wy = (Wk1,Wik2,...Wiknr) 1s the weigh vector, with wy; being
the synaptic weight of neuron i on the decoder &, and by is the
firing threshold. H(-) is a step function whose value is 1 if
the argument is positive and is 0 otherwise. The decoder fires
(Dyj = 1) if the sum of the weighted inputs is larger than the
threshold, and is silent (D;; = 0) otherwise.

If the population profile at the kth time bin is sufficiently
distinctive from the population profiles at all other time bins, it
is possible to find the weights such that Dy; = 0 for j # k, and
Dy = 1. In other words, the kth decoding neuron fires only at
t = k10 — 95 msec after the fixation onset. We searched for the
maximum margin perceptron that decodes the kth time bin as
follows. We first translated the coordinates of the space such that
the point Pj, which corresponds to the population response
profile at kth time bin, is at the origin. This shifts all points
according to P; — P; = Py, and changes the perceptron criterion
to WieP; — by < 0ifj # k, and —b; > 0. Changing by shifts the
separating hyperplane without altering its orientation. We set by
such that the hyperplane is the farthest from the origin and still
separates the origin from all other population points. We then
scaled the weights by (—by): Wi — Wi/(—byi), which does not
change the location of the hyperplane. The perceptron criterion
now reads WyP; + 1 < 0 if j # k. The margin, which is the
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distance from the origin to the hyperplane, is equal to 1/| Wi,
where |W;| is the length of the weight vector. Finding the
maximum margin is thus equivalent to minimizing | W, | with the
constraints given by the perceptron criterion. We used the
multiplicative margin maximization algorithm proposed by Sha
et al. (14) to solve this constrained maximization problem.

The maximum margin is positively correlated to the distinc-
tiveness of the population profiles at different time points. In
general, the distinctiveness increases with the number of the
input neurons and the sharpness of the temporal variations of
their profiles. High firing rates improve the maximum margin,
because the points representing the population profiles in the
M-dimensional space are further apart with increased firing
rates. The maximum margin also improves if all time points
within a window ¢ = At are excluded. This is because the firing
rates of the neurons do not change much in a short time period
that is comparable to the neuron’s membrane time constant, and
the population profiles of nearby time points are similar to each
other. The half-width of the exclusion window, At, is referred to
as the resolution of the perceptron.

To illustrate the properties of the maximum margin, we
studied a simple hypothetical case in which the response profiles
of the input neurons are Gaussians. The peak position # of the
kth profile is set to #, = 5,100k/M — 95 msec. This makes the
centers of the profiles evenly distributed from —100 msec to
5,000 msec. In Fig. S84, the maximum margins of the decoders
decoding a time at the 10-msec time bins from —100 to 5,000
msec are plotted. The number of input neurons is 300; the
maximum and the half-width of the Gaussians are 10 Hz and 50
msec, respectively. Because the maximum firing rates of each
input neuron are the same, the maximum margin is the same for
all decoders except those near the either ends because of the
boundary effects. Fig. S8B shows that the maximum margin
deceases as the half-width increases, or equivalently, as the
sharpness of the response profiles decreases. Fig. S8C shows that
the maximum margin increases with the number of the input
neurons. The rate of increase is larger if the response profiles are
sharper. Coarsening the resolution also increases the maximum
margin, as shown in Fig. S8D. The effect saturates if the
resolution is coarsened beyond the width of the response pro-
files.

Uneven distributions of the maximum rates or the half widths
of the Gaussian response profiles lead to variations in the
maximum margins of the decoders. A peak in the maximum
margin distribution can result either due to a peak in the
maximum rates of the input profiles alone, or due to a peak in
the sharpness of the input profiles. The two effects can be
combined to produce peaks and troughs in the maximum margin
distribution across the decoders. Changing the distribution of the
centers of the response profiles also leads to the variations in the
maximum margin distribution.

We studied the maximum margins of the perceptron decoders
by using the smoothed PETHs of DLPFC neurons as input
neural profiles. We selected profiles with a maximum rate >5 Hz
and the range (maximum — minimum) greater than twice that
of the noise level. The number of neurons selected was 506. In
Fig. S6A, we plot the maximum margins of the 510 decoders
decoding times from —100 msec to 5,000 msec with a 10-msec
interval. The results for four resolutions are plotted. The max-
imum margins are prominent during the Go period, especially
during the first Go, during the extra-peak period, and during the
first 500 msec of the fixation period. To compare these results to
a “null” case, we created random input neurons by shuffling the
spikes in each trial of the input neurons while preserving the
statistics of the interspike intervals, smoothing the resulting
PETHs, and scaling the smoothed rates with the noise levels. The
maximum margins of the 510 decoders with the random input
neurons are also plotted in Fig. S6. The maximum margins are
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significantly larger during the above-mentioned periods com-
pared to those using the random input neurons, even at 10-msec
resolution. Similar results are obtained by using 492 CN neurons
(maximum rate >3 Hz, range greater than twice that of the noise
levels), as shown in Fig. S6B. The maximum margins based on
DLPFC neurons are in general larger than those based on CN
neurons. Coarsening the resolutions increases the maxima of the
maximum margins in these periods, as shown in Fig. S6. The
increase during the first Go period is most dramatic, and
saturates at the resolution at ~60 msec in DLPFC and 40 msec
in CN. The increase during the extra-peak period is also quite
dramatic in DLPFC. In both areas, the maximum margins during
the third and fourth Go periods are much smaller than during the
first Go, also than during the extra-peak period and the fixation
period. The increase of the margins with random inputs is
modest, as expected. The maximum margins during the reward
period are not significantly different from those with random
inputs. Changing the number of input neurons by varying the
maximum rate threshold of the selection criterion does not
change the results much, as shown in Fig. S6 for 50-msec
resolution. These results demonstrate that time encoding is
robust during the first Go period, the extra-peak period, and the
first 500 msec of the fixation period, which are the boundaries of
the action sequences.

The weak dependence of the maximum margins on the
number of input neurons indicates that many input profiles are
not critical for the decoders. The importance of an input profile
for shaping the response properties of the decoders can be
accessed by the absolute values of the weights assigned to the
profile. A large weight indicates that the profile contributes
significantly to the firing pattern of a decoder. To identify the
profiles that were most responsible for the large maximum
margins observed during the first Go period (1,150-1,550 msec
after the fixation), we ranked the absolute values of the weights
to each decoder during the period, and selected the input profiles
if their absolute weights are among the top five of the rank. Some
input profiles are selected multiple times across the decoders.
The profiles have sharp peaks during the first Go period. Many
are the time-stamp units with dominant peak responses during
the first Go period. The sharpness of the peaks of these profiles
explains the saturation effects of the maximum margins during
the first Go period as the resolution changed (Fig. S6). These
results show that neurons with sharp changes in their response
profiles have dominant contributions to the robustness of the
time decoding based on the population activity. The dispersion
of the timings of these sharp changes, such as the timings of the
peaks of the neurons responding mainly to the first GO signal,
is crucial for the decoding work in a wide range of times.
Online decoding of time. The response profile of a neuron, which is
a smoothed PETH, is based on spikes over multiple trials. The
success of time decoding using these profiles at inputs, therefore,
does not necessarily imply that it is possible to construct an
“online decoder” that receives the raw spikes of the neurons and
indicates time at every trial by spiking at a particular time. The
online decoding is possible if each neuron belongs to a group of
neurons that have the same or similar response profiles. The key
is that the spikes of the group at one trial are equivalent to the
spikes of one neuron over multiple trials.

To construct the decoder, we created N, = 500 artificial
neurons from each of the M response profiles used in the
“offline” decoders discussed in the previous section. As an
example, consider the creation of the spikes of an artificial
neuron from the response profile R; = (#;1,/i2,...7;v) of neuron i.
At each trial, the artificial neuron spikes n; = TZjN: 1 1y times,
where T = 5,100 msec is the trial duration, and #n; is the mean
number of spikes emitted by neuron i at each trial. The timing
of each spike is determined in two steps. First, the spike is
assigned to one of the N time bins, with the probability of

Jin et al. www.pnas.org/cgi/content/short/0909881106|

assigning to the jth bin being p; = r,-j/Ejj-Vzl r. Second, a random
time within the bin is assigned to the spike. Thus, if the kth bin
is selected, the spike time is (k — 1 + rand)At, where rand is a
random number between 0 and 1. This process guarantees that
the PETH of the artificial neuron is close to R;.

We denote the spike rates averaged over the N, artificial
neurons at one trial (“group spike rates”) as R; = (7i1,712,- - .7in)-
At the jth time bin, the group spike rate is given by 7;; = m;/N,At,
where m;; is the number of spikes emitted by the group in the bin.
Mathematically, the spikes of N, neurons at one trial are
equivalent to the spikes of one neuron over N, trials. Therefore,
R; should approximate R; well, and the difference should de-
crease as N, increases.

Because a response profile can be approximated with the
group spike rates at one trial, online decoding is possible. An
offline decoder can be converted into an online decoder by
replacing the response profiles with the corresponding group
spike rates at each trial, and scaling the weights with the noise
level (note that in computing the decoders the response profiles
were scaled with the noise level). As an example of this proce-
dure, consider the kth online decoder, which should spike during
each trial only near time (k — 1)Af — 95 msec. At the jth time
bin, the input to the decoder is the weighed sum of the group
spike rates of all groups at the time point:

ij = Wk * Pj

where W, is the scaled weight vector of the kth offline decoder
computed in the previous section, and P; = (7y;,7,...7uj) is the
group spike rates of M groups of the artificial neurons. The
online decoder spikes once in the time bin if the input exceeds
a threshold 6. The exact value of the threshold is not critical, as
long as it allows the decoder to spike if the input is near the
maximum of the weighted sums. If the threshold is set high, the
spike timing of the decoder is precise, but the decoder might not
fire in some trials because of fluctuations of the group spike
rates. If the threshold is set low, the decoder spikes reliably, but
the timing tends to be imprecise. We found that a good value for
Ok is 0.8 point from the minimum to the maximum of the
weighted sum at all times to the kth offline decoder.

It was also possible to construct online decoders with the raw
spikes of the recorded neurons as inputs, instead of the activity
of the artificial neurons, by using the clustering results shown in
Fig. 2 and Fig. S2. The profiles of neurons in the same cluster are
similar; therefore, the population spikes of these neurons at each
trial should approximate the averaged profile of the cluster. The
approximation should be good if the number of neurons in
the cluster is large. Thus offline decoders constructed with the
averaged profiles of the clusters can be converted into online
decoders with the recorded neurons in the same way as described
above for the artificial neurons (in this case the firing rates and
the weights were not scaled with the noise levels).

To show this, we selected all clusters with at least 10 members,
and we used their averaged cluster profiles to construct offline
decoders. This led to 35 clusters in DLPFC (Fig. S2A4), and 27
clusters in CN (Fig. S2B). The separation margins of these
offline decoders are shown in Fig. S74 for DLPFC and Fig. S7D
for CN. If we included more cluster profiles, the margins
improved, but the approximations of the averaged cluster pro-
files with the population spikes deteriorated. The decoders based
on CN neurons have worse margins than those based on DLPFC
neurons, as CN neurons with sharp peaks were excluded because
they were in clusters with few units. We selected three decoders
with the largest maximum margins during the fixation period, the
first Go period, and the extra-peak period. The weighted sums
of the inputs to the selected decoders in DLPFC are shown in
Fig. S7B and those to four decoders in CN are shown in Fig. S7E.
The offline decoders were converted to online decoders by
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replacing the averaged cluster profiles with the averaged spike
rates of neurons in the clusters in each trial, smoothed by using
a Savitzky—Golay FIR filter of second order and window size 15.
The thresholds were set to the 0.9 points from the minimum to
the maximum of the inputs to the corresponding offline decod-
ers. The trial-by-trial spikes of the online decoders correspond-
ing to those shown in Fig. S7 B and E are shown in Fig. S7 C and
F. The DLPFC online decoder during the first Go (D2 in Fig.
S7C) does spike roughly at the decoding time, although there are
some noisy fluctuations. This is true to some extent for the
DLPFC online decoder (D3 in Fig. S7C) during the extra-peak
period. Other decoders are swamped by noise, reflecting the fact
that the margins of the corresponding offline decoders are
relatively small.

Discussion. Several technical points need to be considered in
relation to our findings. First, we found that the response profiles
of neural population in the prefrontal cortex and striatum can be
used to decode times in the task. This is not the same as decoding
time trial by trial. A profile is computed by using spikes over
multiple trials. Moreover, the saccade sequences were different
for each trial. A direction-selective neuron would spike more in
trials that contain its preferred directions. However, online
decoding would be possible if there were groups of neurons
sharing the same profile, and if in each group, it were equally
probable to find a neuron preferring any of the four directions.
In this case, the group-averaged spike rates at each trial would
approximate well the profile, so that even if different subsets of
neurons were active trial-to-trial, the group-averaged spikes
would remain stable because the spikes of the subsets are
equivalent. This stability enables a decoder to tell time in each
trial. The existence of such groups is suggested by our clustering
results and is a reasonable assumption, but it remains to be
proven unequivocally.

When we limited our analysis to the recorded neurons only,
without assuming such groups, it was still possible to decode time
online during the first Go period, but not during other periods
(Fig. S7). The number of neurons recorded may not have been
large enough for adequate analysis by the perceptron model.
There are methods that are mathematically more powerful than
the perceptron for decoding population activity. For example,

. Blazquez P, Fujii N, Kojima J, Graybiel AM (2002) A network representation of response
probability in the striatum. Neuron 33:973-982.

. Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye
movement chronically in the monkey. J App/ Physiol 21:1068—-1070.

. Fujii N, Graybiel A (2003) Representation of action sequence boundaries by macaque
prefrontal cortical neurons. Science 301:1246-1249.

. Fujii N, Graybiel A (2005) Time-varying covariance of neural activities recorded in
striatum and frontal cortex as monkeys perform sequential-saccade tasks. Proc Nat/
Acad Sci USA 102:9032-9037.

. Sheskin DJ (2000) Handbook of Parametric and Nonparametric Statistical Procedures
(CRC, Boca Raton, FL).

. Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data.
J Neurophysiol 94:8-25.

. Orfanidis SJ (1996) Introduction to Signal Processing (Prentice-Hall, Englewood Cliffs, NJ).
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Zhang et al. (15) proposed a Bayesian probabilistic method for
decoding the locations of rats by using the spikes of a population
of place cells recorded in the hippocampus, and this method
could be adapted to decode time in our case. We chose the
perceptron as the decoder because it mimics the synaptic inte-
gration process of a real neuron, and it was adequate for our goal
of demonstrating the fine-scaled time encoding in the population
activity.

Second, our data were recorded over a period of 3 years. It is
possible that the neural profiles are not representative of those
in a single day, as some of the profiles could exist only transiently.
We judge this to be unlikely, as the recordings were made after
the monkeys had been overtrained, but we cannot exclude this
possibility.

Third, the percentage of neurons in our sample that exhibited
the time-stamp property was small, yet distributed time coverage
was evident. Because of the sampling problems inherent in the
recording methods, we cannot judge the true frequency of such
neurons. We suspect that we were able to find them because we
sampled the activity of thousands of neurons.

Finally, the maximum peak latency for the time-stamp re-
sponses during the first Go period was 435 msec. This was close
to the upper limit possible for analysis of first Go responses in
our experiments, because the second Go signal in the standard
RSQ4 task came at 400 msec. We consider that the response at
a 435-msec latency was unlikely to be a reaction to the second
Go signal, given that this would require a response latency of 35
msec, which is shorter than the shortest latency we observed for
the first Go signal (145 msec).

Our experiments differ from those in previous electrophysi-
ological studies searching for time-related activity in behaving
animals, as we did not require explicit timing of our experimental
animals. Thus, time information was not imprinted in the
neurons as a result of reward-based learning for coding partic-
ular time intervals. Our monkeys did have extensive exposure to
the 400-msec RSQ4 time intervals, but for long periods they also
were given exposure to other intervals (600 msec, 800 msec) in
dedicated trial blocks as well as in blocks in which these different
intervals were randomly mixed. At all of these intervals, the
saccadic latencies of the monkeys grouped around the mean of
ca. 280 msec, so that the saccade latencies did not suggest
interval timing on the part of the monkeys.

9. Ertoz L, Steinbach M, Kumar V (2003) Finding clusters of different sizes, shapes and
densities in noisy high dimensional data. Proceedings of the 2003 SIAM International
Conference on Data Mining (SIAM, New York).

10. RosenblattF (1958) The perceptron: A probabilistic model for information storage and
organization in the brain. Psychol Rev 65:386-408.

11. Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence
detection of oscillatory processes. Brain Res Cogn Brain Res 21:139-170.

12. Cover TM (1965) IEEE Trans Electron Comput EC-14:326-.

13. Vapnik VN (1982) Estimation of Dependences Based on Empirical Data (Springer, New
York).

14. ShaF, Saul LK, Lee DD (2002) Advances in Neural Information Processing Systems (MIT
Press, Cambridge, MA), Vol 15, pp 1065-1072.

15. Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal
population activity by reconstruction: Unified framework with application to hip-
pocampal place cells. J Neurophysiol 79:1017-1044.
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Fig.S1. Anexample of the method used to obtain the peri-event time histogram (PETH) and the smoothed PETH (sPETH). (A) Spike raster of a single unit. Spikes
from multiple trials are aligned at the fixation onset, indicated by the first red vertical line (the other vertical lines indicate the Go times). (B) The constructed
PETH (black curve) and its SPETH version (green curve). (C) Noisy fluctuations of the PETH around the corresponding sPETH.
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Fig. S2. The averaged response profiles of the clusters of DLPFC (A) and CN (B) units identified by the clustering algorithm. The cluster IDs and the number of
single units in the cluster are shown above each profile. The colors indicate successive periods of the task. The first black trace indicates the fixation period;
alternating red and blue indicate the consecutive 400-msec periods of the four Go signals; green indicates the extra-peak period, which is the 400-msec period
after the last target-off; and the last black trace indicates the reward period and intertask-interval.

Jin et al. www.pnas.org/cgi/content/short/0909881106| 7 of 14



http://www.pnas.org/cgi/content/short/0909881106

Lo L

P

1\

=y

A Spikes: Go Align B Spikes: Saccade Align
1 o A
I- - -
3 r 5 .
o ! 38 -
[ I [= 1
= | =] I -
4 1 P I
s I i I
= -1 = -
= - = a
| |
1 o S . A . .
I — - " - " " - - ' - " —
0 200 400 600 200 0 200 400
Time (msec) Time (msec)
c PETH: Go Align D PETH: Saccade Align
4+ | 41 1
| |
1 1
34 1 34 1
—_ 1 — 1
T ! T !
32 | 32 |
& ! & '
1 1
11 11 I
|
| |
0 4 T T T T T ) 0 T } T \
0 100 200 300 400 500 600 1200 0 200 400
Time (msec) Time (msec)
E 80 Saccade Latency F Comparison Fitted Curves
. 4-
!
601 3
. = 1
3 z :
E 40 @ 21 !
E b1 !
4 o :
207 1 I —
:
r ; r . . 0 r r : . . .
0 150 200 250 300 350 400 300 200 1100 0 100 200 300
Time (msec) Time (msec)
G P=0.0001866
20 |
|
5 15 :
[ 1
=] |
=z 10+ 1
|
1
1
51 1
|
|
T T - T ]
02 25 3 35 4

Peak Height (Hz)

Fig.$3. Anexample of asingle unitidentified as a first saccade-related unit. (A) Spike raster aligned on the first Go. (B) Spike raster aligned on the first saccade
onset. (C) The PETH of the Go-aligned spikes (thin black line), along with the fitted peak profile (thick green line). (D) The same as in C but the fitted peak profile
with saccade onset alignment (thick blue line). (E) The distribution of the timings of the first saccades relative to the first Go signal. (F) A comparison between
the fitted peak profiles (green, Go alignment; blue, saccade alignment). (G) Distribution of the peak heights of PETH constructed with shuffled saccade timings
(200 samples). The red line indicates the peak height of the PETH constructed with the original saccade timings, as shown in D. The P value of the z test is shown.
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Fig. S4. An example of a “visual” (Go-responding) single unit. The plots in A-G correspond to those in Fig. S3.
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Fig. S5. (A) The smoothed profiles of single units in the DLPFC with dominant fixation on responses during the fixation period or dominant first saccade
responses during the first Go period. The gray vertical lines indicate the spike alignment timings in each plot. Other conventions are the same as in Fig. 3. (B)
Peak half-widths and distribution of peak timings for the first saccade (red) and fixation on (green) responsive neurons in the DLPFC. (C and D) Similar plots for
CN units.
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(A and B) Maximum margins of decoders with 10-msec, 30-msec, 50-msec, and 70-msec resolutions for DLPFC (A) and CN (B) units. The color code is

the same as in Fig. 4A of the main text. The noise level is shown in gray. (C and D) The maxima of the margins as a function of the resolution for the DLPFC (C)
and CN (D) during the fixation period (black); the first, the second, the third, and the fourth Go periods (red, blue, magenta, and cyan, respectively); the extra-peak
period (green); and the reward period (orange). The noise level is shown in gray. (E and F) The maxima of the margins as a function of the number of neurons
during various periods in the DLPFC (E) and CN (F). The color scheme is the same as in C and D.
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Fig. S7. Perceptrons driven by DLPFC neurons in clusters c1 to ¢35 (A-C) or by CN neurons in clusters c1 to c27 (D-F) in Fig. S2. The plotting convention is the
same as in Fig. 4. (A and D) Maximum margin for perceptrons using the averaged profiles of the clusters as inputs. (B and E) Examples of the weighted sums of
the inputs for three selected perceptrons during the task. (C and F) Trial-by-trial spike responses of three online decoders receiving raw spikes of neurons in the
clusters as inputs. The number of trials in each decoder is 29 for the prefrontal inputs (C) and 40 for the striatal inputs (F).
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Fig. S8. Maximum margins in a model in which the input neural profiles are Gaussians. (A) Maximum margins of 510 decoders, each decoding a time point
from —100 msec to 5,000 msec with an interval of 10 msec. The number of input neurons is 300. The resolution of the decoders is 20 msec. The half-width of the
response profiles is 50 msec. (B) Maximum margin as a function of the half-width of the response profiles. Other parameters are the same as in A. (C) Maximum
margin as a function of the number of input neurons. The perceptron resolution is 20 msec. The red, green, yellow, blue, and black curves are for the case of
the half-width being 40, 80, 120, 160, and 200 msec, respectively. (D) Maximum margin as a function of the resolution of the perceptron. The number of input
neurons is 300. The colors of the curves represent the same half-widths as in C.
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Table S1. Classification of recorded units

Parameters DLPFC neurons CN neurons
All recorded units 2,483 3,203
Max rate < 2 Hz (rejected) 293 358
Unstable rate (rejected) 173 341
Total accepted 2,017 2,504
Noisy (excluded) 275 399
Total excluding noisy units 1,742 2,105
Total nonrepeat units 1,613 2,035
Total used in population time coding analysis 506 492

Total units assigned to clusters
Total unclustered units

1,004 (66clusters)
609

1,070 (35clusters)
965
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