
Botvinick, Niv and Barto Hierarchical reinforcement learning

40

Online Appendix

We present here the details of our HRL implementation and the simulations briefly

described in the main text. For clarity, we begin by describing our implementation of

non-hierarchical RL, which was used in the simulations including only primitive actions.

This will then be extended, in the next section, to the hierarchical case. All simulations

were run using Matlab (The Mathworks, Natick, MA). Code is available for download at

www.princeton.edu/~matthewb.

Basic Actor-Critic Implementation

Task and representations. Following the standard RL approach (see Sutton & Barto,

1998), tasks were represented by four elements: a set of states S, a set of actions A, a

reward function R assigning a real-valued number to every state transition, and a

transition function T giving a new state for each pairing of a state with an action. In our

simulations, S contained the set of location tiles in the layout depicted in Figure 4A; A

contained eight single-step movements, following the principle compass directions; R

yielded a reward of 100 on transitions to the goal state indicated with a G in Figure 4A,

otherwise zero; and T was deterministic. All actions were available in every state, and

actions yielded no change in state if a move into a wall was attempted. Our choice to use

deterministic actions was for simplicity of exposition, and does not reflect a limitation of

either the RL or HRL framework.

Botvinick, Niv and Barto Hierarchical reinforcement learning

41

Architecture. The basic RL agent comprised actor and critic components. The actor

maintained a set (matrix) of real-valued strengths (W) for each action in each state. The

critic maintained a vector V of values, attaching a real number to each state.

Training. At the outset of training, action strengths and state values were initialized to

zero; the state was initialized to the start location indicated in Figure 4A; and a time index

t was initialized at zero. On each step of processing, t, an action was selected

probabilistically according to the softmax equation:

Eq. 1 P(a) =
eW (st ,a)

eW (st ,a)

a A

where P(a) is the probability of selecting action a at step t; W(st, a) is the weight for

action a in the current state; and is a temperature parameter controlling the tendency

toward exploration in action selection (10 in our simulations). The next state (st+1) was

then determined based on the transition function T, and the reward for the transition (rt+1)

based on R. Using these, the temporal-difference (TD) prediction error () was computed

as

Eq. 2 = rt+1 + V (ss+1) V (st)

Botvinick, Niv and Barto Hierarchical reinforcement learning

42

where is a discount factor (0.9 in our simulations). The TD prediction error was then

used to update both the value function and the strength for the action just completed:

Eq. 3 V(st) V(st)+ C

Eq. 4 W (st ,a) W (st ,a)+ A

The learning rate parameters C and A were set to 0.2 and 0.1, respectively. Following

these updates, t was incremented and a new action was selected. The cycle was repeated

until the goal state was reached, at which point the agent was returned to the start state, t

was reinitialized, and another episode was run.

HRL Implementation

Our implementation of HRL was based on the options framework described by Sutton et

al. (1999), but adapted to the actor-critic framework.

Task and Representations. The set of available actions was expanded to include options

in addition to primitive actions. Each option was associated with (1) an initiation set,

indicating the states where the option could be selected; (2) a termination function,

returning the probability of terminating the option in each state; and (3) a set of option-

specific strengths Wo, containing one weight for each action (primitive or abstract) at

each state.

Botvinick, Niv and Barto Hierarchical reinforcement learning

43

For the four-rooms simulations, two options could be initiated in each room, each

terminating deterministically at one of the room’s two doors. Each option also had a

pseudo-reward function, yielding a pseudo-reward of 100 at the option’s termination

state. For simplicity, each option was associated with strengths only for primitive actions

(i.e., not for other options). That is, option policies were only permitted to select

primitive actions. As indicated in the main text, options are ordinarily permitted to select

other options. This more general arrangement is compatible with the implementation

described here.

Architecture. In addition to the option-specific strengths just mentioned, the actor

maintained a ‘root’ set of strengths, used for action selection when no option was

currently active. The critic maintained a root-level value function plus a set of option-

specific value functions Vo.

Training. Since primitive actions can be thought of as single-step options, we shall

henceforth refer to primitive actions as ‘primitive options’ and temporally abstract

actions as ‘abstract options,’ using the term ‘option’ to refer to both at once. The model

was initialized as before, with all option strengths and state values initialized to zero. On

each successive step, an option o was selected according to

Eq. 5 P(o) =
eWoctrl

(st ,o)

eWoctrl
(st ,o)

o O

Botvinick, Niv and Barto Hierarchical reinforcement learning

44

where O is the set of available options, including primitive options; octrl is the option

currently in control of behavior (if any); and Woctrl
(st ,o) is the option-specific — i.e., octrl-

specific — strength for option o (or the root strength for o in the case where no option is

currently in control). Following identification of the next state and of the reward

(including pseudo-reward) yielded by the transition, the prediction error was calculated

for all terminating options, including primitive options, as

Eq. 6 = rcum +
ttotVoctrl (st+1) Voctrl (sinit)

where ttot is the number of time-steps elapsed since the relevant option was selected (one

for primitive actions); stinit is the state in which the option was selected; octrl is the option

whose policy selected the option that is now terminating (or the root value function if the

terminating option was selected by the root policy); and rcum is the cumulative discounted

reward for the duration of the option:

Eq. 7 rcum =
i 1rtinit +i

i=1

ttot

Note that rtinit +i incorporated pseudo-reward only if stinit +i was a subgoal state for octrl.

Thus, pseudo-reward was used to compute prediction errors ‘within’ an option, i.e., when

updating the option’s policy, but not ‘outside’ the option, at the next level up. It should

also be remarked that, at the termination of non-primitive options, two TD prediction

Botvinick, Niv and Barto Hierarchical reinforcement learning

45

errors were computed, one for the last primitive action selected under the option and one

for the option itself (see Figure 3).

Following calculation of each , value functions and option strengths were updated:

Eq. 8 Voctrl (stinit) Voctrl (stinit)+ C

Eq. 9 Woctrl
(stinit ,o) Woctrl

(stinit ,o)+ A

The time index was then incremented and a new option/action selected, with the entire

cycle continuing until the top-level goal was reached.

In our simulations, the model was first pre-trained for a total of 50000 time-steps without

termination or reward delivery at G. This allowed option-specific action strengths and

values to develop, but did not lead to any change in strengths or values at the root level.

Thus, action selection at the top level was random during this phase of training. In order

to obtain the data displayed in Figure 4 C, for clarity of illustration, training with pseudo-

reward only was conducted with a small learning rate (A = 0.01, C = 0.1), reinitializing

to a random state whenever the relevant option reached its subgoal.

