Supplementary Figure 1: Effect of Dominant-negative mTOR on the Phosphorylation of STAT1:

Supplementary Figure 1: HEK 293T cells expressing myc-tagged wild-type (WT) or kinase-dead (KD) mTOR, were serum-deprived for 1 h in the absence or presence of rapamycin before incubation without or with IFN- γ for 30 min. Proteins from whole cell lysates were separated by SDS-PAGE and detected by Western blot analysis. Samples from the same experiment were used for immunoprecipitation of myc-mTOR-associated proteins (Figure 1E). Results are representative of 3 individual experiments.

Supplementary Figure 2: Protein Fragment Complementation Assay:

Supplementary Figure 2: STAT1 and PKCδ, each linked to complementary fragments of yellow fluorescent protein (YFP) were expressed in A549 cells. Physical interaction of the recombinant proteins leads to reconstitution of active YFP permitting detection by fluorescence microscopy.

Supplementary Figure 3: Efficacy and Specificity of Pooled and Single siRNA Duplexes:

Supplementary Figure 3: RNA was purified from untransfected A549 cells, or those that were mock-transfected (transfection reagent alone) or siRNA-transfected for 72 h. Preparations of siRNA duplexes included single or pooled duplexes targeting mTOR (30 nM), $\alpha 4$ (10 nM), or PP2Ac (10 nM) as indicated in Supplementary Table 1. mRNA levels of the indicated transcripts were detected by real-time PCR. Data are means of fold change in mRNA levels (untransfected controls = 1) from 3 individual experiments \pm SEM as determined by the $\Delta\Delta$ CT method. * p < 0.05 *vs*. untransfected control.

Pooled siRNA mixes contain 4 individual siRNA duplexes (Pooled RNAi; Smartpool, Dharmacon). The pooled siRNA control mix contains 4 individual duplexes that do not target mRNAs in the human transcriptome. We obtained two single siRNA duplexes from each pooled siRNA mix, and compared their respective effects on mRNA levels to those of the pooled siRNAs. Panels A-C: Each single or pooled siRNA mixture effectively depletes its target transcript. Panels D-F: None of the single or pooled siRNAs significantly reduce the levels of other transcripts that encode proteins in the mTOR signaling pathway. Data are means of fold change in mRNA levels (untransfected controls = 1) from 3 individual experiments \pm SEM. * p < 0.05 *vs*. untransfected control.

Supplementary Figure 4: Effect of single siRNA duplexes targeting mTOR, $\alpha 4$, or PP2Ac on IRF-1 induction by IFN- γ :

Supplementary Figure 4: A549 cells were transfected with non-targeting single siRNA duplex (Control) or those targeting A. mTOR (30 nM), B. α 4 (10 nM), or C. PP2Ac α (10 nM) for 72 h before serum withdrawal for 1 h in the absence or presence of rapamycin, incubation without or with IFN- γ for 2 h, and detection of the indicated proteins by Western blot. Sequences of the duplexes are recorded in Table S1. Mean integrated band density for IRF-1 ± SEM (* p < 0.05 targeting siRNA vs. non-targeting control, n=3-4 individual experiments) is shown below each Western blot. * p < 0.05 *vs*. non-targeting control.

Although siRNA duplex mTOR-1 reduced a4 and PP2Ac levels by 45% (Figure S4), protein levels were unaffected (Figure S5A, bottom panel). Duplex α 4-1 was not as effective as α 4-2 at reducing IRF-1 induction . As was the case for pooled siRNA (Fig. 5), α 4 and PP2Ac depletion with single duplexes enhanced phosphorylation of S6K; depletion of mTOR with single duplexes reduced phosphorylation of S6K.

Supplementary Tables:

siRNA target	Catalogue Number	Entrez Gene ID	
Pooled siRNA:			
PP2Aca	L-003598-01	5515	
α4	L-011298-00	3476	
mTOR	L-003008-00	2475	
siControl Non-Targeting	D-001206-13	N/A	
siRNA Pool			
Single siRNA:	Catalogue Number	Target Sequence	
PP2Acα-1	J-003598-9	ccggaauguaguaacgau	
PP2Aca-2	J-003598-10	acauuaacaccucgugaau	
α4-1	J-011298-06	gcuaucauguggcagaguu	
α4-2	J-011298-07	gggcugaucuucccacaac	
mTOR-1	J-003008-11	ggccauagcuagccucaua	
mTOR-2	J-003008-12	caaaggacuucgcccauaa	
siControl	On-Target plus Non-	ugguuuacaugucgacuaa	
	targeting siRNA #1		

Table S1: Dharmacon siRNA targets and source:

Protein	Source		
Rabbit anti-STAT1 (Westerrn)	Santa Cruz Biotechnology		
Mouse anti-STAT1a (IP or Westerrn)	Santa Cruz Biotechnology		
phospho-STAT1 S727	Upstate		
phospho-STAT1 Y701	Upstate		
РКСб	Santa Cruz Biotechnology		
Caspase-1	Santa Cruz Biotechnology		
IRF-1	Santa Cruz Biotechnology		
β-actin	Sigma		
GST	Santa Cruz Biotechnology		
α4	Upstate		
mTOR	Upstate		
PP2Ac	Cell Signaling Technology		
4E-BP1	Cell Signaling Technology		
mLST8	Cell Signaling Technology		
p70 S6 kinase	Cell Signaling Technology		
phospho-p70 S6 kinase T389	Cell Signaling Technology		
Enolase	Santa Cruz		
Acetylated histone H3	Upstate		
Rheb	Cell Signaling Technology		
Rabbit anti-myc (IP)	Upstate		

Table S2: Antibodies used for Western blot analysis or immunoprecipitations:

Mouse anti-myc (Western)	Upstate
Phospho-Akt S473	Cell Signaling
Akt	Cell Signaling

Table S3: Oligonucleotide primers (5'-3') for PCR cloning of STAT1, PKCδ, and PP2A into Gateway entry vector pDONR-221:

Transcript	Forward Primer	Reverse Primer	Template
STAT1-WT	ggggacaagtttgtacaaa	ggggaccactttgtacaa	human lung cDNA
	aaagcaggctgtatgtctc	gaaagctgggtcctatact	
	agtggtacgaacttcagcg	gtgttcatcatactgtcgaa	
	cagcg	ttct	
РКСб	ggggacaagtttgtacaaa	ggggaccactttgtacaa	pcDNA3.1 - PKCδ - WT
	aaagcaggctatggcgcc	gaaagctgggttctaacc	
	gttcctg	ggaacetecatette	
PP2Acα - WT	ggggacaagtttgtacaaa	ggggaccactttgtacaa	pcDNA3 – PP2Acα -
	aaagcaggcttcatggacg	gaaagctgggtcttacag	WT
	agaaggtgttcacca	gaagaagtctggggta	
PP2Acα -	ggggacaagtttgtacaaa	ggggaccactttgtacaa	pcDNA3 – PP2Acα -
Y307F	aaagcaggcttcatggacg	gaaagctgggtcttacag	Y307F
	agaaggtgttcacca	gaagaagtctggggta	

Transcript	Forward Primer	Reverse Primer	
STAT1	tccatcctttggtacaacatgc	cagagagggagcaggtgttt	
IRF1	gctgggacatcaacaaggat	gtggaagcatccggtacact	
45S rRNA	aacgcctgacacgcacggcacggag	cctgctgttctctcgcgcgtccgag	
ΡΡ2Αcα	ggtggcaaatcaccagatac	tctcatgattccctcgaaga	
α4	aatteeteeatggettatee	cacagcagatttcattgcag	
mTOR	gccatccagattgatacctg	tgtctgtgagaagctggtga	
Akt	gaagagatggaggtgtccct	atcttcatggcgtagtagcg	
S6K	agcacagcaaatcctcagac	tcattgtcacatccatctgc	
GAPDH	aagaaggtggtgaagcaggcg	accaggaaatgagcttgacaa	

 Table S4:
 Oligonucleotide primers (5'-3') for Sybr Green-based Real-time PCR:

Table S5:	Probes	for Taq	man-based	Real	-time PCR	č :
-----------	--------	---------	-----------	------	-----------	------------

Transcript	Entrez Gene ID	ABI Catalogue Number
hiNOS	4843	HS00167257_m1
hCasp1	834	HS00354836_m1
Fas	355	HS00163653_m1
18S RNA	100008588	4352930E