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Supplementary Results 

α–MSH inhibits hypothalamic Pcsk1  

We found reduced hypothalamic Pcsk1 mRNA and protein levels in refed Pomc-Foxo1–/–

mice (Supplementary Fig. 6a–e). Unlike Cpe, the decrease of Pcsk1 was not confined to 

the ARC, but was also seen in the PVN, consistent with a paracrine effect of increased α–

Msh (Supplementary Fig. 6b,c). This decrease was unexpected, given that leptin 

sensitivity was increased (Fig. 2g), and that leptin increases Pcsk1 in hypothalamic 

neurons. We therefore investigated whether the reduction of hypothalamic Pcsk1 results 

from feedback inhibition by α–Msh.  We first analyzed the effect of α–Msh on Pcsk1 

promoter activity in Neuro2A cells. Incubation with α–Msh suppressed Pcsk1 reporter 

gene activity by ~60% (Supplementary Fig. 6f). Likewise, α–Msh reduced endogenous 

Pcsk1 expression by ~50% in primary MBH cells (Supplementary Fig. 6g). To test if 

repression also occurs in vivo, we injected NDP–α–Msh ICV and analyzed Pcsk1 

expression. Consistent with the in vitro findings, NDP–α–Msh reduced Pcsk1 in ARC 

and PVN (Supplementary Fig. 6h,i), but failed to affect Cpe (data not shown). These 

data demonstrate feedback inhibition of hypothalamic Pcsk1 by α–Msh and suggest that 

reduced Pc1 in refed Pomc-Foxo1–/– mice is the result of increased α–Msh. 
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Supplementary Figure Legends 

Supplementary Figure 1 POMC neuron-specific FoxO1 ablation. (a) Representative 

hypothalamic GFP immunohistochemistry in PomcCre-Gt(ROSA)26Sortm2Sho mice. 3V: 

third ventricle. (b) Foxo1 and Cre genotyping. Arrows indicate loxP-flanked (flox, lower 

arrow) and recombined (Δ, upper arrow) Foxo1 alleles. Pi: pituitary; Hy: mediobasal 

hypothalamus; Bs: brainstem; Cx: cortex; Cb: cerebellum; Li: liver; Pa: pancreas; Wa: 

white adipocyte; Ba: brown adipocyte; Sm: skeletal muscle; Co: control. (c) Relative 

pituitary Foxo1 expression in adult mice (n = 6). (d) MBH Pomc and Agrp promoter 

ChIP. (e) Relative Pomc expression in pituitary of mice in (c). (f) Serum corticosterone 

levels in adult mice in the basal state and after 1-h restraint stress (females only) (n = 6). 

Data are presented as means ± SEM. * = P <0.05; *** = P ≤0.001 by t-test. 

 

Supplementary Figure 2 Body length and body mass index. (a) Body mass index (BMI) 

of NCD–fed, 18-week-old female (n = 40–71) and (b) male (n = 35–67) mice. (c, d) 

Naso-anal body length of mice in (a, b). Data are presented as means ± SEM. ** = P 

≤0.01; *** = P ≤0.001 by unpaired t-test. 

 

Supplementary Figure 3 Energy expenditure and food intake. (a) Energy expenditure, 

plotted as 1-h running averages, (b) average energy expenditure during the light/day and 

dark/night phase, (c) total locomotion in the cage periphery, (d) respiratory quotient 

(RQ), and (e) percentage of NCD ingested during the light (light grey) and dark (dark 

grey) phase in adult male mice (n = 8). 
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Supplementary Figure 4 POMC neuron counts and neuropeptide mRNA levels. (a) 

POMC neuron numbers in 15-week-old male mice (n = 9). (b) Ad libitum (n = 5) and (c) 

refed (n = 14–17) MBH mRNA expression in 18–week–old male mice. Data represent 

mean ± SEM and are normalized by Actb levels. * = P <0.05 by t-test. 

 

Supplementary Figure 5 MBH neuropeptide mRNA and peptide expression. (a) Pomc 

levels in 3– to 4–week–old mice (n = 4–6) and (b) in 4– to 5–week-old (n = 3–4) refed 

mice. (c) Agrp and Pomc in ad libitum-fed (n = 5) and (d) refed (n = 14–17) 18–week–

old male mice. (e, f) Agrp/Pomc ratios in the animals shown in (c, d). Data represent 

mean ± SEM. mRNA levels (but not ratios) are normalized by average neuron number in 

each genotype. * = P <0.05 by unpaired t-test. 

 
Supplementary Figure 6 α–MSH inhibits hypothalamic PC1. (a) Hypothalamic Pcsk1 in 

ad libitum-fed (n = 5) and refed (n = 14–15) male mice. Data are normalized by Actb and 

plotted as % of ad libitum-fed levels in WT. (b) Pcsk1 levels in ARC (n = 10–11) and (c) 

PVN (n = 5–6) of refed male mice. (d) Representative hypothalamic Pc1 and β-actin 

western blot and (e) quantitation of Pc1 protein levels in refed male mice (n = 13–14). (f) 

α–Msh regulates Pcsk1-luciferase activity in Neuro2A cells co-transfected with plasmid 

pEGFP-Mc4r to express melanocortin-4 receptors. (g) α–Msh regulates Pcsk1 in primary 

MBH cultures (n=6–21). (h) Pcsk1 expression in ARC and (i) PVN of adult mice 

following ICV injection of NDP–α–Msh or saline control (n = 9–10). Data are presented 

as means ± SEM. # = P ≤0.01 in ad libitum vs. refed (same genotype) by ANOVA. * = P 
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<0.05; ** = P ≤0.01 WT vs. Pomc-Foxo1–/– untreated vs. treated (same condition) by 

ANOVA. 

 

Supplementary Figure 7 Pcsk2 expression and ghrelin levels. (a) MBH Pcsk2 in refed 

male mice (n = 14–15). Data are normalized by Actb levels. (b) Western blot of the 64–

66kDa Pc2 isoform in MBH extracts of refed male mice. Actin was used as loading 

control. (c) Serum ghrelin levels in adult male mice. Samples were obtained one hour 

before lights off (n = 7). Data are presented as means ± SEM. 
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Supplementary Table 1 Neuropeptide levels in MBH of refed mice 

Peptide WT Pomc-Foxo1–/– 

ACTH 166 ± 19 149 ± 14 

POMC 220 ± 20 195 ± 16 

β–EP 555 ± 28 543 ± 32 

αMSH 306 ± 20 309 ± 20 

AgRP 343 ± 25 299 ± 18 

POMC/αMSH 0.75 ± 0.06 0.66 ± 0.06 

Data are presented as mean fmol/mg protein ± SEM (n = 13–18), P = NS. 
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