Text S2

Effect of G protein $\beta\gamma$ on PLC β activation. CHO cells stably expressing M2 muscarinic receptor were transiently transfected with α o, β 1, YFP- γ 9 subunits and PHmCh sensor. The cells were imaged as described in the materials and methods section. Briefly, they are mounted on imaging chamber and sequentially exposed to 100 μ M of M2 receptor agonist (carbachol) followed by 100 μ M of antagonist (atropine). Images for YFP- γ 11 and PH-mCh were captured at every 10 sec interval. Translocation of YFP- γ 11 in response to M2 receptor activation was observed indicating that receptor activation status. The translocating $\beta\gamma$ reverse translocated on plasma membrane on deactivation of the receptor. On the other hand no change in localization of PH-mCh was observed indicating towards failure of G $\beta\gamma$ to activate PLC β which leads to PIP2 hydrolysis. Substitution of G γ 11 with other gamma subunits (γ 2 or γ 3) has no impact on the observations.

To ascertain that the cells are not mutated for PLC β activity, transient introduction of a G α q coupled receptor, M3 induced significant translocation of PH-mCh indicating that the cells used in the study were completely functionally proficient. These observations clearly indicated that no PLC β activation through G $\beta\gamma$ in living cells is detected.