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Theoretical ancestry-capturing vector for 2 populations

As part of Simulation Study A, we consider a population consisting of two discrete sub-

populations, and we compare the results of PCA and LAPSTRUCT to a theoretically-derived

ancestry-capturing vector. Here we provide the details on the theoretical ancestry-capturing

vector for 2 populations. First note that the matrix C defined in Materials and Methods is

orthogonal to the vector with all entries equal to 1, which we call the 1-vector. Therefore the

top PC, which is normalized to have length 1, will be orthogonal to the 1-vector. Similarly,

as described in Materials and Methods, the 0th eigenvector by the Laplacian approach is

the 1-vector, so the 1st Laplacian eigenvector, which is normalized to have length 1, will be

orthogonal to the 1-vector. Therefore, the optimal value, from the point of view of capturing

ancestry, for the top PC and for the 1st Laplacian eigenvector would be a vector that is

orthogonal to the 1-vector, that is of length 1, and that captures the ancestry perfectly, i.e.

takes a constant value on population 1 and a different constant value on population 2. It

is easy to verify that the only two vectors satisfying these properties are the vectors v and

−v, where v is of length N and has entry −N2√
N1N2N

for each individual in population 1 and

entry N1√
N1N2N

for each indvidual in population 2, where N1 and N2 are the total numbers of

individuals from subpopulations 1 and 2, respectively, and N = N1 + N2.
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