Figure S1. Expression levels of β_{2a} or Ca_v1.2 Ca²⁺-channel subunits in hearts of transgenic animals. **a**, Induction of the β_{2a} -subunit by tebufenozide treatment. mRNA copy number of endogenous murine β_2 -subunit and overexpressed rat β_{2a} -subunit. tg_{ind} β_{2a} and double-transgenic mice showed approximately 100-fold overexpression of the β_2 -subunit compared to wild-type and tg Ca_v1.2 mice upon tebufenozide treatment (n=5-15 per genotype, ***p<0.001). **b**, Overexpression of human Ca_v1.2-subunit. No differences were observed in mRNA expression levels between tg Ca_v1.2 and tg Ca_v1.2 x tg_{ind} β_{2a} mice (n=8-9 per genotype).

Figure S2: Gating of single ventricular L-type Ca²⁺-channels at +20 mV. At this more depolarized test potential the lower basal activity in myocytes from tg Ca_v1.2 is confirmed. In accordance with the leftward shift at the whole-cell level (Figure 1), effects of β_{2a} overexpression on single-channel gating are less pronounced at +20 mV compared to +10 mV (cf. Figure 2) (wild-type: n=8, tg_{ind} β_{2a} : n=7, tg Ca_v1.2: n=6, tg Ca_v1.2 x tg_{ind} β_{2a} : n=8, * p<0.05; ** p<0.01).

Figure S3: Effects of cAMP-stimulation on Ca²⁺ currents in ventricles overexpressing a β_{2a} subunit. Exemplary traces and time courses of ventricular whole-cell Ca²⁺ currents reveal a clear-cut increase of peak current following application of 8-Br-cAMP (1mM) and okadaic acid (1µM) in wild-type (**a**, **b**) myocytes. This effect was blunted in cardiomyocytes from mice overexpressing the cardiac β_{2} subunit (tg_{ind} β_{2a} ; **d**, **e**). Current increase was statistically significant in case of wildtype (n=6) but not tg_{ind} β_{2a} myocytes (n=5) (**c**, **f**).

Tab. S1: Sequences of primers used for quantitative real-time PCR.

Gene	Gene symbol	Primer [5' → 3']	Product size (bp)
β-actin	Actb	s: TCCATCATGAAGTGTGACGT as: GAGCAATGATCTTGATCTTCAT	154
S29	Rps29	s: ATGGGTCACCAGCAGCTCTA as: AGCCTATGTCCTTCGCGTACT	155
atrial natriuretic peptide	Nppa	s: GCTTCCAGGCCATATTGGAG as: GGGGGCATGACCTCATCTT	126
Connective tissue growth factor	Ctgf	s: TGACCCCTGCGACCCACA as: TACACCGACCCACCGAAGACACAG	117
$\alpha_2 \delta_1$ -subunit	Cacna2d1	s: ATGGTCCAGATCCTTGCGA as: CACCACAGTCAGTATAATCCT	102
$\alpha_2 \delta_2$ -subunit	Cacna2d2	s: CAGCTGCGTCATGAAACAGA as: TTGGTCAGTCTCTGCGCAT	114
β_1 -subunit	Cacnb1	s: TGGACAGCCTTCGTCTGCT as: TGGAACTGGAGTTGTCACCT	75
β ₂ -subunit (isoform 1)	Cacnb2	s: ATGGAAGCACATCGTCAGACACT as: CCTGCCGCTCAGCTTCTCTA	141
β2-subunit (isoform 2) + rat β2a	Cacnb2	s: TGCCACCTCTTCATGCAGTG as: CCTGCCGCTCAGCTTCTCTA	155
β ₂ -subunit (isoform 3)	Cacnb2	s: GAAGGCTGAAGAGTTCGGACAT as: CCTGCCGCTCAGCTTCTCTA	121
β_3 -subunit	Cacnb3	s: TGGAGTCAACTTTGAGGCCA as: TCCCGATCCACCAGTCATTG	71
murine Ca _∨ 1.2- subunit	Cacna1c	s: TCCGAACATTACAACCAGCCT as: GCTGTACATCTTCAGGAGCA	105
human Ca _v 1.2- subunit	Cacna1c	s: CACACCAGAAATGACAGACA as: ATTCATGTTGGCGTGATTAT	95

Abbreviations: s - sense primer, as - antisense primer, bp - base pairs.

Tab. S2:	mRNA	expression	of	endogenous	murine	Ca ²⁺ -channel	β-	or
$Ca_v 1.2$ - subunits in the heart of wild-type or transgenic mice.								

gene	gene symbol	wild-type	$tg_{ind} \beta_{2a}$	p-value	tg Ca _v 1.2	tg _{ind} β _{2a} x tg Ca _v 1.2	p-value
β_1 -subunit	Cacnb1	100 ± 17	82 ± 12	p = 0.56	100 ± 13	95 ± 5	p = 0.71
β_2 -subunit (isoform 1)	Cacnb2	100 ± 13	116 ± 21	p = 0.51	100 ± 13	109 ± 6	p = 0.52
β ₂ -subunit (isoform 3)	Cacnb2	100 ± 13	112 ± 22	p = 0.85	100 ± 10	106 ± 19	p = 1.00
β_3 -subunit	Cacnb3	100 ± 19	85 ± 16	p = 0.56	100 ± 23	84 ± 9	p = 0.51
Ca _v 1.2- subunit	Cacnalc	100 ± 14	96 ± 17	p = 0.86	100 ± 12	100 ± 10	p = 1.00

Figure S1

Figure S2

Figure S3

