

-2.0 -1.9 -1.7 -1.6 -1.4 -1.3 -1.1 -1.0 -0.8 -0.7 -0.5 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.5 0.7 0.8 1.0 1.1 1.3 1.4 1.6 1.7 1.9 20

Supplementary Figure 1. Genome-wide distribution of DNA copy number changes in ovarian serous tumors. DNA copy number changes are represented as pseudocolor gradients corresponding to the copy number increase (red boxes) and decrease (blue boxes) as compared to pooled normal samples. Each column represents an individual tumor sample. SBT: serous borderline tumor, LG: low-grade serous tumor, HG: high-grade serous tumor. As compared to SBT and LG tumors, HG tumors demonstrate diffuse and discrete DNA copy number gain (red boxes) and loss (blue boxes) in many chromosomes. Chromosome numbers are shown in the left column.



**Supplementary Figure 2. Chromosome instability index for each chromosome.** CIN index of each chromosome is plotted for each tumor type. The index is generally low in all the chromosomes of SBT while the index is generally high and dispersed in HG tumors. Several chromosomes in LG tumors (ch2, 3, 5, 7, 10, 11 and 12) exhibit a very low CIN index.

## Supplementary Table 1. Serous tumor samples for SNP array analysis

| Dx     | Primary or<br>Recurrent | TP53 status                 | KRAS/BRAF                    |
|--------|-------------------------|-----------------------------|------------------------------|
| SBT1   | NA                      | wt                          | wt                           |
| SBT2   | NA                      | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| SBT3   | NA                      | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| SBT4   | NA                      | wt                          | 35 G>A Gly12Asp; wtBRAF      |
| SBT5   | NA                      | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| SBT 6  | NA                      | wt                          | 35 G>T Gly12Asp; wtBRAF      |
| SBT7   | NA                      | wt                          | 35 G>T Gly12Asp; wtBRAF      |
| SBT 8  | NA                      | wt                          | 35 G>A Gly12Asp; wtBRAF      |
| SBT9   | NA                      | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| SBT 10 | NA                      | wt                          | 35 G>A Gly12Asp; wtBRAF      |
| SBT11  | NA                      | wt                          | wt                           |
| SBT12  | NA                      | wt                          | wt                           |
| LG1    | R                       | wt                          | wt                           |
| LG2    | Р                       | wt                          | wt                           |
| LG3    | Р                       | wt                          | 35 G>A Gly12Asp; wtBRAF      |
| LG4    | Р                       | wt                          | 35 G>A Gly12Asp; wtBRAF      |
| LG5    | Р                       | wt                          | wt                           |
| LG6    | Р                       | wt                          | wt                           |
| LG7    | R                       | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| LG8    | Р                       | wt                          | wt                           |
| LG9    | Р                       | wt                          | wt                           |
| LG10   | R                       | wt                          | 1799 T>A Val600Glu ; wt KRAS |
| LG11   | Р                       | wt                          | wt                           |
| LG12   | R                       | wt                          | wt                           |
| HG1    | R                       | 715A>T, Asn239Tyr           | 35 G>A Gly12Asp; wtBRAF      |
| HG2    | R                       | wt                          | wt                           |
| HG3    | Р                       | 641 A>G, His214Arg          | wt                           |
| HG4    | R                       | 524 G>A, Arg175His          | wt                           |
| HG5    | Р                       | wt                          | wt                           |
| HG6    | R                       | 747 G>T, Arg249Ser          | wt                           |
| HG7    | Р                       | Exon 6, 5' intron 1G>T      | wt                           |
| HG8    | R                       | 721 T>C, Ser241Pro          | wt                           |
| HG9    | Р                       | 452C>G, Pro151Arg           | wt                           |
| HG10   | Р                       | 726 1bp del, Cys242Stop     | wt                           |
| HG11   | Р                       | Exon 6, 5' intron 1G>T      | wt                           |
| HG12   | Р                       | 168-169 2bp del, frameshift | wt                           |
| HG13   | Р                       | 743 G>A, Arg248GIn          | wt                           |

| Cutobond               | Location (Mb)        | Condidate gana              | No. of         | Inforred            | mioroDNA  |
|------------------------|----------------------|-----------------------------|----------------|---------------------|-----------|
| Cytoband Location (MD) |                      | Candidate gene              | NO. OI         | merred              | microkina |
|                        |                      |                             | Amplifications | сору                |           |
|                        |                      |                             |                | number              |           |
| LG lumors              |                      |                             |                | <b>a</b> 4 <b>a</b> |           |
| 1q25.2                 | Chr1:174.541-174.547 |                             | 3              | 3.10                |           |
| 1q31.2                 | Chr1:188.094-188.217 |                             | 3              | 3.08                |           |
|                        |                      |                             |                |                     |           |
| HG lumors              | 01-4 044 407 044 005 |                             | 0              | 0.44                |           |
| 1q44                   | Chr1:241.197-241.365 | FAM152A, FAM36A,<br>HNRNPLI | 3              | 3.11                |           |
| 3026.2                 | Cbr3:170 61-170 718  | MDS1                        | З              | 3.02                |           |
| 3026.2                 | Chr3:172.541-172.586 |                             | 3              | 3.02                |           |
| 3920.2                 | Chr2:172.550 172.609 |                             | 3              | 2.20                |           |
| 3920.31                | Chr2:122,720,122,774 | FINDC3D                     | 3              | 3.00                |           |
| 3420.33                | Chr3:183.720-183.774 |                             | 3              | 3.30                |           |
| 3q27.1                 | Chr3:184.374-184.422 | MCF2L2                      | 3              | 3.19                |           |
| 3q27.1                 | Chr3:185.685-185.710 |                             | 3              | 3.22                |           |
| 3q27.2                 | Chr3:186.013-186.114 | VPS8                        | 3              | 3.44                |           |
| 3q27.2                 | Chr3:186.324-186.382 | C3orf70                     | 3              | 3.21                |           |
| 3q27.2                 | Chr3:186.625-186.814 | MAP3K13, TMEM41A,           | 3              | 3.33                |           |
|                        |                      | LIPH, SENP2                 |                |                     |           |
| 3q27.2                 | Chr3:186.980-187.116 | IGF2BP2                     | 3              | 3.33                |           |
| 3q27.2                 | Chr3:187.313-187.373 | DGKG                        | 3              | 3.11                |           |
| 5p15.33                | Chr5:0.461-0.697     | AHRR, LOC116349,            | 4              | 3.13                |           |
|                        |                      | EXOC3, SLC9A3,              |                |                     |           |
|                        |                      | CEP72                       |                |                     |           |
| 5p15.33                | Chr5:1.209-1.289     | SLC6A19, SLC6A18            | 3              | 3.20                |           |
| 5p15.33                | Chr5:1.496-1.523     | SLCA3,LPCAT1                | 3              | 3.14                |           |
| 5p15.33                | Chr5:3.436-3.710     | IRX1                        | 3              | 3.55                |           |
| 5p15.32                | Chr5:5.236-5.248     | ADAMTS16                    | 3              | 3.27                |           |
| 5p15.32                | Chr5:5.471-5.489     | KIAA0947                    | 3              | 3.20                |           |
| 5p15.31                | Chr5:6.625-6.675     | NSUN2                       | 3              | 3.19                |           |
| 5p15.31                | Chr5:7.305-7.573     | ADCY2,                      | 3              | 3.13                |           |
| 5p15.31                | Chr5:9.229-9.283     | SEMA5A                      | 3              | 3.11                |           |
| 5p15.2                 | Chr5:13.663-13.757   | DNAH5                       | 3              | 3.46                |           |
| 5p15.2                 | Chr5:14.832-14.868   | ANKH                        | 3              | 3.38                |           |
| 5p15.1                 | Chr5:15.601-15.788   | FBXL7                       | 3              | 3.68                |           |
| 5p15.1                 | Chr5:16.121-16.222   | MARCH11                     | 3              | 3.54                |           |
| 5p15.1                 | Chr5:16.619-16.708   | FAM134B                     | 3              | 3.61                |           |
| 5p15.1                 | Chr5:16.838-16.967   | MYO10                       | 3              | 3.44                |           |

# Supplementary Table 2. Key regions of sub-chromosomal amplification in LG and HG tumors

| 5p15.1         | Chr5:16.289-17.253    | ZNF622, FAM134B,     | 3 | 3.43 |     |
|----------------|-----------------------|----------------------|---|------|-----|
|                |                       | MYO10                |   |      |     |
| 7q36.3         | Chr7:158.218-158.240  | WDR60                | 3 | 3.34 |     |
| 8q22.2         | Chr8:99.304-99.323    | NPAL2                | 3 | 3.24 |     |
| 8q24.11        | Chr8:118.897-118.948  | EXT1                 | 3 | 3.05 |     |
| 11q22.1        | Chr11:99.317-99.357   | CNTN5                | 3 | 3.18 |     |
| 12p13.33       | Chr12:2.156-2.206     | CACNA1C              | 3 | 3.12 |     |
| 12p13.33       | Chr12:2.743-2.848     | FKBP4, ITFG2, NRIP2, | 3 | 3.17 |     |
|                |                       | FOXM1                |   |      |     |
| 12p13.32       | Chr12:4.589-4.638     | DYRK4, AKAP3,        | 3 | 3.29 |     |
|                |                       | NDUFA9               |   |      |     |
| 12p13.31       | Chr12:6.469-6.513     | MRPL51, NCAPD2       | 3 | 3.19 | U85 |
| 12p13.31       | Chr12:6.714-6.775     | MLF2, PTMS, LAG3,    | 3 | 3.31 |     |
|                |                       | CD4                  |   |      |     |
| 12p13.31       | Chr12:7.161-7.427     | RBP5, CLSTN3,        | 3 | 3.35 |     |
|                |                       | PEX5,ACSM4, CD163L1  |   |      |     |
| 12p13.31       | Chr12:7.676-8.081     | APOBEC1, DPPA3,      | 4 | 3.42 |     |
|                |                       | CLEC4C, GDF3,        |   |      |     |
|                |                       | NANOG,               |   |      |     |
| 12p13.31       | Chr12:9.707-9.790     | CLEC2D, CLECL1       | 4 | 3.24 |     |
| 12p13.31-13.2  | Chr12:10.013-10.197   | CLEC12A,, CLEC1B,    | 4 | 3.26 |     |
| 12p13.2        | Chr12:11.625-12.757   | ETV6, BCL2L14, LRP6, | 4 | 3.26 |     |
| 12p13.2-13.1   | Chr12:12.778-13.591   | APOLD1, DOX47,       | 4 | 3.49 |     |
| 12p13.1-12.3   | Chr12:13.675-17.794   | ART4, MGP, ERP27,    | 3 | 3.66 |     |
| 12p12.3-12.2   | Chr12:18.043-20.126   | PIK3C2G, PLCZ1,      | 3 | 3.81 |     |
| 12p12.2        | Chr12:20.497-20.660   | PDE3A                | 4 | 3.63 |     |
| 12p12.2-12.1   | Chr12:20.662-22.764   | KIAA0528, ETNK1      | 3 | 3.67 |     |
| 12p12.1        | Chr12:23.370-24.083   | SOX5                 | 3 | 3.43 |     |
| 12p12.1        | Chr12:24.872-24.888   | BCAT1                | 3 | 3.46 |     |
| 12p12.1-11.23  | Chr12:24.992-27.297   | KRAS, IFLTD1,        | 3 | 3.49 |     |
|                |                       | RASSF8,              |   |      |     |
| 12p11.23-11.22 | Chr12:27.364-28.915   | PTHLH, CCDC91        | 3 | 3.46 |     |
| 12p11.22-11.21 | Chr12:29.314-32.637   | ERGIC2, OVCH1        | 3 | 3.32 |     |
| 12q24.23       | Chr12:116.653-116.659 | KSR2                 | 3 | 3.07 |     |
| 15q11.2        | Chr15:19.969-20.045   |                      | 4 | 3.04 |     |
| 17q25.3        | Chr17:74.741-74.808   | HRNBP3               | 3 | 3.36 |     |
| 18q11.2        | Chr18:22.874-23.027   | CHST9                | 3 | 3.30 |     |
| 19p13.12       | Chr19:15.114-15.135   | Notch3               | 3 | 3.05 |     |
| 19q13.12       | Chr19:41.709-41.778   | ZNF260, ZNF529       | 3 | 3.13 |     |
| 21q21.1        | Chr21:20.368-20.490   |                      | 3 | 3.24 |     |
| 22q11.21       | Chr22:19.378-19.442   | PIK4CA               | 3 | 3.39 |     |

| Xp22.2       | ChrX:11.325-11.769 | ARHGAP6     | 3 | 3.24 |  |
|--------------|--------------------|-------------|---|------|--|
| Xp22.2       | ChrX:12.249-12.307 | FRMPD4      | 3 | 3.35 |  |
| Xp22.11      | ChrX:22.295-22.730 |             | 3 | 3.12 |  |
| Xp11.1-q11.2 | ChrX:57.734-62.515 | ZXDA, SPIN4 | 3 | 3.14 |  |

Note: Chromosome location is based on genome assembly from May 2004, hg17

| Cytoband     | Location (Mb)        | Candidate     | <sup>1</sup> No. of | <sup>2</sup> Inferred | <sup>3</sup> Measured | microRNA   |
|--------------|----------------------|---------------|---------------------|-----------------------|-----------------------|------------|
|              |                      | gene          | Deletions           | сору                  | copy number           |            |
|              |                      |               |                     | number                |                       |            |
| LG Tumors    |                      |               |                     |                       |                       |            |
| 9p21.3       | Chr9:21.945-22.000   | CDKN2A,       | 2/4                 | 0.59*                 | 0.09                  |            |
|              |                      | CDKN2B        |                     |                       |                       |            |
| 22q11.23     | Chr22:24.044-24.240  | LRP5L         | 1/3                 | 0.28                  | 0.03                  |            |
|              |                      |               |                     |                       |                       |            |
| HG Tumors    |                      |               |                     |                       |                       |            |
| 2q22.1       | Chr2:141.719-141.827 | LRP1B         | 1/2                 | 0.41                  | <sup>4</sup> NP       |            |
| 4p15.1-14    | Chr4:33.9934-38.2422 | CENTD1        | 1/5                 | 0.27                  | 0.03                  |            |
| 4q28.2       | Chr4:130.513-130.662 |               | 1/2                 | 0.34                  | NP                    |            |
| 4q34.3       | Chr4:182.433-182.752 |               | 1/6                 | 0.36                  | NP                    |            |
| 7p15.3       | Chr7:24.6407-24.736  | OSBPL3        | 1/2                 | 0.32                  | 0.28                  |            |
| 7q31.1       | Chr7:111.021-111.566 | DOCK4         | 1/1                 | 0.15                  | 0.02                  |            |
| 7q32.1       | Chr7:127.194-127.306 | SND1          | 1/1                 | 0.23                  | NP                    |            |
| 8p23.3-23.1  | Chr8:0.189-8.336     | CSMD1         | 1/5                 | 0.20                  | 0.03                  |            |
| 9p24.2       | Chr9:2.869-3.024     |               | 1/3                 | 0.29                  | NP                    |            |
| 9p21.3       | Chr9: 21.489-24.413  | CDKN2A,       | 1/5                 | 0.22                  | 0.03                  | mir-31     |
|              |                      | CDKN2B,       |                     |                       |                       |            |
| 9p21.2-21.1  | Chr9:27.792,-28.577  | LINGO2        | 1/5                 | 0.25                  | 0.13                  |            |
| 9p21.1       | Chr9:30.2558-30.4361 |               | 1/3                 | 0.45                  | NP                    |            |
| 10p12.2-12.1 | Chr10:24.596-24.644  | KIAA1217      | 1/0                 | 0.24                  | NP                    |            |
| 13q14.2      | Chr13:47.59-48.095   | RB1           | 1/5                 | 0.26                  | 0.01                  |            |
| 14q21.3-22.1 | Chr14:49.859-51.382  | CDKL1         | 1/2                 | 0.23                  | 0.03                  |            |
| 17p13.3      | Chr17:0.0068-0.139   | <b>RPH3AL</b> | 2/1                 | 0.41                  | 0.22                  |            |
| 17q23.2      | Chr17:51.518-51.519  |               | 1/1                 | 0.43                  | NP                    |            |
| 21q11.2-21.1 | Chr21:14.369-15.823  | LIP1          | 1/1                 | 0.24                  | NP                    |            |
| 21q21.1      | Chr21:15.823-17.532  | USP25,        | 1/2                 | 0.36                  | 0.02                  | miR-99a,   |
|              |                      | C21orf34      |                     |                       |                       | let-7c,    |
|              |                      |               |                     |                       |                       | miR-125b-2 |

### Supplementary Table 3. Key regions of sub-chromosomal deletion in LG and HG tumors

Note: Chromosome location is based on human genome assembly from May 2004, hg17.

<sup>1</sup> No. of homozygous deletion/No. of hemizygous deletion

<sup>2</sup> Copy number based on the dCHIP analysis

<sup>3</sup> Copy number determined by quantitative real-time PCR

<sup>4</sup> NP: not performed

|             |                           | December of the sec    |
|-------------|---------------------------|------------------------|
| Candidate   | Forward primer            | Reverse primer         |
| Target Gene |                           |                        |
| Rad51AP1    | *TCGTCATTATCCTCACTCTCACA  | CTTCTGGAAGGCAGTGATGG   |
| MDC1        | AATGGCTGTGTAGCCAGGAC      | CTTCATGTTGACTCCACCCC   |
| CHEK1       | TCATCCATTTCTAACAAATTCACTT | TGGGCTATCAATGGAAGAAAA  |
| CDKN2C      | CAAATCGGGATTAGCACCTC      | ACGTCAATGCACAAAATGGA   |
| BIRC3       | GTCAAATGTTGAAAAAGTGCCA    | GGGAAGAGGAGAGAGAAAGAGC |
| EMP1        | GAGTTCTGAAGGGTCCCAGC      | TGCGGTCACATACTTCCAGA   |
| BCL2        | GAGAAATCAAACAGAGGCCG      | CTGAGTACCTGAACCGGCA    |
| CCND1       | GGCGGATTGGAAATGAACTT      | TCCTCTCCAAAATGCCAGAG   |
| CDK6        | TGTCTGTTCGTGACACTGTGC     | ATGCCGCTCTCCACCAT      |
| E2F1        | GGCCAGGTACTGATGGTCA       | GACCCTGACCTGCTGCTCT    |
| E2F3        | CTAGCTCCAGCCTTCGCTTT      | AGCCTCCTCTACACCACGC    |
|             |                           |                        |

Supplementary Table 4. Nucleotide sequences of PCR primers used to amplify cDNA of miR-34a target genes.

\*nucleotide sequence from 5' to 3'

| Cytoband     | Candidate     | Forward primer        | Reverse primer        |
|--------------|---------------|-----------------------|-----------------------|
| _            | Gene          |                       |                       |
| 1p36.23      | miR-34a       | *GCGAAAGTTTGCAAAGAAGG | GGAATCCTTTCTCCCCAGAG  |
| 4p15.1-14    | CENTD1        | GCACTGCCCTTTTCTCCTTTT | AAGCATAGCAGCACCCATTTT |
| 7p15.3       | OSBPL3        | ACTCAGCTCCCAAGACAGGA  | CTTTTTCTCAGGGTCCACCA  |
| 7q31.1       | DOCK4         | TTTGGCATTTCAACTGAGTCC | ATTCCATCGGCAAAGAACAGA |
| 8p23.3-23.1  | CSMD1         | CGGCCATGAGAAGAAATGAT  | ATGGGATGAAGGCAACAGAG  |
| 9p21.3       | CDKN2A        | GAAACCCGAAGAACAATGGA  | GAATTCCCATCTGCCGTCTA  |
| 9p21.2-21.1  | LINGO2        | GAATGCTCCTGGTTCCACAT  | CTGTCACAGAAGGCGATTGA  |
| 13q14.2      | RB1           | TCCATTGCCCACAGGATACTC | AGCCGACTAACACGCAAGAAG |
| 14q21.3-22.1 | CDKL1         | GCCCCTATGTCTCATGGAAGA | TCCACTTTGATGCTGATGCAC |
| 17p13.3      | <b>RPH3AL</b> | GAGAAGGTGTGGAGCTGAGG  | GGCCTGTAAAGTTTGGGTCA  |
| 21q21.1      | USP25         | ATACTGTGGGTTTGGCACGAT | CTTCCTCCGTTATGTGCCTTG |
| 22q11.23     | LRP5L         | CACACAGCTAGGCCATCAGA  | CTTGGCCTCAACCTGCTTAG  |

Supplementary Table 5. Nucleotide sequences of PCR primers used to amplify the specific genomic loci.

\*Nucleotide sequence from 5' to 3'

#### **Supplementary Material and Methods**

#### Quantitative real-time PCR

gDNA copy number of the candidate genes was validated by quantitative real-time PCR using an iCycler (Bio-Rad, Hercules, CA) with SYBR green dye (Molecular Probes, Eugene, OR). Averages in the threshold cycle number (Ct) of triplicate measurements were obtained. The results were expressed as the difference between the Ct of the gene of interest and the Ct of a *Line-1* gene for which gDNA copy number is relatively constant among tumor tissues<sup>1</sup>. cDNA copy number was measured using the same procedure except the relative copy number of each candidate gene was normalized to the copy number of *APP*, a gene which mRNA expression is constant among samples<sup>2</sup>. The primer sequences are listed in supplementary Table 4 and 5.

#### Statistic analysis

The differences in parameters were determined by unpaired *t* test for data presented in Fig 1B and Fig 6, and p value was determined by two-tailed analysis. Paired *t* test was performed to determine the significance of difference in the CIN index between matched normal and tumor samples (Fig 1C). The significant level (alpha) was set at 0.05. \* p<0.05, \*\* p<0.01, \*\*\* p<0.001.

#### Transfection and functional study of miR-34a

Synthetic miR-34a (mimic) and control miRNA were purchased from ABI (Applied Biosystems, Foster City, CA) and transfected into a LG cell line, MPSC-1, using Lipofectamine 2000 (Invitrogen). The level of miR-34a was determined by the TaqMan microRNA assay kit (Applied Biosystems). Following transfection, cells were seeded into 96-well plates and the viable cell number was measured by the Celltiter Blue reagent (Promega, Madison, WI) using a microplate reader. Data were expressed as mean ± 1 standard deviation from five replicates in each experimental group. Apoptotic cells were detected by staining with Annexin V-FITC and cell death was detected by nuclear propidium iodide staining using a kit purchased from BioVision (Mountain View, CA). The apoptotic cells were defined by Annexin V-positive, propidium iodidenegative cells and the percentage of apoptotic cells was determined by counting approximately 300 cells from each well. The data were expressed as mean  $\pm 1$  standard deviation from triplicates.

<sup>1</sup>Wang TL, Maierhofer C, Speicher MR, et al. Digital karyotyping. Proc Natl Acad Sci U S A 2002;99:16156-61.

<sup>2</sup>Buckhaults P, Zhang Z, Chen YC, et al. Identifying tumor origin using a gene expression-based classification map. Cancer Res 2003;63:4144-9.