Table S3. Effect of the pharmacological signaling molecules on appressorium formation. | Surface | Strain | Appressorium formation (%) | | | | | | |-------------|-----------|----------------------------|----------------|-----------------|-------------------|------------------------------|------------------| | | | No
treatment | HDD
(1 µM) | cAMP
(10 mM) | DOG
(20 µg/ml) | CaCl ₂
(10 mM) | Treatment of all | | Hydrophilic | Wild-type | 2.6 ± 0.7 | 63.7 ± 4.3 | 43.7 ± 4.2 | 83.4 ± 7.7 | 5.8 ± 1.5 | 92.2 ± 1.1 | | | ∆Mohox7 | 0.3 ± 0.5 | 0.9 ± 0.1 | 1.1 ± 0.5 | 0.6 ± 0.5 | 1.6 ± 0.5 | 3.0 ± 1.1 | | Hydrophobic | Wild-type | 99.7 ± 0.5 | 98.8 ± 1.0 | 97.5 ± 0.8 | 97.9 ± 2.2 | 98.6 ± 0.5 | 98.8 ± 0.5 | | | ∆Mohox7 | 0.3 ± 0.5 | 1.1 ± 0.5 | 0.9 ± 0.8 | 1.3 ± 0.6 | 0.6 ± 0.5 | 3.2 ± 1.3 | Effects of chemicals on appressorium formation were investigated. Conidial suspension (10⁵ conidia/ml) was placed on either the hydrophobic or hydrophilic side of cover slips, and mixed with following solutions to final concentrations: 10 mM cAMP (Sigma-aldrich, St. Louis, MO, USA), 1 μM 1,16-hexadecandiol (HDD, Sigma-aldrich), 20 μg/ml 1,2-dioctanoyl-*sn*-glycerol (DOG, Sigma-Aldrich), or 10 mM CaCl₂·2H₂O. Appressorium formation was observed under a microscope 18 h after incubation.