Rates of in situ transcription and splicing in large human genes

Jarnail Singh and Richard A. Padgett

Supplementary Figure 1: Kinetics of DRB dependent inhibition of pre-mRNA transcription. Tet21 cells were treated with 100μ M of DRB for the indicated times and then harvested for isolation of total RNA. Shown are the levels of pre-mRNA as determined by qRT-PCR for various regions of the Utrophin gene.

Supplementary Figure 2: Rate of elongation by RNAPII after 30 minutes of DRB treatment. Tet21 cells were treated with 100μ M of DRB for 30 minutes and then the cells were washed twice with PBS and further incubated in fresh medium. Cells were harvested at 5 minute intervals for isolation of total RNA. Shown are the levels of pre-mRNA as determined by qRT-PCR for various regions of the CTNNBL1 gene.

Supplementary Figure 3: The topoisomerase inhibitor camptothecin delays expression of downstream gene regions following DRB treatment.

Camptothecin (CPT, 15μ M) was added to cells 15 minutes before the end of the 3hr DRB incubation and then fresh medium was added containing CPT. Cells were harvested for RNA isolation and qRT-PCR at 5 minute intervals.

a) Expression levels for the exon 2-intron 2 region of the OPA1 gene located 21.6 kb downstream of the transcription start site in the presence or absence of CPT.

b) Expression levels for the exon 6-intron 6 region of the IFT80 gene located 33 kb downstream of the transcription start site in the presence or absence of CPT. Gene structures are shown below each graph.

Supplementary Figure 4: Interferon-β induced gene expression in HT1080 cells.

The human HT1080 fibrosarcoma cell line was used to study the rate of transcription of interferon- β (INF- β) induced genes. Briefly cells were treated with INF- β at 1000 units/ml in DMEM supplemented with 10% Fetal Bovine Serum for the times indicated. Total RNA was isolated from cells and qRT-PCR was used to determine the pre-mRNA expression of the INF- β -induced PKR gene. Shown are the kinetics of pre-mRNA accumulation of exon 3 (Ex.3-In.3) and exon 16 (In.15-Ex.16).

Supplementary Figure 5: ChIP analysis of the distribution of RNAPII after DRB inhibition and release.

Cells treated with or without DRB were fixed and harvested for chromatin immunoprecipitation (ChIP) using RNAPII specific antibodies. The precipitated DNA was PCR amplified to detect the presence of RNAPII in various regions of the genes. a) Standard PCR and gel analysis of the RNAPII ChIP samples. The identical primer sets were used for 35-42 cycles. Ctr-untreated cells; 0'-cells treated with DRB for 3 hrs; 5' and 10'-cells treated with DRB for 3 hrs and released for 5 and 10 minutes respectively. b) Real time qPCR analysis of the samples used in panel (a). c and d) Real time PCR analysis of RNAPII ChIP of cells treated with DRB for 3 hrs and released for the indicated times. Two regions of the ITPR1 gene were examined: c) the exon 1-intron 1 region and d) the exon 5-intron 5 region located 133 kb from the transcription start site. The results are plotted relative to the ChIP signal in untreated cells which is set to 1.

Supplementary Figure 6: Kinetics of splicing of selected U2-dependent introns.

RNA samples from DRB treated cells were analyzed by qRT-PCR using primer pairs that detect the transcription of the exon downstream of the indicated intron or the ligated exon product of splicing (see Fig. 3 in main text). a) Transcription of exon 14 (Ex.14-In.14) and splicing of intron 13 (Ex.13-In.14) of Utrophin gene. b) Transcription of exon 43 (Ex.43-In.43) and splicing of intron 43 (Ex.43-In.44) of the Utrophin gene. c) Transcription of exon 51 (Ex.51-In.51) and splicing of intron 50 (Ex.50-In.51) of the Utrophin gene. d) Transcription of exon 45 (Ex.45-In.45) and splicing of intron 44 (Ex.44-In.45) of the ITPR1 gene. e) Transcription of exon 4 (Ex.4-In.4) and splicing of intron 3 (Ex.3-In.4) of the CTNNBL1 gene. f) Transcription of exon 6 (ex.6-In.6) and splicing of intron 5 (Ex.5-In.6) of the CTNNBL1 gene.

GAPDH-F	GAAACTGTGGCGTGATGGC
GAPDH-R	CACCACTGACACGTTGGCAG
GAPDH-F1	GGGACTGGCTTTCCCATAATTTCCT
GAPDH-R1	TAGAGGCAGGGATGATGTTCTGGA
lltr-Ev-1E	GGCAAGATGGCCAAGTATGGAG
Ultr-In-1P	
	DerrierioAderreerinaeeraeead
Utr-In-1F	CCATTCCACAGATGAACACAATGACG
Utr-Ex-2R	GCGGCATCTGAACCATCGAAGT
Utr-Ex-3F	CAGAGTGGGAAACCACCATCA
Utr-In-3R	GGTACCCACACTGGGTCATCAA
Utr-Ey-13E	GTGGCAGGAATTATTGGAAGAACA
Utr-In-13R	
Utr-Ex-14F	TCGACGTCTGGCTGTAAGTGATGG
Utr-In-14R	CAGGGCAGCAGTCTAATGCTAGGT
Utr-Ex-43F	GCAGGTGATGAAGTACAGGCAT
Utr-In-43R	GAGACACGCAGTATGTGACTCTG
Utr-In-44R	CATGATCCCACATCTCTGACAAC
Utr-Ex-50F	TGGATGCCTCTCATCGGGAGAA
Utr-In-50R	GCACACAGGGCAAACACAGGTA
Utr-Ex-51F	GGCTACTATGCTTCAACATCGACTGG
Utr-In-51R	GTGGTAAGGCTGCGCTTTCTCT
lite In 725	CCCACCTCATTCCACCAACCAA
Ultr Ex 74D	
001-22-748	CAGGAAACATTGGTTGGCCGGA
Bcl2-Ex2F	TGACTGAGTACCTGAACCGGCA
Bcl2-In2R	TCAGCCCAGACTCACATCACCA
[
Bcl2-In2F	CCCAACTGCAGGATGCCTTTGT
Bcl2-Ex3R	GGGCAGGCATGTTGACTTCACT
	TETTERCERACATERCATTACE
ITPR1-In-1R	GCATGCACATCCATCCAGATCTCCC
ITPR1-Ex-3F	TGTACGCGGAGGGATCGACAAA
ITPR1-In-3R	CAACCGCACTTAGAAAGCCAAG
Г	
ITPR1-Ex-5F	AGTTCTGGAAAGCCGCTAAGCC

Supplementary Table 1: Sequences of the primer sets used in this study.

ITPR1-In-5R	ACCAAGGCAGCCACTCACTACT
TTPRI-EX-40F	
ITPRI-IN-40R	ACACCACAAAGCGTACCTCCTC
ITPR1-Ex-44F	TCATCACAGCCCTGATCCTCAA
ITPR1-Ex-45F	CATCATGGAAAGCAGGCACGACAG
ITPR1-In-45R	GCAGATCCTCTGCTCTGTCCCAAA
EFNA5-EX1F	GTGCTCTGGATGTGTGTGTGTTCAGC
EFNA5-IN1R	TCTCCGCCTGTTATCGGCTTACCT
EENA5-EX2E	
EFNA5-IN2R	GTTCTTGCAGCTGCCCTACAACAC
OPA1-EX1F	GGCCIGGIAAGIGCAGGCICIAAI
OPA1-IN1R	TCTGGGTCCTCAAGAACATCTGGG
OPA1-EX2F	AAATATGGCTACCAGCCTCGCA
OPA1-In2R	ACCAGGAGGAATGTCAAGTTCACC
OPA1-EX18F	GGAACAGCTCTGAAAGCATTG
	GGACAAGCATGCTAAAGGCACACC
OPA1-IN19R	TCGTATGGATGCCAAAGATTGCCAG
OPA1-In28F	CCCTGACCTCAGTTTGTTAAATGGG
OPA1-EX29R	CAGCIGAIGGIIAAAGCGCCCGIA
IFT80.Ex.1F	AGAAGTATCGCGGGAAGAGGAA
IFT80.In.1R	AAGATGGGATCCAGTGATGGCT
IFT80.Ex.2F	TGCTGGAAGTGGAGTCATGAGA
IFT80.In.2R	AGGTAAACAGCCACTAAAGGAATGA
	GGCAGAAAGCTTTGTCCTCACAAG
IFT80 In 3P	
<u>II 100.III.5R</u>	
IFT80.In.19F	TGGAAGTCACAGTCTATCTGTT
IFT80.Ex.20R	TGCTGGATTGGCTGCTTGATGA
CTNNBL1.Ex.1F	AGTGCAGGGAAGTGGAGTATTTGC
CTNNBL1.In.1R	AGAGGAGGTGAGATGAAAGGGCT
	CONCENTRENTENANCETCA
CINNELLEX.3F	GGAGULATIGGATGAAAGUTUA
CTNNBL1.Ex.4F	TACCACCTTCTGGTGGAGCTGAAT
CTNNBL1.In.4R	GGAGAAAGAGTAACAGCACTTCCC
CTNNBL1.Ex.5F	TGAAGAGGGAGCAGAAGTGCTCAT
CTNNBL1.In.5R	TATTCACTCCAGCCTCACCACACT

CTNNBL1.Ex.6F	TATTCTTGCAGGTGGATGGGCA
CTNNBL1.In.6R	CAAAGCAACTCAGGCAATGGCA
CTNNBL1.In.15F	TTCTGGGAAAGGTATGAAGCGACG
CTNNBL1.Ex.16R	TAGAAGTTCTCCAGCAAGCCCA
KIFAP3.Ex.1F	AAATAACCGCGCCTGCCTCTCAA
KIFAP3.In.1R	AAACTAGCGTTGCCCAGTGACA
KIFAP3.Ex.7F	GAGCTTTGGCAAGAAGAACTCTC
KIFAP3.Ex.8F	ACAGGAACAGCTATTACGAGGT
KIFAP3.In.8R	CCCATGCTAAAGACAGACGAAC
VIEAD2 In 10E	CCCTCCTACCAACACAATCTTCCT
KITAP3.11.191 KIEAD3 EV 200	
SLC9A9.Ex.1F	TGGAGGAGCAATGGTGTATGGT
SLC9A9.In.1R	TTCGTTACGCTGCAGCACCTTT
SLC9A9.Ex.7F	TTTGATGCCGCAGCATTCTTCCAG
SLC9A9.Ex.8F	TGCTTTCTTGGAGTGCCTTCCTGT
SLC9A9.In.8R	AGAGGCTGATTCTGACCCAAACCA
SLC9A9.In.15F	AGACAGGGCAGTTACAGAAAGG
SLC9A9.Ex.16R	GGAGGCTTGCTCCTGGTAATTT
PKR.Fx-3F	ACCGTCAGAAGCAGGAGTAGT
PKR.In-3R	GGTTTCCAGCTTCATCCATGTCCC
PKR.In-15F	GGAATCCTGCTTGCTTCTTGGC
PKR.Ex-16R	TGCCATCCCGTAGGTCTGTGAA