Supporting Information

Lacosamide Isothiocyanate-based Agents: Novel Agents to Target and Identify Lacosamide Receptors

Ki Duk Park,¹ Pierre Morieux,¹ Christophe Salomé,¹ Steven W. Cotten,¹ Onrapak Reamtong,² Claire

Eyers,² Simon J. Gaskell,² James P. Stables,³ Rihe Liu^{1,4,*} and Harold Kohn^{1,5,*}

¹Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA

²Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK

³Anticonvulsant Screening Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd., Suite 2106, Rockville, MD 20892-9523, USA

⁴Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA

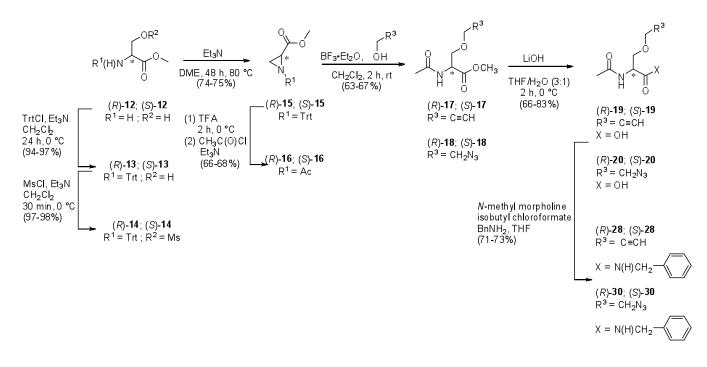
⁵Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290,

USA

Table of Contents

1. Supplemental Experimental Section	
1.1. Purification of Probe-labeled Proteins	S3
1.2. Western Blot	· S3
1.3. In-gel tryptic digestion	· S3
1.4. Mass spectrometry analysis	S4
1.5. Synthesis of (<i>R</i>)- and (<i>S</i>)- 28 and 30	S5
1.6. Synthesis of (<i>R</i>)- and (<i>S</i>)- 27	S10
1.7. Synthesis of (<i>R</i>)- and (<i>S</i>)- 29	S14
1.8. Synthesis of 21	- S20
1.9. Synthesis of 39	- S22
1.10. Synthesis of 40	S23
2. Supplemental Tables	
2.1. Table S1. Quantification of the (R)-9, (S)-9 of the 62kDa using iTRAQ	-S26
2.2. Table S2. Elemental Analysis of the Synthesized Compounds	S27
3. References	- S28
4. ¹ H and ¹³ C-NMR spectra	S30

Purification of Probe-labeled Proteins. Mouse brain lysate (500 μ L of 2.0 mg/mL protein in 50 mM HEPES buffer (pH 7.4)) was passed through a NAP-5 column to exchange buffer to an aqueous 50 mM HEPES buffer (pH 8.0). Lysate aliquots (200 μ L) were treated with (*R*)-**9** (30 μ M) at room temperature (30 min). To the modified lysate was sequentially added **35** (200 μ M), TCEP (500 μ M), TBTA (200 μ M) and CuSO₄ (1 mM). The samples was shaken and then allowed to rotate using Roto-shake (8 rpm, Scientific Industries Inc., Model No. SI-1100, Bohemia, NY) at room temperature (1 h). After passage through a NAP-5 column, the sample was added to an immobilized streptavidin slurry (0.3 mL) (High Capacity Streptavidin Agarose Resin, Pierce, Rockford, IL) and rotated (15 rpm) at 4 °C (90 min). The streptavidin beads were sequentially washed with aqueous 0.1% Triton X-100/15 mM HEPES buffer (pH 7.4) (3 × 0.8 mL), an aqueous 6 M urea solution (3 × 0.8 mL), and an aqueous 15 mM HEPES buffer (pH 7.4) (4 × 0.8 mL). The beads were centrifuged (1000 rpm, 1 min), and the supernatant removed. The beads were treated with loading buffer (aqueous 2% SDS, 10% glycerol, 1% mercaptoethanol, 0.01% bromophenol blue [final concentration]) (95 °C, 5 min). The samples were loaded on a 10% SDS-PAGE gel and the proteins visualized by silver staining.


Western Blot. The SDS-PAGE gel was transferred to a nitrocellulose membrane (RPN203D, Amersham) and the membrane was washed (10 min) with TBST (aqueous 25 mM Tris buffer, 150 mM NaCl, 0.1% Tween-20 (pH 7.6)). The membrane was incubated in aqueous 5% NFDM (Non-Fat Dried Milk)/TBST solution (50 mL) at room temperature (1 h) and then incubated with either a polyclonal antibody (0.15 μ g/mL) specific for CRMP2 (C2993, Sigma) or a monoclonal antibody (0.5 μ g/mL) specific for GST (sc-138, Santa Cruz Biotech.) in aqueous 5% NFDM/TBST solution (1.5 mL) at room temperature (2 h). After washing (× 4, 5 min each) with TBST, the membrane was incubated with either ECLTM anti-rabbit IgG (NA934, GE Healthcare) or anti-mouse IgG (31430, Pierce Biotech.) in aqueous 5% NFDM/TBST solution (× 5, 5 min each) with TBST. Chemiluminescent reagent (RPN2132, GE Healthcare) was added to the blot and the signal developed in the darkroom.

In-gel tryptic digestion. All gel pieces were dehydrated and then rehydrated with an aqueous trypsin solution in 50 mM triethyl ammonium bicarbonate buffer (TEAB) (100 μ L, 0.02 mg/mL), and incubated overnight (37 °C). An equal volume (100 μ L) of acetonitrile was added to the gel pieces and shaken for 20 min. The supernatant was collected and acetonitrile removed. To each digested sample tubes were added iTRAQ reagents in ethanol and the reaction solutions were incubated at room temperature (1 h). The iTRAQ labeled samples were combined into one tube, evaporated to dryness and analyzed as described below.

S3

Mass spectrometry analysis. The iTRAQ labelled peptides were separated using an Ultimate 3000 capillary LC system (Dionex, Surrey, UK). The HPLC eluent was infused directly into nanoelectrospray source of QToF Global (Waters, Manchester, UK). The mass spectrometry data was searched using the Mascot search algorithm to get protein identification and iTRAQ quantification. The search was done against swiss-Prot database, miss cleavages were set to 1 and peptide and tandem MS tolerances were set at 100ppm.

Scheme S1. Synthesis of (R)- and (S)-28 and 30

(*R*)-Methyl 3-Hydroxy-2-(*N*-tritylamino)propionate ((*R*)-13).¹ To a solution of D-serine methyl ester hydrochloride ((*R*)-12) (20.00 g, 0.13 mol) and Et₃N (35.82 mL, 0.26 mol) in CH₂Cl₂ (80 mL) at 0 °C, was added in one portion a solution of TrtCl (36.53 g, 0.13 mol) in CH₂Cl₂ (80 mL). The mixture was allowed to stir at 0 °C (24 h) under Ar and then successively washed with 10% aqueous citric acid (120 mL) and brine (120 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo to yield 45.20 g (97%) of crude (*R*)-13 as a pale yellow crystalline solid. The product was used for next step without further purification: R_f = 0.50 (1/1 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 2.29 (br s, 1 H), 2.98 (br s, 1 H), 3.29 (s, OCH₃), 3.51–3.60 (m, CHH'OH, CH), 3.64–3.74 (m, CHH'OH), 7.16–7.30 (m, 9 ArH), 7.47–7.50 (m, 6 ArH).

(S)-Methyl 3-Hydroxy-2-(*N***-tritylamino)propionate ((***S***)-13).^{2,3} Utilizing the procedure and work up procedure for (***R***)-13, and using L-serine methyl ester hydrochloride ((***S***)-12 (20.00 g, 0.13 mol), Et₃N (35.82 mL, 0.26 mol) and TrtCl (36.53 g, 0.13 mol) gave 43.80 g (94%) of crude (***S***)-13 as a pale yellow crystalline solid: R_f = 0.50 (1/1 EtOAc/hexanes); ¹H NMR (CDCl₃) \delta 2.31 (br s, 1 H), 2.84-3.02 (br m, 1 H), 3.29 (s, OCH₃), 3.50–3.59 (m, CHH'OH, CH), 3.63–3.74 (m, CHH'OH), 7.18–7.29 (m, 9 ArH), 7.48–7.50 (m, 6 ArH).**

(*R*)-Methyl 1-Tritylaziridine-2-carboxylate ((*R*)-15).^{4,5} Crude (*R*)-13 (45.20 g, 0.13 mol) was dissolved in CH_2Cl_2 (300 mL) and cooled to 0 °C under Ar. Methanesulfonyl chloride (10.64 mL, 0.14

mol) was added to the cooled solution, followed by the dropwise addition of Et₃N (26.14 mL, 0.19 mol). The resulting solution was allowed to stir at 0 °C (30 min) and then successively washed with 10% aqueous citric acid (200 mL) and brine (200 mL). After drying (Na₂SO₄) and evaporation of the solvent, the crude mesylate ((*R*)-**14**) (53.30 g, 0.12 mol) was dissolved in DME (300 mL) and Et₃N (33.73 mL, 0.24 mol) was added. The reaction mixture was stirred at 80 °C (48 h) and then evaporated in vacuo. The residue was dissolved in EtOAc (300 mL) and washed with 10% aqueous citric acid (200 mL) and brine (200 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo. The crude product was recrystallized (EtOH) to yield 30.81 g (74%) of (*R*)-**15** as a transparent crystal: mp 127–128 °C (lit.^{3a} mp 129–131 °C); [α]²⁵_D +94.7° (*c* 1.5, CHCl₃) (lit.^{3b} [α]²⁰_D +95° (*c* 1.0, CHCl₃)); *R_f* = 0.45 (1/5 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 1.41 (dd, *J* = 1.7, 6.4 Hz, NCHH'CH), 1.89 (dd, *J* = 2.8, 6.4 Hz, CHH'CHN), 2.26 (dd, *J* = 1.7, 2.8 Hz, NCHH'CH), 3.76 (s, OCH₃), 7.20–7.31 (m, 9 ArH), 7.48–7.52 (m, 6 ArH); ¹³C NMR (CDCl₃) δ 28.8 (NCH₂CH), 31.8 (CH₂CHN), 52.2 (OCH₃), 74.5 (NCPh₃), 127.1, 127.8, 129.4, 143.7 (3 C₆H₅), 172.0 (C(O)).

(*S*)-Methyl 1-Tritylaziridine-2-carboxylate ((*S*)-15).^{2,4,5} Utilizing the preceding procedure and work-up for (*R*)-15, and using crude (*S*)-2 (43.80 g, 0.12 mol), methanesulfonyl chloride (10.30 mL, 0.13 mol) and Et₃N (25.30 mL, 0.18 mol) gave crude mesylate ((*S*)-14) (53.90 g, 0.12 mol), which was treated with Et₃N (34.29 mL, 0.25 mol) to yield 31.58 g (75%) of (*S*)-15 as a transparent crystal: mp 127–128 °C (lit.^{3a} mp 130–131 °C); $[\alpha]^{20}_{D}$ –95.1 (*c* 1.5, CHCl₃) (lit.^{3b} $[\alpha]^{20}_{D}$ –94.2° (*c* 1.0, CHCl₃)); *R_f* = 0.45 (1/5 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 1.41 (dd, *J* = 1.7, 6.4 Hz, NCHH'CH), 1.89 (dd, *J* = 2.8, 6.4 Hz, CHH'CHN), 2.26 (dd, *J* = 1.7, 2.8 Hz, NCHH'CH), 3.75 (s, OCH₃), 7.18–7.30 (m, 9 ArH), 7.48–7.52 (m, 6 ArH); ¹³C NMR (CDCl₃) δ 28.9 (NCH₂CH), 31.9 (CH₂CHN), 52.3 (OCH₃), 74.6 (NCPh₃), 127.1, 127.8, 129.5, 143.8 (3 C₆H₅), 172.1 (C(O)).

(*R*)-Methyl 1-Acetylaziridine-2-carboxylate ((*R*)-16).⁶ (*R*)-Methyl 1-tritylaziridine-2-carboxylate ((*R*)-15) (9.00 g, 26.24 mmol) was dissolved in MeOH/CHCl₃ (1:1, 90 mL) and cooled to 0 °C under Ar and TFA (15.15 mL, 196.80 mmol) was added dropwise. After the reaction mixture was allowed to stir at 0 °C (2 h), the solvent was evaporated in vacuo. The product was dissolved in CH₂Cl₂ (120 mL), cooled to 0 °C, and Et₃N (18.29 mL, 131.20 mmol) and AcCl (2.04 mL, 28.86 mmol) were added in two portions over 5 min. The solution was stirred at 0 °C (1 h) and then washed with saturated aqueous NaHCO₃ (100 mL) and saturated aqueous brine (100 mL). The organic layer was dried (Na₂SO₄) and evaporated in vacuo, and then the crude product was purified by silica gel column chromatography (1/1 EtOAc/hexanes) and crystallized (cold hexanes) to yield 2.46 g (66%) of (*R*)-16 as a clear crystal: mp 39–40 °C; $[\alpha]^{25}_{D}$ +84.3° (*c* 1.2, CHCl₃); *R_f* = 0.30 (1/2 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 2.16 (s, CH₃C(O)), 2.51 (dd, *J* = 1.8, 5.5 Hz, NCHH'CH), 2.58 (dd, *J* = 1.8, 3.0 Hz, NCHH'CH), 3.16 (dd, *J* = 3.0, 5.5 Hz, CHH'CHN), 3.80 (s, OCH₃); ¹³C NMR (CDCl₃) δ 23.7 (CH₃C(O)),

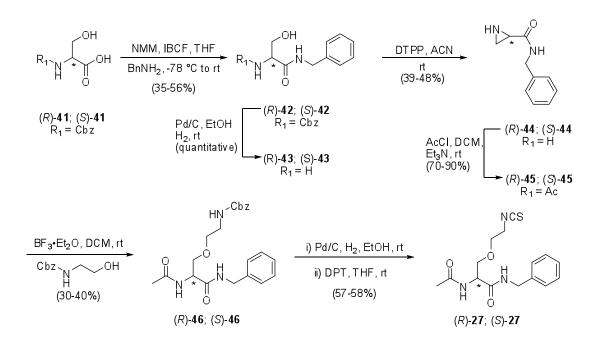
30.9 (NCH₂CH), 34.4 (CH₂CHN), 52.9 (OCH₃), 168.9 (C(O)O), 180.6 (C(O)N); M_r (+ESI) 166.0474 [M+Na]⁺ (calcd for C₆H₉NO₃Na⁺ 166.0480 [M+Na]⁺).

(*S*)-Methyl 1-Acetylaziridine-2-carboxylate ((*S*)-16).⁶ Utilizing the preceding procedure and work-up for (*R*)-16, and using (*S*)-15 (9.00 g, 26.24 mmol), TFA (15.15 mL, 196.80 mmol), Et₃N (18.29 mL, 131.20 mmol) and AcCl (2.04 mL, 28.86 mmol) gave 2.56 g (68%) of (*S*)-16 as a clear crystal: mp 39–40 °C; $[\alpha]^{25}_{D}$ -83.9° (*c* 1.2, CHCl₃); *R_f* = 0.30 (1/2 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 2.17 (s, CH₃C(O)), 2.51 (dd, *J* = 1.8, 5.4 Hz, NCHH'CH), 2.58 (dd, *J* = 1.8, 2.9 Hz, NCHH'CH), 3.16 (dd, *J* = 2.9, 5.4 Hz, CHH'CHN), 3.80 (s, OCH₃); ¹³C NMR (CDCl₃) δ 23.7 (CH₃C(O)), 30.8 (NCH₂CH), 34.4 (CH₂CHN), 52.8 (OCH₃), 168.8 (C(O)O), 180.5 (C(O)N); *M_r* (+ESI) 166.0474 [M+Na]⁺ (calcd for C₆H₉NO₃Na⁺ 166.0480 [M+Na]⁺).

(R)-N-Benzyl 2-Acetamido-3-(prop-2-ynyloxy)propionamide ((R)-28). Utilizing Method C, (R)-19 (1.28 g, 6.92 mmol), NMM (1.14 mL, 10.38 mmol), IBCF (1.14 mL, 8.72 mmol), and benzylamine (0.90 mL, 8.30 mmol) gave 1.15 g (61%) of (R)-28 as a white solid: mp 149.0-149.5 °C; $[\alpha]^{25}_{D}$ –26.8° (c 1.5, CHCl₃); R_f = 0.45 (1/9 MeOH/CHCl₃); IR (nujol mull) 3263, 2925, 2111, 1639, 1553, 1459 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (s, CH₃C(O)), 2.45 (t, J = 2.4 Hz, CH₂CCH), 3.64 (dd, J = 7.4, 9.3 Hz, CHH'OCH₂), 3.94 (dd, J = 3.9, 9.3 Hz, CHH'OCH₂), 4.15 (1/2HH'₀, J = 2.4, 15.9 Hz, OCHH'C), 4.23 (1/2HH²_a, J = 2.4, 15.9 Hz, OCHH²C), 4.45 (1/2HH²_a, J = 6.0, 15.0 Hz, CHH²Ph), 4.51 (1/2HH²_a, J = 6.0, 15.0 Hz, CHH'Ph), 4.57–4.63 (m, CH), 6.43–6.45 (br d, J = 6.6 Hz, NHCH), 6.65-6.73 (br m, NHCH₂), 7.25–7.37 (m, C_6H_5), addition of excess (R)-(–)-mandelic acid to a CDCl₃ solution of (R)-28 gave only a single signal for the acetyl methyl protons and the alkyne proton, addition of excess (R)-(–)-mandelic acid to a CDCl₃ solution of (R)-28 and (S)-28 (3:5 ratio) gave two signals for the acetyl methyl protons (δ 2.005 (*R*) and 2.020 (*S*) (Δ ppm = 0.015)), and two signals for the alkyne proton (δ 2.391 (S) and 2.432 (R) ($\Delta ppm = 0.041$); ¹³C NMR (CDCl₃) δ 23.3 (CH₃C(O)), 43.8 (CH₂Ph), 52.7 (CH), 58.8 (CH₂CCH), 69.3 (CH₂OCH₂), 75.5 (CH₂CCH), 79.0 (CH₂CCH), 127.7, 128.9, 138.0 (C₆H₅), 169.8, 170.5 (2 **C**(O)), the remaining aromatic signal was not detected; M_r (+ESI) 275.1389 [M+H]⁺ (calcd for C₁₅H₁₈N₂O₃H⁺ 275.1396 [M+H]⁺). Anal. (C₁₅H₁₈N₂O₃): C, H, N.

(*S*)-*N*-Benzyl 2-Acetamido-3-(prop-2-ynyloxy)propionamide ((*S*)-28). Utilizing the procedure and work up procedure for (*R*)-28, and using (*S*)-19 (1.30 g, 7.03 mmol), NMM (1.16 mL, 10.55 mmol), IBCF (1.16 mL, 8.86 mmol), and benzylamine (0.92 mL, 8.44 mmol) gave 1.21 g (63%) of (*S*)-28 as a white solid: mp 148.5–149.0 °C; $[\alpha]^{25}_{D}$ +27.3° (*c* 1.7, CHCl₃); *R_f* = 0.45 (1/9 MeOH/CHCl₃); IR (nujol mull) 3132, 2924, 2111, 1640, 1552, 1459 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (s, CH₃C(O)), 2.45 (t, *J* = 2.4 Hz, CH₂CCH), 3.64 (dd, *J* = 7.5, 9.1 Hz, CHH'OCH₂), 3.94 (dd, *J* = 4.1, 9.1 Hz, CHH'OCH₂), 4.15 (1/2HH'_q, *J* = 2.4, 15.9 Hz, OCHH'C), 4.23 (1/2HH'_q, *J* = 2.4, 15.9 Hz, OCHH'C), 4.45 (1/2HH'_q, *J* = 6.0,

15.0 Hz, CHH'Ph), 4.51 (1/2HH'_q, *J* = 6.0, 15.0 Hz, CHH'Ph), 4.57–4.63 (m, CH), 6.43–6.45 (br d, *J* = 6.3 Hz, NHCH), 6.65–6.74 (br m, NHCH₂), 7.25–7.36 (m, C₆H₅), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*S*)-**28** gave only a single signal for the acetyl methyl protons and the alkyne proton, addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*S*)-**28** gave only a single signal for the acetyl methyl protons and the alkyne proton, addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*R*)-**28** and (*S*)-**28** (3:5 ratio) gave two signals for the acetyl methyl protons (δ 2.005 (*R*) and 2.020 (*S*) (Δppm = 0.015)), and two signals for the alkyne proton (δ 2.391 (*S*) and 2.432 (*R*) (Δppm = 0.041)); ¹³C NMR (CDCl₃) δ 23.3 (CH₃C(O)), 43.7 (CH₂Ph), 52.7 (CH), 58.8 (CH₂CCH), 69.4 (CH₂OCH₂), 75.4 (CH₂CCH), 79.1 (CH₂CCH), 127.6, 127.7, 128.8, 138.0 (C₆H₅), 169.9, 170.6 (2 C(O)); *M*_r (+ESI) 275.1390 [M+H]⁺ (calcd for C₁₅H₁₈N₂O₃H⁺275.1396 [M+H]⁺). Anal. (C₁₅H₁₈N₂O₃): C, H, N.


2-Azidoethanol.⁷ NaN₃ (70.00 g, 1.08 mol) was dissolved in H₂O (200 mL) and 2chloroethanol (55.6 mL, 0.829 mol) was added all at once. The reaction was stirred at 80 °C (24 h) behind a safety shield. After 24 h, the reaction was cooled to room temperature, saturated with NaCl, and extracted with CH₂Cl₂ (8 x 150 mL). The organic layers were dried (Na₂SO₄) and evaporated at room temperature to obtain 58.42 g (81%) of a colorless liquid that was used without further purification: R_f = 0.47 (1/2 EtOAc/hexanes); ¹H NMR (CDCl₃) δ 2.62 (t, *J* = 6.7 Hz, CH₂OH), 3.45 (t, *J* = 5.1 Hz, CH₂N₃), 3.78 (app. q, *J* = 5.1 Hz, CH₂OH); ¹³C NMR (CDCl₃) δ 53.6 (CH₂N₃), 61.4 (CH₂OH).

(*R*)-*N*-Benzyl 2-Acetamido-3-(2-azidoethoxy)propionamide ((*R*)-30). Utilizing Method D, (*R*)-20 (950 mg, 4.4 mmol), benzylamine (622 μL, 5.7 mmol), and DMTMM (1.58 g, 5.7 mmol) in THF (50 mL) gave 715 mg (53%) of (*R*)-30 as a white solid after purification by flash chromatography (4/96 MeOH/CHCl₃) followed by recrystallization from EtOAc: mp 111–112.5 °C; $[\alpha]^{25}_{D}$ +12.0° (*c* 1.0; MeOH); *R_f*= 0.51 (5/95 MeOH/CHCl₃); IR (nujol mull) 3139, 2107, 1635, 1547 cm⁻¹; ¹H NMR (CDCl₃) δ 1.98 (s, CH₃C(O)NH), 3.32–3.43 (m, OCH₂CH₂N₃), 3.50–3.56 (m, CHCHH'OCH₂), 3.58–3.75 (m, OCH₂CH₂N₃), 3.88–3.96 (m, CHCHH'OCH₂), 4.39–4.51 (m, NHCH₂Ph), 4.52–4.58 (m, CHCH₂OCH₂), 6.55–6.65 (br d, NHCHCH₂O), 6.76–6.86 (m, NHCH₂Ph), 7.21-7.35 (C₆H₅), addition of excess (*R*)-(-)mandelic acid to a CDCl₃ solution of (*R*)-30 gave only one signal for the acetyl protons, addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (S)-30 and (*R*)-30 (1:2 ratio) gave two signals for the acetyl protons (δ 2.006 (*S*) and 1.993 (*R*) (Δppm = 0.013)); ¹³C NMR (CDCl₃) δ 23.4 (CH₃C(O)), 43.9 (NHCH₂Ph), 50.9 (CH₂N₃), 52.7 (CHCH₂O), 70.3 (OCH₂CH₂N₃ or CHCH₂O), 70.4 (CHCH₂O or OCH₂CH₂N₃), 127.7, 128.9, 138.0 (C₆H₅), 169.8, 170.9 (CH₃C(O)NH, C(O)NHCH₂), the remaining aromatic resonance was not detected and is believed to overlap with nearby signals; *M_r* (+ESI) 328.1380 [M+Na]⁺ (calcd for C₁₄H₁₉N₅O₃Na⁺ 328.1386 [M+Na]⁺). Anal. (C₁₄H₁₉N₅O₃):C, H, N.

(S)-N-Benzyl 2-Acetamido-3-(2-azidoethoxy)propionamide ((S)-30). Utilizing the preceding procedure, and using (S)-20 (1.08 g, 5 mmol), benzylamine (600 μ L, 5.5 mmol) and DMTMM (1.52 g,

5.5 mmol) in THF (50 mL) gave 854 mg (56%) of (*S*)-**30** as a white solid after purification by flash chromatography (4/96 MeOH/CHCl₃) followed by recrystallization from EtOAc and hexanes: mp 111–112.5 °C; $[\alpha]^{25}_{D}$ -12.1° (*c* 1.0; MeOH); R_f = 0.51 (5/95 MeOH/CHCl₃); IR (nujol mull) 3139, 2107, 1635, 1547 cm⁻¹; ¹H NMR (CDCl₃) δ 1.98 (s, CH₃C(O)NH), 3.32–3.43 (m, OCH₂CH₂N₃), 3.50–3.56 (m, CHCHH'OCH₂), 3.58–3.75 (m, OCH₂CH₂N₃), 3.88–3.96 (m, CHCHH'OCH₂), 4.39–4.51 (m, NHCH₂Ph), 4.52–4.58 (m, CHCH₂OCH₂), 6.42–6.52 (br d, NHCHCH₂O), 6.74–6.84 (br t, NHCH₂Ph), 7.21–7.35 (C₆H₅), addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*S*)-**30** gave only one signal for the acetyl protons, addition of excess (*R*)-(–)-mandelic acid to a CDCl₃ solution of (*S*)-**30** and (*R*)-**30** (1:2 ratio) gave two signals for the acetyl protons (δ 2.006 (*S*) and 1.993 (*R*) (Δ ppm = 0.013)); ¹³C NMR (CDCl₃) δ 23.4 (CH₃C(O)), 43.9 (NHCH₂Ph), 50.9 (CH₂N₃), 52.7 (CHCH₂O), 70.3 (OCH₂CH₂N₃ or CHCH₂O), 70.4 (CHCH₂O or OCH₂CH₂N₃), 127.7, 128.9, 138.0 (C₆H₅), 169.8, 170.9 (CH₃C(O)NH, C(O)NHCH₂), the remaining aromatic resonance was not detected and is believed to overlap with nearby signals; *M_r* (+ESI) 328.1380 [M+Na]^{*} (calcd for C₁₄H₁₉N₅O₃Na^{*} 328.1386 [M+Na]^{*}). Anal. (C₁₄H₁₉N₅O₃): C, H, N.

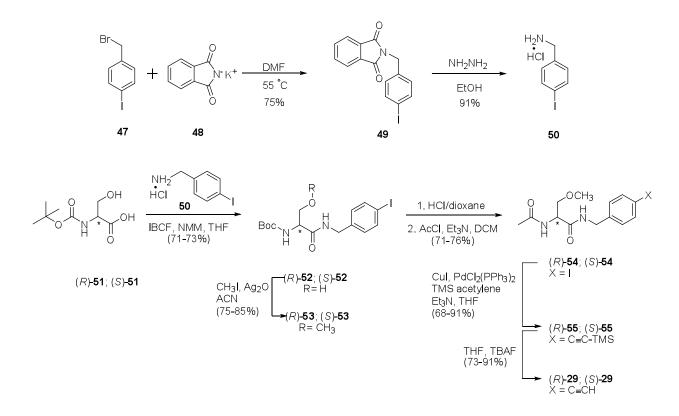
Scheme S2. Synthesis of (R)- and (S)-27

(*R*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)amino-3-hydroxypropionamide ((*R*)-42).⁸ Using Method C, Cbz-D-serine ((*R*)-41) (15.00 g, 62.7 mmol), NMM (8.3 mL, 75.2 mmol), IBCF (9.8 mL, 75.2 mmol), and benzylamine (7.60 mL, 69.0 mmol) gave (*R*)-42 (7.55 g, 35%) as a white solid: mp 147–149 °C (lit.⁸ mp 147–149); $[\alpha]^{25}_{D}$ +4.5° (*c* 1.0, MeOH); ¹H NMR (DMSO-*d*₆) δ 3.61 (d, *J* = 5.4 Hz, CH₂), 4.06–4.13 (br m, CHCH₂), 4.29 (d, *J* = 5.4 Hz, CH₂N), 4.86–4.93 (br t, OH), 5.04 (s, CH₂O), 7.23–7.36 (m, 10 ArH), 8.40-8.45 (br m, NH).

(*S*)-*N*-Benzyl 2-*N*-(Benzyloxycarbonyl)amino-3-hydroxypropionamide ((*S*)-42).⁹ Utilizing the preceding procedure, and using Cbz-L-serine ((*S*)-41) (15.00 g, 62.7 mmol), NMM (8.3 mL, 75.2 mmol), IBCF (9.8 mL, 75.2 mmol), and benzylamine (7.60 mL, 69.0 mmol) gave (*S*)-42 (7.55 g, 35%) as a white solid: mp 139–141 °C (lit.¹⁰ mp 148–149.5 °C); ¹H NMR (DMSO- d_6) δ 3.56–3.66 (m, CH₂), 4.07–4.13 (m, CHCH₂), 4.29 (d, *J* = 5.7 Hz, CH₂N), 4.91 (t, *J* = 5.4 Hz, OH), 5.04 (s, CH₂O), 7.23–7.38 (m, 10 ArH), 8.40-8.45 (br t, NH).

(*R*)-*N*-Benzyl Aziridine-2-carboxamide ((*R*)-44). Pd/C (10%, 2.00 g, 20% w/w) was added to a hot ethanolic solution (215 mL) of (*R*)-*N*-benzyl 2-*N*-(benzyloxycarbonyl)amino-3hydroxypropionamide ((*R*))-42) (10.00 g, 30.5 mmol). The solution was stirred at room temperature under H₂ (1 atm) overnight. The mixture was filtered through a bed of Celite[®] and the filtrate was evaporated in vacuo. Acetonitrile (60 mL) was added to the residue followed by DTPP (11.80 g, 33.6 mmol). The mixture was stirred at room temperature (3 h). The reaction was concentrated, aqueous 1 M H₂SO₄ (100 mL) added, and then washed with toluene (3 x 100 mL). A saturated aqueous solution of Na₂CO₃ was added to the aqueous layer until pH ~ 8 and then washed with CH₂Cl₂ (5 x 100 mL). The organic layers were combined and concentrated in vacuum. The solid was purified by silica gel column chromatography (7/3 EtOAc/acetone) to obtain 1.83 g of a white solid (48%): R_f = 0.30 (EtOAc); mp 71-72 °C; [α]²⁵_D +18.8° (*c* 1.0, DMSO); IR (nujol mull) 3219, 1662, 1556, 1458, 1377, 1245, 1157, 1024, 912, 833, 729 cm⁻¹; ¹H NMR (CDCl₃) δ 1.10-1.25 (br m, NH), 1.82 (d, *J* = 2.6 Hz, H₁), 1.94 (d, *J* = 5.7 Hz, H₁'), 2.50 (dd, *J* = 2.6, 5.7 Hz, H₂), 4.44 (d, *J* = 5.7 Hz, NCH₂), 6.50–6.70 (br m, NH), 7.25–7.37 (m, C₆H₅); ¹³C NMR (CDCl₃) δ 26.5 (NCH₂), 30.5 (C₁), 43.1 (br, C₂), 127.6, 127.8, 128.7, 137.9 (4 ArC), 170.8 (C(O)); *M*_r (+ESI) 177.1023 [M+H]⁺ (calcd for C₁₀H₁₂N₂OH⁺ 177.1028 [M+H]⁺). Anal. (C₁₀H₁₂N₂O•0.1H₂O): C, H, N.

(*S*)-*N*-Benzyl Aziridine-2-carboxamide ((*S*)-44).⁹ Utilizing the preceding procedure, and using (*S*)-*N*-benzyl 2-*N*-(benzyloxycarbonyl)amino-3-hydroxypropionamide ((*S*)-42) (7.00 g, 21.3 mmol), Pd/C 10% (1.40 g, 20% w/w), DTPP (8.30 g, 23.46 mmol), EtOH (150 mL), and acetonitrile (42 mL) gave 1.83 g (48%) of a white solid: $R_f = 0.30$ (EtOAc); mp 72–73 °C (lit.⁹ mp 68 °C); $[\alpha]^{25}_D$ –18.4° (*c* 1.0, DMSO); IR (nujol mull) 3215, 1662, 1557, 1458, 1392, 1245, 1157, 1093, 1023, 912, 832, 732 cm⁻¹; ¹H NMR (CDCl₃) δ 0.9–1.4 (m, NH), 1.77–1.82 (br, H₁), 1.84 (d, *J* = 5.4 Hz, H₁'), 2.40–2.45 (br m, H₂), 4.39 (d, *J* = 5.7 Hz, NCH₂), 6.90–7.10 (br m, CONH), 7.22–7.37 (m, 5 ArH); M_r (+ESI) 177.1023 [M+H]⁺ (calcd for C₁₀H₁₂N₂OH⁺ 177.1028 [M+H]⁺). Anal. (C₁₀H₁₂N₂O): C, H, N.


(*R*)-*N*-Benzyl 1-Acetylaziridine-2-carboxamide ((*R*)-45). To a CH₂Cl₂ solution (50 mL) of (*R*)-*N*-benzyl aziridine-2-carboxamide ((*R*)-44) (2.00 g, 11.4 mmol) maintained at 0 °C was successively added Et₃N (3.19 mL, 22.7 mmol) and AcCl (886 μ L, 12.5 mmol). The mixture was stirred at room temperature (1 h), then aqueous 10% citric acid (75 mL) was added, and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 75 mL). The organic layers were combined, and successively washed with aqueous saturated NaHCO₃ (75 mL) and H₂O (50 mL), dried (MgSO₄), and concentrated in vacuo. The solid was dissolved in minimal amount of EtOAc and then precipitated by addition of cold hexanes to obtain (*R*)-45 (2.00 g, 71%) as a white solid: *R_f* = 0.78 (1/1 acetone/EtOAc); mp 82–83 °C; $[\alpha]^{25}_{D} = -2.6^{\circ}$ (*c* 1.0, DMSO); IR (nujol mull) 3270, 1692, 1649, 1564, 1458, 1373, 1331, 1249, 1186, 733 cm⁻¹; ¹H NMR (CDCl₃) δ 2.17 (s, CH₃C(O)), 2.37 (dd, *J* = 0.9, 3.0 Hz, CHH'), 2.55 (dd, *J* = 0.9, 6.3 Hz, CHH'), 3.08 (dd, *J* = 3.0, 6.3 Hz, CH), 4.38–4.45 (m, CH₂N), 6.49–6.58 (br m, NCHCO), 7.23–7.38 (m, C₆H₅); ¹³C NMR (CDCl₃) δ 23.5 (CH₃C(O)), 32.2 (C1), 36.6 (C2), 43.3 (CH₂N), 127.6, 127.7, 128.8, 137.5 (ArC), 167.2, 181.3 (2 C(O)); *M_r* (+ESI) 241.0948 [M+Na]⁺ (calcd for C₁₂H₁₃N₂O₂Na⁺ 241.0953 [M+Na]⁺). Anal. (C₁₂H₁₃N₂O₂): C, H, N. (*S*)-*N*-Benzyl 1-Acetylaziridine-2-carboxamide ((*S*)-45).⁹ Utilizing the preceding procedure, and using (*S*)-44 (1.37 g, 7.8 mmol), Et₃N (2.18 mL, 15.6 mmol) and AcCl (606 μ L, 8.6 mmol) gave 1.69 g (90%) of (*S*)-45 as a white solid after precipitation with cold hexanes from ethyl acetate: $R_f = 0.78$ (1/1 acetone/EtOAc); mp 83–84 °C (lit.⁹ mp 72 °C); [α]²⁵_D = +3.0° (*c* 1.0, DMSO); IR (nujol mull) 3267, 1693, 1650, 1562, 1457, 1374, 1331, 1249, 1185, 1050, 733 cm⁻¹; ¹H NMR (CDCl₃) δ 2.14 (s, CH₃C(O)), 2.37 (dd, *J* = 1.2, 3.0 Hz, CHH'), 2.50 (dd, *J* = 1.2, 6.3 Hz, CHH'), 3.07 (dd, *J* = 3.0, 6.3 Hz, CH), 4.42 (d, *J* = 5.7 Hz, CH₂N), 6.78–6.85 (m, NHCO), 7.23–7.36 (m, ArH); M_r (+ESI) 241.0948 [M+Na]⁺ (calcd for C₁₂H₁₃N₂O₂Na⁺ 241.0953 [M+Na]⁺). Anal. (C₁₂H₁₃N₂O₂): C, H, N.

(*R*)-*N*-Benzyl 2-Acetamido-3-(2-amino-*N*-(benzyloxycarbonyl)ethoxy)propionamide ((*R*)-46). Using Method A, (*R*)-45 (3.10 g, 14.2 mmol), BF₃•Et₂O (1.96 mL, 15.6 mmol), and *N*-benzyl 2hydroxyethylcarbamate (8.33 g, 42.7 mmol) gave 2.40 g (41%) of (*R*)-46 as a white solid after silica gel column chromatography (5/95 MeOH/EtOac): $R_f = 0.33$ (EtOAc); mp 125–126 °C; $[\alpha]^{25}_{D} +3.8^{\circ}$ (*c* 1.0, DMSO); IR (nujol mull) 3292, 2726, 1691, 1635, 1540, 1457, 1375, 1263, 1096, 1017, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 2.00 (s, CH₃C(O)), 3.31–3.40 (m, CH₂N-Cbz), 3.48–3.57 (m, CH₂CH₂O, OCHH'), 3.87 (dd, *J* = 4.2, 9.3 Hz, OCHH'), 4.41–4.47 (m, NCH₂Ph), 4.50–4.57 (m, CH), 5.05 (s, CH₂O), 5.12– 5.20 (br t, NH), 6.60 (d, *J* = 5.7 Hz, NHC(O)CH₃), 6.81–6.93 (br t, NH), 7.21-7.35 (m, 2 C₆H₅); ¹³C NMR (CDCl₃) δ 22.7 (CH₃C(O)), 40.5 (CH₂CH₂NH), 43.2 (C(O)N(H)CH₂), 52.7 (OCH₂CH), 66.5, 70.1, 70.2 (3 OCH₂), 127.2, 127.3, 127.9, 128.0, 128.3, 128.4, 136.4, 137.8 (8 ArC), 156.6 (OC(O)), 170.0, 170.7 (2 NC(O)); M_r (+ESI) 414.2025 [M+H]⁺ (calcd for C₂₂H₂₇N₃O₅H⁺ 414.2029 [M+H]⁺). Anal. (C₂₂H₂₇N₃O₅•0.33H₂O): C, H, N.

(S)-*N*-Benzyl 2-Acetamido-3-(2-amino-*N*-(benzyloxycarbonyl)ethoxy)propionamide ((S)-46). Utilizing the preceding procedure, and using BF₃•Et₂O (2.43 mL, 17.2 mmol), (S)-*N*-benzyl 1acetylaziridine-2-carboxamide ((S)-45) (3.40 g, 15.6 mmol), and *N*-benzyl 2-hydroxyethylcarbamate (9.00 g, 46.8 mmol) gave 1.81 g (30%) of a white solid: $R_f = 0.33$ (EtOAc); mp 126.0–126.5 °C; $[\alpha]^{25}_{D}$ -3.3° (*c* 1.0, DMSO); IR (nujol mull) 3288, 1691, 1635, 1538, 1458, 1375, 1260, 1097, 1017, 908, 699 cm⁻¹; ¹H NMR (CDCl₃) δ 2.00 (s, CH₃C(O)), 3.32–3.40 (m, CH₂N-Cbz), 3.51–3.56 (m, CH₂CH₂O, OCHH'), 3.86 (dd, *J* = 4.2, 8.7 Hz, OCHH'), 4.38–4.55 (m, NCH₂Ph, CH), 5.05 (s, CH₂O), 5.15–5.20 (br m, NH), 6.58–6.62 (br m, NHC(O)CH₃), 6.82–6.93 (br m, NH), 7.21–7.35 (m, 2 C₆H₅); ¹³C NMR (CDCl₃) δ 23.0 (CH₃C(O)), 40.6 (CH₂CH₂NH), 43.5 (C(O)N(H)CH₂), 52.7 (OCH₂CH), 66.8, 70.0, 70.5 (3 OCH₂), 127.5, 127.6, 128.0, 128.1, 128.5, 128.7, 136.4, 137.9 (8 ArC), 156.7 (OC(O)), 169.9, 170.6 (2 NC(O)); *M*_r (+ESI) 436.1842 [M+Na]⁺ (calcd for C₂₂H₂₇N₃O₅Na⁺ 436.1848 [M+Na]⁺). Anal. (C₂₂H₂₇N₃O₅•0.25H₂O): C, H, N.

(R)-N-Benzyl 2-Acetamido-3-(2-isothiocyanatoethoxy)propionamide ((R)-27). Pd/C (10%, 0.20 g, 10% w/w) was added to an ethanolic solution (20 mL) of (R)-N-benzyl 2-acetamido-3-(2-amino-N-(benzyloxycarbonyl)ethoxy)propionamide ((R)-46) (2.00 g, 4.9 mmol) and the mixture was stirred at room temperature (12 h) under H₂ (1 atm). The mixture was filtered through a bed of Celite[®] and the filtrate was evaporated in vacuum to obtain a colorless oil. THF (20 mL) was added to the residue followed by di(2-pyridyl) thionocarbonate (DPT) (0.12 g, 4.9 mmol). The solution was stirred at room temperature (12 h), and then the THF was removed. The residue was purified by silica gel column chromatography (1/9 acetone/EtOAc) to obtain 0.76 g of a white solid (57%): $R_f = 0.49$ (1/9 acetone/EtOAc); mp 131–132 °C; [a]²⁵_D +8.1° (c 1.0, DMSO); IR (nujol mull) 3284, 2207, 2105, 1635, 1547, 1458, 1376, 1230, 1128, 1044, 745, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 2.06 (s, CH₃C(O)), 3.51–3.76 (m, CH₂NCS, CH₂CH₂O, OCHH'), 3.99 (dd, J = 3.6, 9.3 Hz, CHH'), 4.41–4.58 (m, NCH₂Ph), 4.58–4.64 (m, CH), 6.55 (d, J = 6.3 Hz, NHC(O)CH₃), 6.77–6.82 (br t, NH), 7.26–7.37 (m, C₆H₅), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (R)-27 gave only on signal for the acetyl protons; ¹³C NMR (CDCl₃) δ 23.2 (**C**H₃C(O)), 43.6 (CH₂**C**H₂NH), 45.3 (C(O)N(H)**C**H₂), 52.7 (OCH₂**C**H), 69.3, 70.2 (2 OCH₂), 127.5, 127.6, 128.7 (3 ArC), 134.5 (NCS), 137.9 (ArC), 169.6, 170.6 (2 NC(O)); M_r (+ESI) 344.1040 [M+Na]⁺ (calcd for $C_{15}H_{19}N_3O_3SNa^+$ 344.1045 [M+Na]⁺). Anal. (C₁₅H₁₉N₃O₃S•0.2EtOAc): C, H, N, S.

(S)-N-Benzyl 2-Acetamido-3-(2-isothiocyanatoethoxy)propionamide ((S)-27). Utilizing the preceding procedure, and using Pd/C (10%, 0.17 g, 10% w/w), ethanol (17 mL), (S)-N-benzyl 2acetamido-3-(2-amino-N-(benzyloxycarbonyl)ethoxy)propionamide ((S)-46) (1.70 g, 4.1 mmol), THF (17 mL) and di(2-pyridyl) thionocarbonate (DPT) (0.95 g, 4.1 mmol) gave 0.76 g of a white solid (57%): $R_f = 0.49$ (1/9 acetone/EtOAc); mp 131–132 °C; $[\alpha]^{25}_{D}$ –8.6° (c 1.0, DMSO); IR (nujol mull) 3283, 2206, 2105, 1725, 1635, 1546, 1458, 1375, 1231, 1127, 724 cm⁻¹; ¹H NMR (CDCl₃) δ 2.06 (s, CH₃C(O)), 3.51–3.74 (m, CH₂NCS, CH₂CH₂O, OCHH'), 3.99 (dd, J = 3.6, 9.3 Hz, CHH'), 4.46–4.52 (m, NCH₂Ph), 4.58–4.63 (m, CH), 6.55 (d, J = 6.9 Hz, NHC(O)CH₃), 6.75–6.85 (br t, NH), 7.26–7.36 (m, C₆H₅), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (S)-27 gave only on signal for the acetyl protons; ¹³C NMR (CDCl₃) δ 23.2 (CH₃C(O)), 43.6 (CH₂CH₂NH), 45.3 (C(O)N(H)CH₂), 52.7 (OCH₂CH), 69.3, 70.1 (2 OCH₂), 127.5, 127.6, 128.7 (3 ArC), 134.6 (NCS), 137.9 (ArC), 169.6, 170.6 (2 NC(O)); [M+Na]⁺ (calcd for $C_{15}H_{19}N_3O_3SNa^+$ M_r (+ESI) 344.1039 344.1045 [M+Na]⁺). Anal. (C₁₅H₁₉N₃O₃S•0.1EtOAc): C, H, N, S.

N-(4-lodobenzyl)phthalimide (49).¹¹ A mixture of 4-iodobenzylbromide (47) (40.00 g, 134.7 mmol), potassium phthalimide (48) (26.20 g, 141.5 mmol) and dry DMF (150 mL) was heated overnight at 55 °C under Ar, and then the solvent was removed at reduced pressure. The solid residue was triturated with CHCl₃ (200 mL), filtered, and washed with CHCl₃ (3 x 200 mL). The combined organic extracts were successively washed with aqueous 0.2 M NaOH (200 mL) and H₂O (400 mL), and then dried (MgSO₄). The solvent was removed at reduced pressure to afford a crude solid, which was triturated with Et₂O to obtain a white solid (37.00 g, 75%): R_f = 0.75 (1/1 EtOAc/hexanes); mp 138–139 °C; ¹H NMR (CDCl₃) δ 4.77 (s, CH₂), 7.17 (d, *J* = 8.6 Hz, 2 ArH), 7.63 (d, *J* = 8.6 Hz, 2 ArH), 7.78 (dd, *J* = 3.0, 5.7 Hz, 2 PhtH), 7.83 (dd, *J* = 3.0, 5.7 Hz, 2 PhtH); ¹³C NMR (CDCl₃) δ 41.0 (CH₂), 93.5 (Cl), 123.4, 130.6, 131.9, 134.1, 135.9, 137.7 (6 ArC), 167.2 (2 C(O)); M_r (+ESI) 363.9831 [M+H]⁺ (calcd for C₁₇H₁₃NO₂H⁺ 363.9835 [M+H]⁺).

4-lodobenzylamine Hydrochloride (50). An EtOH solution (50 mL) of hydrazine hydrate (7.28 mL, 152.9 mmol) was added to an EtOH solution (800 mL) of *N*-(4-iodobenzyl)phthalimide (**49**) (37.00 g, 101.9 mmol) maintained at reflux under Ar. The solution was stirred at reflux (2.5 h), and then the solvent was removed at reduced pressure. The solid residue was dissolved in CH_2Cl_2 (200 mL) and treated with aqueous 20% NaOH (200 mL). The aqueous phase was separated, extracted with CHCl₃

(3 x 300 mL), and the combined organic layers were dried (MgSO₄) and concentrated in vacuo to afford the free base as an oil.

The free base was converted to the corresponding hydrochloride salt **50** by addition of a 4 M HCl solution in dioxane. The white precipitate was filtered and dried to obtain 25.00 g of **2** (91%): $R_f = 0.1$ (EtOAc); mp > 250 °C (lit.¹² mp 299–303 °C); ¹H NMR (DMSO- d_6) δ 3.97 (d, J = 5.4 Hz, CH₂), 7.34 (d, J = 8.1 Hz, 2 ArH), 7.76 (d, J = 8.1 Hz, 2 ArH), 8.50–8.85 (br s, NH₃⁺); M_r (+ESI) 233.9780 [M+H]⁺ (calcd for C₁₇H₁₃NO₂H⁺ 233.9775 [M+H]⁺).

(*R*)-*N*-(4-lodo)benzyl 2-*N*-(*tert*-Butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-52). Using Method C, Boc-D-serine ((*R*)-51) (6.00 g, 29.2 mmol), NMM (3.80 mL, 35.04 mmol), IBCF (4.6 mL, 35.04 mmol) and 4-iodobenzylamine hydrochloride (50) (8.65 g, 32.60 mmol) in THF (400 mL) gave 8.97 g (73%) as a white solid: $R_f = 0.60$ (EtOAc); mp 129–130 °C; $[\alpha]^{25}_{D} + 0.97^{\circ}$ (*c* 2.8, DMSO); IR (nujol mull) 3327, 1656, 1521, 1458, 1375, 1302, 1244, 1164, 1009 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.39 (s, (CH₃)₃C), 3.49–3.60 (br m, CH₂OH), 3.95–4.01 (br m, CHCH₂), 4.18–4.31 (m, CH₂N), 4.86 (br s, OH), 6.68 (d, *J* = 7.8 Hz, BocNH), 7.08 (d, *J* = 8.1 Hz, 2 ArH), 7.64 (d, *J* = 8.1 Hz, 2 ArH), 8.37 (br s, CH₂NH); ¹³C NMR (CDCl₃) δ 28.2 ((CH₃)₃C), 42.8 (NCH₂), 54.7 (OCH₂CH), 62.7 (OCH₂CH), 80.8 ((CH₃)₃C), 92.8 (CI), 129.3, 137.5, 137.7 (3 ArC), 156.4 (C(O)), 171.5 (C(O)); *M*_r (+ESI) 443.0435 [M+Na]⁺ (calcd for C₁₅H₂₁IN₂O₄Na⁺ 443.0444 [M+Na]⁺). Anal. (C₁₅H₂₁IN₂O₄): C, H, N, I.

(*S*)-*N*-(4-lodo)benzyl 2-*N*-(*tert*-Butoxycarbonyl)amino-3-hydroxypropionamide ((*S*)-52). Utilizing the preceding procedure, and using Boc-L-serine ((*S*)-51) (1.72 g, 8.42 mmol), NMM (1.1 mL, 10.10 mmol), IBCF (1.3 mL, 10.10 mmol) and 4-iodobenzylamine hydrochloride (50) (2.50 g, 9.26 mmol) gave the desired product that was recrystallized with EtOAc to obtain (*S*)-52 (2.51 g, 71%) as a white solid: R_f = 0.60 (EtOAc); mp 129–130 °C; $[\alpha]^{25}_{D}$ –0.93° (*c* 2.8, DMSO); IR (nujol mull) 3324, 1652, 1520, 1373, 1301, 1246, 1163, 1008, 850, 779 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.39 (s, (CH₃)₃C), 3.50–3.60 (br m, CH₂OH), 3.94–4.02 (br m, CHCH₂), 4.16–4.30 (m, CH₂N), 4.83–4.87 (br s, OH), 6.68 (d, *J* = 8.1 Hz, BocNH), 7.07 (d, *J* = 8.4 Hz, 2 ArH), 7.64 (d, *J* = 8.4 Hz, 2 ArH), 8.37 (t, *J* = 5.7 Hz, CH₂NH); ¹³C NMR (DMSO-*d*₆) δ 28.1 ((CH₃)₃C), 41.4 (NCH₂), 56.9 (OCH₂CH), 61.7 (OCH₂CH), 78.1 ((CH₃)₃C), 92.1 (Cl), 129.3, 136.7, 139.3 (C₆H₄), 155.1 (C(O)), 170.5 (C(O)); M_r (+ESI) 443.0445 [M+Na]⁺ (calcd for C₁₅H₂₁IN₂O₄Na⁺ 443.0444 [M+Na]⁺). Anal. (C₁₅H₂₁IN₂O₄): C, H, N, I.

(*R*)-*N*-(4-lodo)benzyl 2-*N*-(*tert*-Butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-53). Ag₂O (20.63 g, 89.29 mmol) was added to a CH₃CN solution (300 mL) of (*R*)-*N*-(4-iodo)benzyl 2-*N*-(*tert*-butoxycarbonyl)amino-3-hydroxypropionamide ((*R*)-52) (7.50 g, 17.86 mmol) and then CH₃I (11.12 mL, 178.57 mmol) was added at room temperature under Ar. The reaction mixture was stirred at room temperature (3 d), filtered, and the filtrate concentrated in vacuo. The residue was purified by silica gel column chromatography (2/3 EtOAc/hexanes) to obtain 5.80 g (75%) of (*R*)-**53** as a white solid after trituration with Et₂O: $R_f = 0.53$ (1/1 EtOAc/hexanes); mp 86–87 °C; $[\alpha]^{25}_{D} -3.4^{\circ}$ (*c* 1.0, DMSO); IR (nujol mull) 3334, 1659, 1528, 1461, 1376, 1303, 1245, 1165, 1110, 1049, 954, 870, 788, 619 cm⁻¹; ¹H NMR (CDCl₃) δ 1.43 (s, (CH₃)₃C), 3.37 (s, OCH₃), 3.48 (dd, *J* = 6.3, 9.3 Hz, CHH'OCH₃), 3.84 (dd, *J* = 3.9, 9.3 Hz, CHH'OCH₃), 4.20–4.28 (br m, CHCH₂), 4.41 (d, *J* = 5.4 Hz, CH₂N), 5.37–7.41 (br s, BocNH), 6.75–6.80 (br t, CH₂NH), 7.01 (d, *J* = 8.2 Hz, 2 ArH), 7.64 (d, *J* = 8.2 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 28.2 ((CH₃)₃C), 42.8 (NCH₂), 54.0 (OCH₂CH), 59.1 (OCH₃), 71.9 (OCH₂CH), 80.5 ((CH₃)₃C), 92.7 (Cl), 129.3, 137.7, 137.8 (3 ArC), 155.5 (C(O)), 170.4 (C(O)); *M*_r (+ESI) 435.0777 [M+H]⁺ (calcd for C₁₆H₂₃IN₂O₄H⁺ 435.0781 [M+H]⁺). Anal. (C₁₆H₂₃IN₂O₄): C, H, N, I.

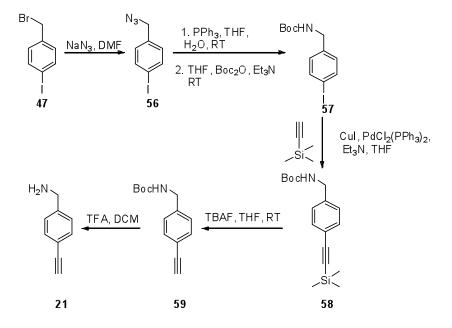
(*S*)-*N*-(4-lodo)benzyl 2-*N*-(*tert*-Butoxycarbonyl)amino-3-methoxypropionamide ((*S*)-53). Utilizing the preceding procedure, and using Ag₂O (23.40 g, 101.20 mmol), (*S*)-*N*-(4-iodo)benzyl 2-*N*-(*tert*-butoxycarbonyl)amino-3-hydroxypropionamide ((*S*)-52) (8.50 g, 20.24 mmol) and CH₃I (12.60 mL, 202.4 mmol) gave 7.56 g (85%) of a white solid: $R_f = 0.53$ (1/1 EtOAc/hexanes); mp 87.0–87.5 °C; $[\alpha]^{25}_D$ +3.3° (*c* 1.0, DMSO); IR (nujol mull) 3337, 2728, 1657, 1527, 1461, 1376, 1303, 1244, 1164, 1109, 1048, 953, 869, 787, 617 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.39 (s, (CH₃)₃C), 3.24 (s, OCH₃), 3.47 (d, *J* = 6.0 Hz, CH₂OCH₃), 4.14–4.18 (br m, CHCH₂), 4.20–4.25 (m, CH₂N), 6.88 (d, *J* = 7.5 Hz, BocNH), 7.05 (d, *J* = 8.2 Hz, 2 ArH), 7.64 (d, *J* = 8.2 Hz, 2 ArH), 8.45 (t, *J* = 6.0 Hz, CH₂NH); ¹³C NMR (DMSO-*d*₆) δ 28.0 ((CH₃)₃C), 41.4 (NCH₂), 54.2 (OCH₂CH), 58.0 (OCH₃), 71.8 (OCH₂CH), 78.1 ((CH₃)₃C), 92.2 (CI), 129.3, 136.7, 139.2 (3 ArC), 155.1 (C(O)), 170.0 (C(O)); *M*_r (+ESI) 435.0775 [M+H]⁺ (calcd for C₁₆H₂₃IN₂O₄H⁺ 435.0781 [M+H]⁺). Anal. (C₁₆H₂₃IN₂O₄): C, H, N, I.

(*R*)-*N*-(4-lodo)benzyl 2-Acetamido-3-methoxypropionamide ((*R*)-54). A saturated HCl solution in dioxane (0.5 M, 25.00 mL) was added to (*R*)-*N*-(4-iodo)benzyl 2-*N*-(*tert*-butoxycarbonyl)amino-3-methoxypropionamide ((*R*)-53) (5.50 g, 12.67 mmol) at 0 °C and the solution was stirred at room temperature (2 h). The reaction solution was concentrated in vacuo and dried (30 min). CH₂Cl₂ (30 mL) was added to the residue followed by the successive additions of Et₃N (10.66 mL, 76.02 mmol) and AcCl (2.70 mL, 38.01 mmol) at 0 °C. The mixture was stirred at room temperature (2 h), aqueous 10% citric acid was added and then the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 30 mL). The organic layers were combined, washed with aqueous saturated NaHCO₃ (30 mL) and H₂O (30 mL), dried (MgSO₄), and concentrated in vacuo. The solid was recrystallized with EtOAc to obtain (*R*)-**54** as a white solid: *R_f* = 0.76 (1/1 acetone/EtOAc); mp 159–160 °C; [α]²⁵_D = +3.3° (*c* 1.0, DMSO); IR (nujol mull) 3279, 1636, 1552, 1457, 1375, 1305, 1139, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (s, CH₃CO), 3.38 (s, OCH₃), 3.44 (dd, *J* = 7.2, 9.0 Hz, CHH'), 3.79 (dd, *J* = 4.2, 9.0 Hz, CHH'), 4.38–4.41 (m, CH₂N), 4.52–4.59 (m, NC(H)CO), 6.46 (br d, *J* = 6.6 Hz, NHC(O)CH₃), 6.85–6.93 (br t, CH₂NH), 7.00 (d, *J* = 8.4 Hz, 2 ArH), 7.64 (d, *J* = 8.4 Hz, 2 ArH); ¹³C

NMR (CDCl₃) δ 23.1 (CH₃CO), 42.9 (CH₂N), 52.4 (CHCH₂), 59.1 (OCH₃), 71.6 (CH₂OCH₃), 92.7 (CI), 129.3, 137.7, 139.1 (3 ArC), 170.1, 170.3 (2 C(O)); M_r (+ESI) 399.0177 [M+Na]⁺ (calcd for C₁₃H₁₇IN₂O₃Na⁺ 399.0182 [M+Na]⁺). Anal. (C₁₃H₁₇IN₂O₃): C, H, N, I.

(*S*)-*N*-(4-lodo)benzyl 2-Acetamido-3-methoxypropionamide ((*S*)-54). Utilizing the preceding procedure and, using a saturated HCl solution in dioxane (0.5 M, 17 mL), (*S*)-*N*-(4-iodo)benzyl 2-*N*-(*tert*-butoxycarbonyl)amino-3-methoxypropionamide ((*S*)-53) (3.70 g, 8.52 mmol), Et₃N (3.6 mL, 25.60 mmol) and AcCl (906 μ L, 12.30 mmol) gave (*S*)-54 (2.43 g, 76%) as a white solid: $R_f = 0.76$ (1/1 acetone/EtOAc); mp 159–160 °C; $[\alpha]^{25}_{\ D} = -3.2^{\circ}$ (*c* 1.0, DMSO); IR (nujol mull) 3278, 1636, 1552, 1458, 1375, 1305, 1138, 725 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (s, CH₃CO), 3.38 (s, OCH₃), 3.43 (dd, *J* = 7.2, 9.0 Hz, CHH'), 3.79 (dd, *J* = 4.2, 9.0 Hz, CHH'), 4.38–4.42 (m, CH₂N), 4.53–4.59 (m, NC(H)CO), 6.47 (br d, *J* = 6.0 Hz, NHC(O)CH₃), 6.85–6.93 (br t, CH₂NH), 7.00 (d, *J* = 8.4 Hz, 2 ArH), 7.64 (d, *J* = 8.4 Hz, 2 ArH); ¹³C NMR (DMSO-*d*₆) δ 22.4 (CH₃CO), 41.4 (CH₂N), 52.5 (CHCH₂), 58.1 (OCH₃), 71.9 (CH₂OCH₃), 92.2 (CI), 129.3, 136.8, 139.1 (3 ArC), 169.3, 169.7 (2 C(O)); *M*_r (+ESI) 399.0177 [M+Na]⁺ (calcd for C₁₃H₁₇IN₂O₃Na⁺ 399.0182 [M+Na]⁺). Anal. (C₁₃H₁₇IN₂O₃): C, H, N, I.

(R)-N-(4-(Trimethylsilyl)ethynyl)benzyl 2-Acetamido-3-methoxypropionamide ((R)-55). To an anhydrous THF (70 mL) solution of (R)-N-(4-iodo)benzyl 2-acetamido-3-methoxypropionamide ((R)-54) (2.40 g, 6.38 mmol), were sequentially added under Ar, triethylamine (1.79 mL, 12.76 mmol), trimethylsilylacetylene (1.35 ml, 9.57 mmol), dichlorobis(triphenylphosphine)palladium (II) (224 mg, 0.319 mmol), and Cul (121 mg, 0.638 mmol). The mixture was stirred at room temperature (4 h), and then Et₂O added and the precipitate filtered through a Celite pad. The filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with EtOAc/MeOH (9/1) as the eluant to obtain (R)-55 (1.50 g, 68%) as a brown solid. To remove the traces of palladium, the solid was treated with 14.00 g of resin scavenger (SPM32, PhosPhonics) in CH₂Cl₂. The mixture was stirred at room temperature (2 h) and filtered. The filtrate evaporated under vacuum to give (R)-55: $R_f = 0.41$ (EtOAc); mp 126–127 °C; $[\alpha]^{25}_{D}$ = +6.1° (c 1.0, DMSO); IR (nujol mull) 3285, 2157, 1641, 1546, 1457, 1375, 1302, 1248, 1130, 975, 862, 723 cm⁻¹; ¹H NMR (CDCl₃) δ 0.24 (s, (CH₃)₃Si), 1.99 (s, CH₃CO), 3.35 (s, OCH₃), 3.45 (dd, J = 7.2, 9.0 Hz, CHH'), 3.75 (dd, J = 4.2, 9.0 Hz, CHH'), 4.33-4.47 (m, CH₂N), 4.57–4.62 (m, NC(H)CO), 6.66 (br d, J = 6.9 Hz, NHC(O)CH₃), 7.07–7.13 (br t, CH₂NH), 7.17 (d, J = 7.9 Hz, 2 ArH), 7.40 (d, J = 7.9 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ -0.1 (TMS), 23.2 (CH₃CO), 43.2 (CH₂N), 52.4 (CHCH₂), 59.1 (OCH₃), 71.6 (CH₂OCH₃), 94.4 (C=C), 104.7 (C=C), 122.4, 127.2, 132.3, 138.3 (4 Ar**C**), 170.0, 170.3 (2 **C**(O)); *M*_r (+ESI) 369.1605 [M+Na]⁺ (calcd for C₁₈H₂₆N₂O₃SiNa⁺ 369.1610 [M+Na]⁺). Anal. (C₁₈H₂₆N₂O₃Si): C, H, N.


(S)-*N*-(4-(Trimethylsilyl)ethynyl)benzyl 2-Acetamido-3-methoxypropionamide ((S)-55). Utilizing the preceding procedure, and using (S)-54 (2.40 g, 6.38 mmol), triethylamine (1.79 mL, 12.76 mmol), Cul (121 mg, 0.638 mmol), dichlorobis(triphenylphosphine)palladium (II) (224 mg, 0.319 mmol), and trimethylsilylacetylene (1.35 mL, 9.57 mmol) gave 1.97 g (91%) of (S)-55 as a brown solid: $R_f = 0.41$ (EtOAc); mp 126–127 °C; $[\alpha]^{25}_{D} = -6.2^{\circ}$ (*c* 1.0, DMSO); IR (nujol mull) 3285, 2727, 2157, 1641, 1546, 1457, 1374, 1304, 1250, 1137, 862, 725 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 0.22 (s, (CH₃)₃Si), 1.87 (s, CH₃CO), 3.25 (s, OCH₃), 3.44–3.55 (m, CH₂), 4.29 (d, *J* = 5.7 Hz, CH₂N), 4.43–4.51 (m, NC(H)CO), 7.24 (d, *J* = 8.2 Hz, 2 ArH), 7.40 (d, *J* = 8.2 Hz, 2 ArH), 8.10 (br d, *J* = 8.1 Hz, NHC(O)CH₃), 8.53 (br t, *J* = 6.0 Hz, CH₂NH); ¹³C NMR (DMSO-*d*₆) δ -0.2 (TMS), 22.4 (CH₃CO), 41.7 (CH₂N), 52.6 (CHCH₂), 58.1 (OCH₃), 71.9 (CH₂OCH₃), 93.6 (C=C), 105.1(C=C), 120.0, 127.1, 131.4, 140.4 (4 ArC), 169.3, 169.8 (2 C(O)); *M*_r (+ESI) 369.1603 [M+Na]⁺ (calcd for C₁₈H₂₆N₂O₃SiNa⁺ 369.1610 [M+Na]⁺). Anal. (C₁₈H₂₆N₂O₃Si): C, H, N.

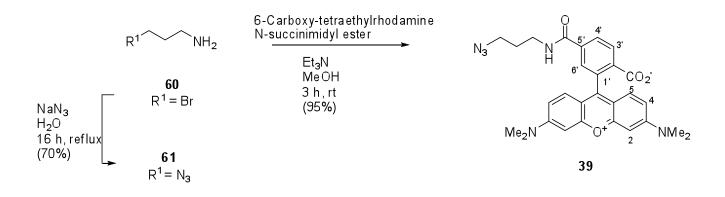
(R)-N-(4-Ethynyl)benzyl 2-Acetamido-3-methoxypropionamide ((R)-29). A 1 M THF solution of TBAF (8.66 mL, 8.66 mmol) was added to a THF (60 mL) solution of (R)-N-(4-(trimethylsilyl)ethynyl)benzyl 2-acetamido-3-methoxypropionamide ((R)-55) (1.50 g, 4.33 mmol) and then the solution was stirred at room temperature (4 h). CH₂Cl₂ (30 mL) and an aqueous 10% citric acid solution (30 mL) were added and the organic layer was separated. The aqueous layer was extracted with CH_2CI_2 (2 x 30 mL). The organic layers were combined, dried (MgSO₄), and concentrated in vacuo. The residue was purified by flash chromatography on silica gel with EtOAc as the eluant to obtain (*R*)-**56** (0.81 g, 68%) as a white solid: $R_f = 0.41$ (EtOAc); mp 161–162 °C; $[\alpha]^{25}_{D} =$ +4.2° (c 0.5, DMSO); IR (nujol mull) 3290, 1634, 1544, 1458, 1375, 1311, 1240, 1197, 1104, 1041, 714 cm⁻¹; ¹H NMR (CDCl₃) δ 2.02 (s, CH₃CO), 3.07 (s, C=CH), 3.37 (s, OCH₃), 3.45 (dd, J = 7.2 Hz, 9.3 Hz, CHH'), 3.77 (dd, J = 4.5 Hz, 9.3 Hz, CHH'), 4.36–4.49 (m, CH₂N), 4.56–4.63 (m, NC(H)CO), 6.60 (br d, J = 6.9 Hz, NHC(O)CH₃), 7.01–7.10 (br t, CH₂NH), 7.20 (d, J = 8.2 Hz, 2 ArH), 7.44 (d, J =8.2 Hz, 2 ArH), addition of excess (R)-(-)-mandelic acid to a $CDCl_3$ solution of (R)-56 gave only on signal for the acetyl protons and the methyl protons; ¹³C NMR (CDCl₃) δ 23.1 (CH₃CO), 43.1 (CH₂N), 52.5 (CHCH₂), 59.0 (OCH₃), 71.7 (CH₂OCH₃), 77.3 (C=C), 82.2(C=C), 121.2, 127.3, 132.4, 138.7 (4) Ar**C**), 170.1, 170.4 (2 **C**(O)); M_r (+ESI) 297.1210 [M+Na]⁺ (calcd for C₁₅H₁₈N₂O₃Na⁺ 297.1215 [M+Na]⁺). Anal. (C₁₅H₁₈N₂O₃•0.5H₂O): C, H, N.

(*S*)-*N*-(4-Ethynyl)benzyl 2-Acetamido-3-methoxypropionamide ((*S*)-29). Utilizing the preceding procedure, and using (*S*)-**55** (50 mg, 0.145 mmol), and TBAF (290 μL, 8.66 mmol) gave 0.75 g (91%) of (*S*)-**56** as a white solid (39 mg, 91%): $R_f = 0.41$ (EtOAc); mp 159–160 °C; $[\alpha]^{25}_{D} = -4.4^{\circ}$ (*c* 0.5, DMSO); IR (nujol mull) 3289, 2728, 1635, 1544, 1458, 1375, 1304, 1234, 975, 724 cm⁻¹; ¹H NMR (CDCl₃) δ 2.03 (s, CH₃CO), 3.07 (s, C=CH), 3.38 (s, OCH₃), 3.44 (dd, *J* = 7.5, 9.0 Hz, CHH'),

3.80 (dd, J = 4.2, 9.0 Hz, CHH'), 4.41–4.51 (m, CH₂N), 4.52–4.57 (m, NC(H)CO), 6.46 (br d, J = 5.4Hz, NHC(O)CH₃), 6.80–6.92 (br t, CH₂NH), 7.21 (d, J = 8.4 Hz, 2 ArH), 7.45 (d, J = 8.4 Hz, 2 ArH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (S)-**56** gave only on signal for the acetyl protons and the methyl protons; ¹H NMR (DMSO- d_6) δ 1.87 (s, CH₃CO), 3.25 (s, OCH₃), 3.44–3.55 (m, CH_2), 4.14 (s, C=CH), 4.29 (d, J = 6.0 Hz, CH₂N), 4.43–4.48 (m, NC(H)CO), 7.25 (d, J = 8.4 Hz, 2) PhH), 7.42 (d, J = 8.4 Hz, 2 PhH), 8.11 (br d, J = 7.8 Hz, NHC(O)CH₃), 8.52 (br t, J = 6.0 Hz CH₂NH); ¹³C NMR (CDCl₃) 23.2 (CH₃C(O)), 43.2 (CH₂N), 52.5 (CHCH₂), 59.1 (OCH₃), 71.7 (CH₂OCH₃), 77.3 (C=C), 83.3 (C=C), 121.2, 127.3, 132.4, 138.8 (4 ArC), 170.1, 170.4 (2 C(O)); ¹³C NMR (DMSO-d₆) 22.3 (CH₃C(O)), 41.6 (CH₂N), 52.4 (CHCH₂), 58.0 (OCH₃), 71.8 (CH₂OCH₃), 80.2 (C=C), 83.2 (C=C), 119.8, 126.9, 131.3, 140.2 (4 Ar**C**), 169.2, 169.6 (2 **C**(O)); the HMQC experiment showed a correlation between the δ = 3.07 ppm in the ¹H NMR (CDCl₃) and δ = 77.3 in the ¹³C NMR (CDCl₃) and a correlation between δ = 4.14 ppm in the ¹H NMR (DMSO-*d*₆) and δ = 80.2 in the ¹³C NMR (DMSO-*d*₆); [M+Na]⁺ [M+Na]⁺). M_r (+ESI) 297.1212 (calcd for $C_{15}H_{18}N_2O_3Na^+$ 297.1215 Anal. (C₁₅H₁₈N₂O₃•0.25H₂O): C, H, N.

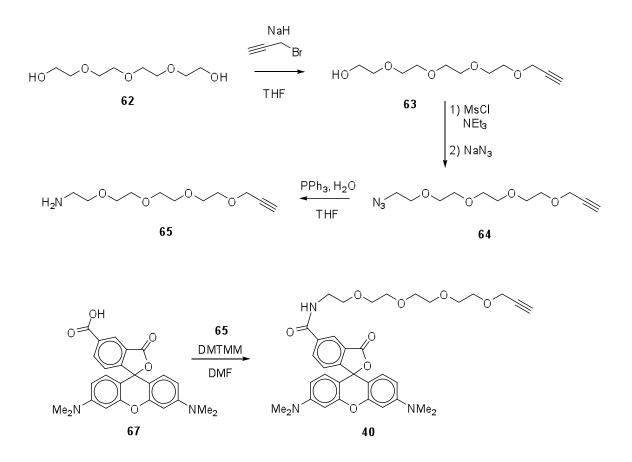
Scheme S4. Synthesis of 21

4-lodobenzyl Azide (56).¹³ NaN₃ (0.98 g, 15.09 mmol) was added to a solution of 4iodobenzyl bromide (**47**) (1.49 g, 5.03 mmol) in DMF (5 mL) and then the mixture was stirred at room temperature (2 h). The reaction was diluted with H₂O and extracted with EtOAc (5 x 30 mL). The combined organic layers were washed with H₂O and saturated aqueous brine (30 mL), dried (MgSO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (1/9 EtOAc/hexanes) to obtain a white solid (1.18 g, 92%): R_f = 0.72 (1/9 EtOAc/hexanes); mp 36 °C (lit.¹³ mp 36 °C); ¹H NMR (CDCl₃) δ 4.29 (s, CH₂), 7.06 (d, *J* = 8.3 Hz, 2 ArH), 7.70 (d, *J* = 8.3 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 54.1 (CH₂), 93.9 (C-I), 129.9, 135.0 , 137.9 (3 Ar**C**).


tert-Butyl *N*-(4-lodo)benzyl Carbamate (57).¹³ A THF solution (25 mL) of 56 (1.04 g, 4 mmol) was treated with PPh₃ (1.50 g, 4 mmol) and H₂O (0.36 g, 20 mmol). The reaction mixture was stirred overnight (room temperature), and then concentrated in vacuo. The residue was dissolved in THF (40 mL) and treated with Et₃N (1.12 mL, 8 mmol) and di-*tert*-butyl dicarbonate (1.75 mL, 8 mmol). The reaction was stirred at room temperature (3 h), and then H₂O (25 mL) was added, and the reaction mixture was extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with H₂O (30 mL) and saturated aqueous brine (30 mL), dried (MgSO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (3/7 EtOAc/hexanes) to obtain a white solid (0.99 g, 75%): R_f = 0.85 (1/1 EtOAc /hexanes); mp 90 °C (lit.⁷ mp 91 °C); ¹H NMR (CDCl₃) δ 1.45 (s, C(CH₃)₃), 4.22 (d, J = 6.0 Hz, CH₂), 5.02 (br s, NH), 7.02 (d, J

= 8.1 Hz, 2 ArH), 7.63 (d, J = 8.1 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 28.4 (CH₃), 44.0 (CH₂), 79.6 (C(CH₃)₃), 92.5 (C-I), 129.3, 137.6, 138.8 (3 ArC), 155.8 (C(O)).

tert-Butyl *N*-(4-(Trimethylsilyl)ethynyl)benzyl Carbamate (58).¹³ A THF solution (20 mL) of 57 (666 mg, 2.0 mmol) was treated with (trimethylsilyl)acetylene (0.34 mL, 2.4 mmol), Et₃N (0.56 mL, 4 mmol), Cul (38 mg, 0.2 mmol) and dichlorobis(triphenylphosphine)palladium (II) (70 mg, 0.1 mmol) and stirred at room temperature (3 h). The reaction mixture was diluted with Et₂O, filtered through Celite, and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (1/9 EtOAc/hexanes) to yield **58** (721 mg, 99%) as a yellow solid: R_f = 0.48 (1/9 EtOAc/hexanes); mp 94–95 °C (lit.⁷ mp 95 °C); ¹H NMR (CDCl₃) δ 0.23 (s, Si(CH₃)₃), 1.44 (s, C(CH₃)₃), 4.26 (d, *J* = 5.7 Hz, CH₂), 4.99 (br s, NH), 7.18 (d, *J* = 8.1 Hz, 2 ArH), 7.40 (d, *J* = 8.1 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 0.00 (Si(CH₃)₃), 28.4 (C(CH₃)₃), 44.4 (CH₂), 79.8 (C(CH₃)₃), 94.1 (C=C), 104.9 (C=C), 122.1, 127.2, 132.2, 139.5 (4 ArC), 155.9 (C(O)).


tert-Butyl *N*-(4-Ethynylbenzyl)carbamate (59).¹³ A THF solution (10 mL) of 58 (530 mg, 1.75 mmol) was treated with a 1.0 M solution of TBAF in THF (3.5 mL, 3.50 mmol) and stirred at room temperature (1 h). After evaporation, the residue was purified by flash chromatography (15/85 EtOAc/hexanes) to yield 59 (344 mg, 80%) as a white solid: mp 83 °C (lit.¹ mp 82 °C); R_f = 0.49 (15/85 EtOAc /hexanes); ¹H NMR (CDCl₃) δ 1.46 (s, C(CH₃)₃), 3.06 (s, C=CH), 4.30 (d, *J* = 6.0 Hz, CH₂), 4.91 (br s, NH), 7.23 (d, *J* = 8.1 Hz, 2 ArH), 7.45 (d, *J* = 8.1 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 28.8 (C(CH₃)₃), 44.8 (CH₂), 80.1 (C(CH₃)₃), 83.9 (C=C), 98.3 (C=C), 121.5, 127.7, 132.8, 140.3 (4 ArC), 156.3 (C(O)).

N-(4-Ethynylbenzyl)amine (21).¹³ A CH₂Cl₂ solution (60 mL) of **59** (2.80 g, 12.1 mmol) at 0 °C was treated with trifluoroacetic acid (12 mL), and then stirred at room temperature (1 h). The solution was evaporated, and aqueous saturated Na₂CO₃ (100 mL) added, and extracted with CHCl₃ (3 x 150 mL). The organics layers were combined, dried (MgSO₄), filtered, and concentrated in vacuum to obtain **21** as a brown oil (1.40 g, 88%): ¹H NMR (CDCl₃) δ 3.05 (s, C=CH), 3.89 (s, CH₂), 7.28 (d, *J* = 7.6 Hz, 2 ArH), 7.47 (d, *J* = 7.6 Hz, 2 ArH); ¹³C NMR (CDCl₃) δ 46.2 (CH₂), 83.6 (C=C), 120.5 (C=C), 127.0, 127.8, 132.3, 144.1 (ArC).

3-Azido Propylamine (61).¹⁴ 1-Bromo-3-aminopropane hydrochloride (**60**) (5.00 g, 22.84 mmol) was suspended in H₂O (16 mL) followed by the addition of an aqueous NaN₃ (4.45 g, 68.5 mmol) solution (23 mL). The mixture was heated to reflux (16 h) and then concentrated to ~1/3 volume in vacuo. The resulting mixture was cooled in an ice bath and Et₂O (50 mL) and KOH pellets (6.24 g) were added while keeping the temperature below 10 °C. The organic layer was separated and the aqueous phase extracted with Et₂O (2 × 50 mL). The combined organic layer was dried (Na₂SO₄) and concentrated in vacuo, and then purified by bulb-to-bulb distillation to give 1.60 g (70%) of **61** as an yellow oil: $R_f = 0.60$ (3/97 NH₄OH/EtOH); IR (nujol mull) 2933, 2864, 2098, 1595, 1459 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.54–1.63 (m, CH₂CH₂CH₂), 2.59 (t, *J* = 6.6 Hz, CH₂NH₂), 3.37 (t, *J* = 6.8 Hz, N₃CH₂); ¹³C NMR (DMSO-*d*₆) δ 32.2 (CH₂CH₂CH₂), 38.7 (CH₂NH₂), 48.5 (N₃CH₂).

Rhodamine-azide (**39**).¹⁵ 6-Carboxytetramethylrhodamine succinimidyl ester (Berry & Associate. Cat. No. FT 6230, 10.0 mg, 18.96 μ mol) was dissolved in MeOH (1 mL), and 3-azido propylamine (**61**) (11.4 mg, 113.74 μ mol), and triethylamine (13.3 μ L, 94.78 μ mol) were added to the stirred solution at room temperature. After 3 h, the solvent was evaporated in vacuo, and the crude product purified by silica gel column chromatography (1/4 MeOH/CHCl₃) to give the desired product along with some starting amine. The product was dissolved in aqueous 1% citric acid (15 mL) and extracted with CHCl₂ (3 × 20 mL). The organic extracts were combined, washed with saturated aqueous brine (15 mL), and dried (Na₂SO₄) to yield 9.2 mg (95%) of **39** as a dark red solid: R_f = 0.40 (1/4 MeOH/CHCl₃); ¹H NMR (CD₃OD) δ 1.82–1.91 (m, CH₂CH₂CH₂), 3.40 (t, *J* = 6.6 Hz, CH₂NH₂), 3.46 (t, *J* = 6.9 Hz, N₃CH₂), 6.93 (d, *J* = 2.6 Hz, 2 C(2)H), 7.02 (dd, *J* = 2.6, 9.6 Hz, 2 C(4)H), 7.26 (d, *J* = 9.6 Hz, 2 C(5)H), 7.71 (d, *J* = 1.8 Hz, C(6')H). 8.08 (dd, *J* = 1.8, 8.2 Hz, C(4')H), 8.14 (d, *J* = 8.2 Hz, C(3')H).

3,6,9,12-Tetraoxapentadec-14-yn-1-ol (63).¹⁶ Tetraethylene glycol (**62**) (2.00 g, 10.3 mmol) was dissolved in THF (50 mL) and cooled at 0 °C (ice bath). NaH (60% suspension in oil, 272 mg, 11.34 mmol) was added and the suspension was stirred at 0 °C (15 min). Propargyl bromide (80% wt in toluene, 1.68 mL, 11.34 mmol) was then added dropwise at 0 °C. The suspension was warmed to room temperature and stirred at room temperature (1 h). The salts were removed by filtration, the filtrate concentrated in vacuo, and purified by flash chromatography to yield **63** as a colorless oil (642 mg, 27%): R_f = 0.58 (1/9 MeOH/CHCl₃); ¹H NMR (CDCl₃) δ 2.44 (t, *J* = 2.2 Hz, OCH₂CCH), 2.68 (t, *J* = 6.3 Hz, CH₂OH), 3.58–3.64 (m, CH₂OH), 3.64–3.76 (m, 3 CH₂OCH₂, CH₂OCH₂CCH), 4.21 (d, *J* = 2.2 Hz, CH₂CCH); ¹³C NMR (CDCl₃) δ 58.6 (CH₂CCH), 61.9 (CH₂OH), 69.3, 70.5, 70.6, 70.7, 70.8, 70.9, 72.7 (7 OCH₂), 74.7 (CH₂CCH), 79.8 (CH₂CCH).

1-Azido-3,6,9,12-tetraoxapentadec-14-yne (64). Compound **63** (624 mg, 2.69 mmol) was dissolved in THF (25 mL) and NEt₃ (450 μ L, 3.22 mmol) was added and then mesyl chloride (250 μ L, 3.22 mmol) was added dropwise, while stirring at room temperature (water bath). The reaction was stirred (45 min), the salts filtered, and the filtrate concentrated in vacuo. The residue was dissolved in

CH₂Cl₂ (25 mL), successively washed with aqueous 10% citric acid (25 mL) and brine (25 mL), dried (Na₂SO₄) and evaporated to dryness. The crude mesylated product was obtained as an oil (788 mg, 2.54 mol, 94%) and directly dissolved in DMF (10 mL). NaN₃ was added (214 mg, 3.3 mmol) and the reaction was heated at 60 °C (18 h). After cooling to room temperature, H₂O (90 mL) was added, and then the reaction mixture was extracted with Et₂O (3 x 100 mL). The combined organic layers were successively washed with H₂O (2 x 50 mL), brine (50 mL), and dried (Na₂SO₄). The solvents were removed under vacuum to yield **64** as pale yellow oil (400 mg, 61%) that was used without further purification: R_f = 0.46 (5/95 MeOH/CH₂Cl₂); IR (neat) 3251, 2869, 2106, 1454, 1531, 1293, 1107 cm⁻¹; ¹H NMR (CDCl₃) δ 2.44 (t, J = 2.2 Hz, OCH₂CCH), 3.41 (t, J = 5.1 Hz, CH₂N₃), 3.62–3.74 (m, 3 CH₂OCH₂, CH₂OCH₂CCH), 4.21 (d, J = 2.2 Hz, CH₂CCH); ¹³C NMR (CDCl₃) δ 50.9 (CH₂N₃), 58.6 (CH₂CCH), 69.3, 70.2, 70.5, 70.6, 70.7, 70.8, 70.9 (7 OCH₂), 74.7 (CH₂CCH), 79.8 (CH₂CCH); M_r (+ESI) 296.1012 [M+K]⁺ (calcd for C₁₁H₁₉N₃O₄K⁺ 296.1013 [M+K]⁺).

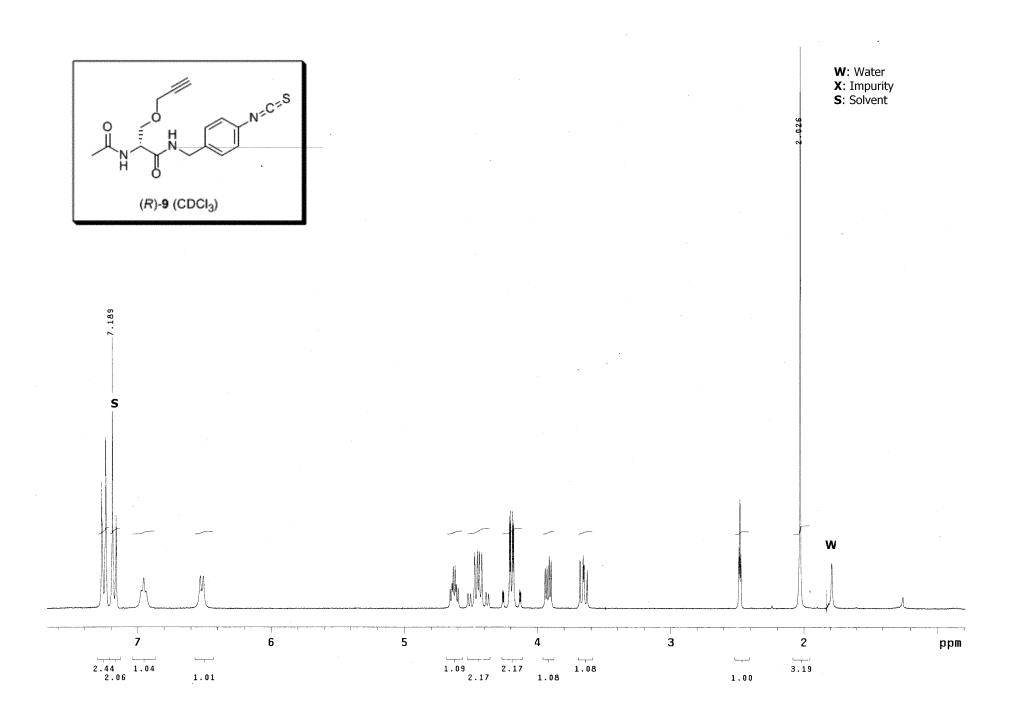
3,6,9,12-Tetraoxapentadec-14-yn-1-amine (65). Azide **64** (355 mg, 1.38 mmol) was dissolved in THF (20 mL) and PPh₃ (724 mg, 2.74 mmol) was added. Upon dissolution, H₂O (1 mL) was added to the reaction and the solution was stirred at room temperature (12 h). The solvents were removed in vacuo, the residue was dissolved in aqueous 0.1 M HCl (20 mL), and washed with CH₂Cl₂ (6 x 80 mL) and EtOAc (2 x 100 mL). The aqueous layer was evaporated to dryness and the remaining salts were suspended in CH₂Cl₂ (25 mL), vigorously stirred (5 min), and filtered. The cake was extensively rinsed with CH₂Cl₂, and the combined organic fractions were evaporated to yield **65** (247 mg, 77%) as a hygroscopic pale yellow oil that was used without further purification: R_r = 0-0.10 (1/9 MeOH/CH₂Cl₂); IR (neat) 3367, 2870, 2112, 1661, 1596, 1457, 1353, 1294, 1250 cm⁻¹; ¹H NMR (CDCl₃) δ 1.38–1.56 (br s, CH₂NH₂), 2.44 (t, *J* = 2.2 Hz, OCH₂CCH), 2.87 (t, *J* = 5.4 Hz, CH₂NH₂), 3.60–3.75 (m, 2 CH₂OCH₂, CH₂OCH₂CCH, CH₂OCH₂CH₂NH₂), 4.21 (d, *J* = 2.2 Hz, CH₂CCH); ¹³C NMR (CDCl₃) δ 42.0 (CH₂NH₂), 58.6 (CH₂CCH), 69.3, 70.5, 70.6, 70.7, 70.8, 73.7 (6 OCH₂), 74.7 (CH₂CCH), 79.8 (CH₂CCH), the remaining signal was not detected and is believed to overlap with nearby peaks; M_r (+ESI) 232.1547 [M+K]^{*} (calcd for C₁₁H₂₁NO₄H⁺ 232.1549 [M+K]^{*}). Anal. (C₁₁H₂₁NO₄+0.35H₂O): C, H, N.

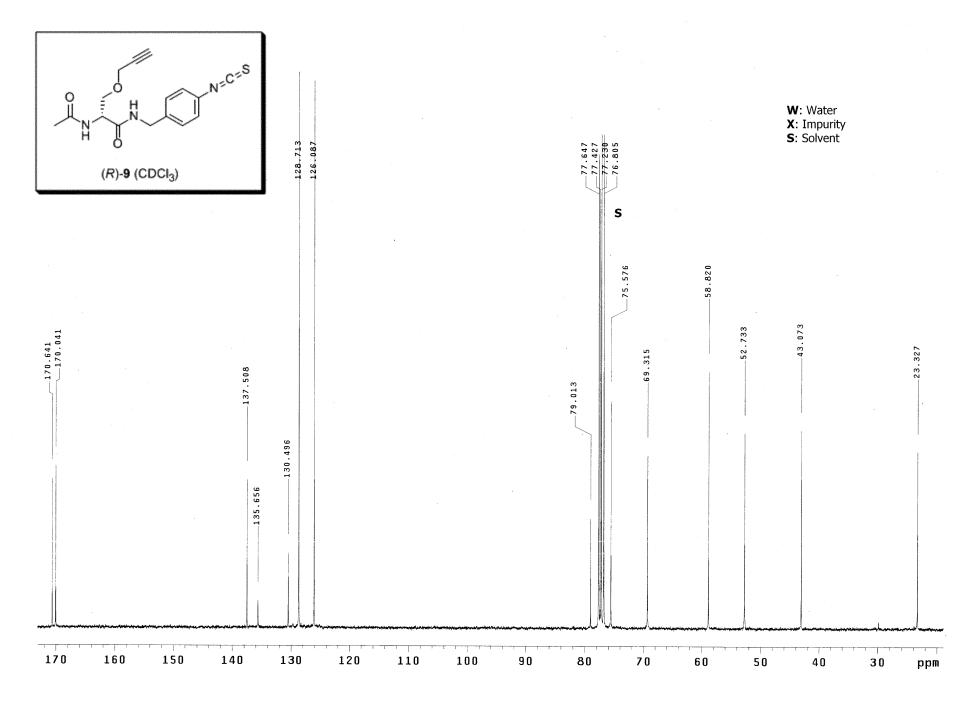
Tetramethylrhodamine-PEG-alkyne (40). Using Method D, 5-carboxytetramethylrhodamine (20 mg, 47 μmol), compound 65 (14 mg, 61 μmol), and DMTMM (17 mg, 61 μmol) in DMF (500 μL) gave 40 as a dark pink residue (10 mg, 33%) after purification by preparative TLC (5/95 to 15/85 MeOH/CH₂Cl₂): R_f = 0.25 (1/9 MeOH/CH₂Cl₂); ¹H NMR (CD₃OD) δ 2.85 (t, *J* = 2.4 Hz, OCH₂CCH), 3.30 (s, 2 N(CH₃)₂), 3.60–3.80 (m, 3 CH₂OCH₂, NHCH₂), 4.17 (d, *J* = 2.4 Hz, CH₂CCH), 6.92–7.08 (m, 2 C(4)H, 2 C(2)H), 7.13–7.28 (m, 2 C(5)H), 7.41 (d, *J* = 8.7 Hz, C(9)H), 8.09 (d, *J* = 8.7 Hz, C(10)H),

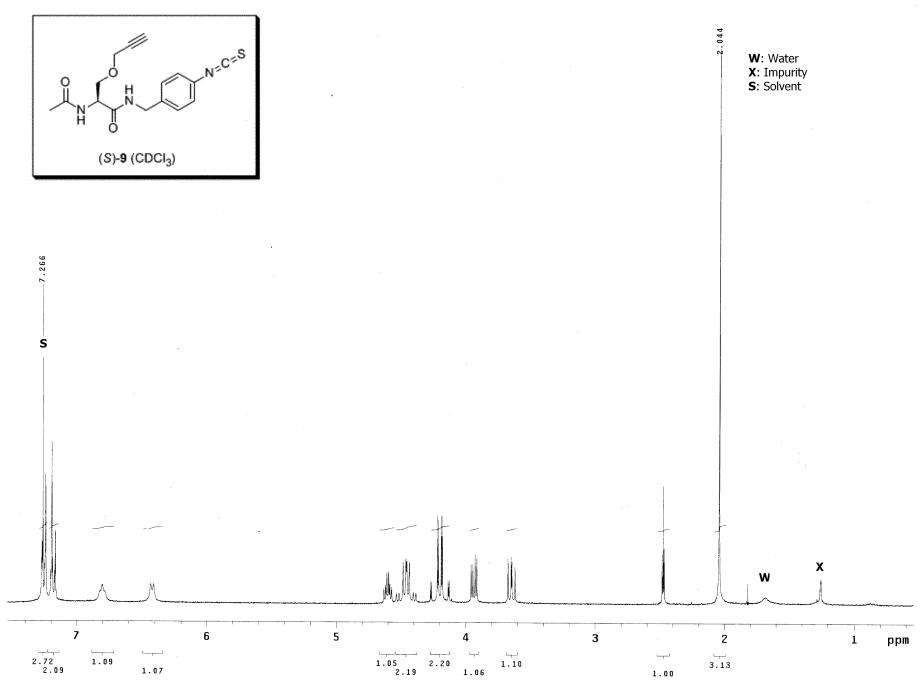
8.60–8.75 (br s, C(12)**H**); ¹³C NMR (CD₃OD) δ 41.0 (2 N(CH₃)₂), 41.3 (C(O)NHCH₂), 59.2 (CH₂CCH), 70.2, 70.7, 71.4, 71.5, 71.6, 71.7, 71.8 (7 OCH₂), 76.1 (CH₂CCH), 80.8 (CH₂CCH), 97.5, 115.0, 115.2, 129.9, 131.0, 132.7, 137.3, 158.9, 159.2, 162.3, 169.4 (tetramethylrhodamine), the remaining signals were not detected; M_r (+ESI) 644.2968 [M+H]⁺ (calcd for C₃₆H₄₁N₃O₈H⁺ 644.2972).

Table S1. Quantification of the (R)-9, (S)-9 of the 62kDa using iTRAQ.

Identified Protein	Observed	Miss	Score	Peptide	Protein	R	S	Average	S.D.
	580.2753	0	54	K.SAAEVIAQAR.K	CRMP2	1.14	1.00	-	-
Dihydropyrimidinase- related protein 2	719.8425	0	53	R.MVIPGGIDVHTR.F	CRMP2	1.60	1.00	-	-
	609.6126	0	33	K.IVLEDGTLHVTEGSGR.Y	CRMP2	1.46	1.00	-	-
	1102.4961	0	82	R.ISVGSDADLVIWDPDSVK.T	CRMP2	1.27	1.00	-	-
	1219.9767	0	59	R.FQMPDQGMTSADDFFQGTK.A	CRMP2	1.35	1.00	-	-
	905.0775	1	47	K.AVVTGKMDENQFVAVTSTNAAK.V	CRMP2	1.20	1.00	-	-
	1015.4612	0	77	R.ILDLGITGPEGHVLSRPEEVEAEAVNR.S	CRMP2	1.43	1.00	1.35	0.16
	583.7814	0	40	R.MSVIWDK.A	CRMP2,3	1.40	1.00	-	-
	1319.056	0	62	K.IVNDDQSFYADIYMEDGLIK.Q	CRMP2,3	1.37	1.00	1.36	0.14
	806.4076	0	72	K.QIGENLIVPGGVK.T	CRMP1,2	1.88	1.00	-	-
	671.9577	0	35	K.MDENQFVAVTSTNAAK.V	CRMP1,2,3	1.21	1.00	1.39	0.21
	572.8043	0	46	K.SAADIIALAR.K	CRMP1	1.33	1.00	-	-
Dihydropyrimidinase- related protein 1	583.7839	0	40	R.MTVVWDK.A	CRMP1	1.43	1.00	1.38	-
	806.4076	0	72	K.QIGENLIVPGGVK.T	CRMP1,2	1.88	1.00	-	-
	671.9577	0	35	K.MDENQFVAVTSTNAAK.I	CRMP1,2,3	1.21	1.00	1.46	0.29
Tubulin alpha chain	923.4354	0	72	R.AVFVDLEPTVIDEVR.T	TBA	0.92	1.00	-	-

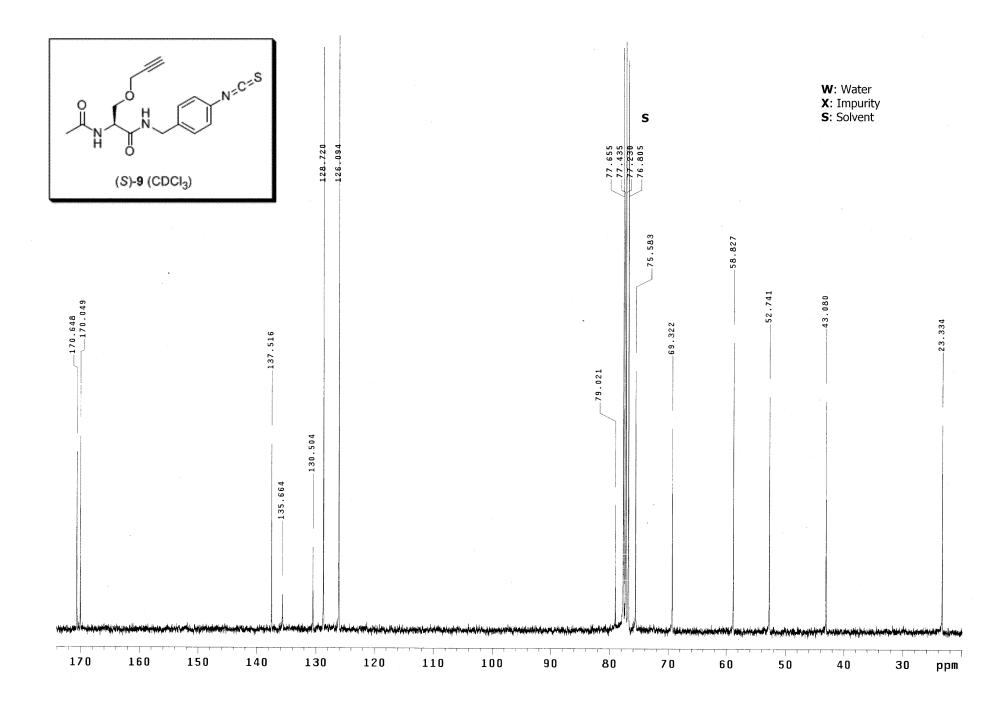

Compound No.	Formula	Calcd.					Found					
		С	Н	Ν	S	I	С	Н	Ν	S	I	
(R)- 9	C ₁₆ H ₁₇ N ₃ O ₃ S	57.99	5.17	12.68	9.68		58.04	5.18	12.47	9.61		
(S)- 9	$C_{16}H_{17}N_3O_3S$	57.99	5.17	12.68	9.68		57.77	5.14	12.44	9.55		
(<i>R</i>)- 10	C ₁₇ H ₁₉ N ₃ O ₃ S·0.2H ₂ O	58.50	5.60	12.04	9.19		58.53	5.49	12.03	8.97		
(S)- 10	C ₁₇ H ₁₉ N ₃ O ₃ S·0.16CH ₃ OH	58.74	5.67	11.95	9.12		59.01	5.67	12.24	8.73		
(<i>R</i>)- 11	$C_{15}H_{18}N_6O_3S$	49.71	5.01	23.19	8.85		49.55	4.91	23.13	8.63		
(S)- 11	$C_{15}H_{18}N_6O_3S$	49.71	5.01	23.19	8.85		49.86	5.07	23.10	8.75		
(R)- 17	C ₉ H ₁₃ NO ₄	54.26	6.58	7.03			54.30	6.66	6.89			
(S)- 17	$C_9H_{13}NO_4$	54.26	6.58	7.03			54.05	6.55	6.95			
(R)- 19	C ₈ H ₁₁ NO ₄ •0.14H ₂ O	51.18	6.06	7.46			51.15	6.13	7.27			
(S)- 19	C ₈ H ₁₁ NO ₄ •0.25H ₂ O	50.66	6.11	7.38			50.76	6.29	7.10			
(<i>R</i>)- 20	C ₇ H ₁₂ N ₄ O ₄ •0.07EtOAc	39.30	5.69	25.23			39.30	5.73	25.33			
(S)- 20	C ₇ H ₁₂ N ₄ O ₄ •0.07EtOAc	39.30	5.69	25.23			39.28	5.71	25.37			
(R)- 23	$C_{15}H_{19}N_3O_3$	62.27	6.62	14.52			62.07	6.62	14.30			
(S)- 23	$C_{15}H_{19}N_3O_3$	62.27	6.62	14.52			62.06	6.70	14.30			
(R)- 27	C ₁₅ H ₁₉ N ₃ O ₃ S·0.2EtOAc	55.99	6.10	12.50	9.54		55.68	5.96	12.72	9.26		
(S)- 27	C ₁₅ H ₁₉ N ₃ O ₃ S·0.1EtOAc	56.02	6.04	12.73	9.71		55.96	5.81	12.73	9.51		
(R)- 28	$C_{15}H_{18}N_2O_3$	65.68	6.61	10.21			65.72	6.62	10.06			
(S)- 28	$C_{15}H_{18}N_2O_3$	65.68	6.61	10.21			65.55	6.61	10.07			
(R)- 29	$C_{15}H_{18}N_2O_3 \cdot 0.5H_2O_3$	65.68	6.61	10.21			65.39	6.58	10.08			
(S)- 29	$C_{15}H_{18}N_2O_3 \cdot 0.25H_2O$	64.62	6.69	10.05			64.60	6.57	9.99			
(R)- 30	$C_{14}H_{19}N_5O_3$	55.07	6.27	22.94			54.85	6.27	22.94			
(S)- 30	$C_{14}H_{19}N_5O_3$	55.07	6.27	22.94			55.16	6.28	22.91			
(R)- 38	$C_{18}H_{25}N_5O_4$	57.59	6.71	18.65			57.34	6.72	18.49			
(R)- 44	$C_{10}H_{12}N_2O.0.1H_2O$	67.47	6.91	15.74			67.74	6.92	15.63			
(S)- 44	$C_{10}H_{12}N_2O$	68.16	6.86	15.90			68.40	7.03	16.05			
(R)- 45	$C_{12}H_{13}N_2O_2$	66.04	6.47	12.84			65.91	6.45	12.75			
(S)- 45	$C_{12}H_{13}N_2O_2$	66.04	6.47	12.84			66.15	6.56	12.72			
(<i>R</i>)- 46	$C_{22}H_{27}N_3O_5 \cdot 0.33H_2O$	62.99	6.65	10.02			62.74	6.55	10.01			
(S)- 46	$C_{22}H_{27}N_3O_5 \cdot 0.25H_2O$	63.22	6.63	10.05			63.16	6.56	10.21			
(R)- 52	$C_{15}H_{21}IN_2O_4$	42.87	5.04	6.67		30.20	43.13	5.14	6.71		29.96	
(S)- 52	$C_{15}H_{21}IN_2O_4$	42.87	5.04	6.67		30.20	43.08	5.10	6.62		29.94	
(R)- 53	$C_{16}H_{23}IN_2O_4$	44.25	5.34	6.45		29.22	44.51	5.34	6.41		28.99	
(S)- 53	$C_{16}H_{23}IN_2O_4$	44.25	5.34	6.45		29.22	44.54	5.38	6.35		28.92	
(<i>R</i>)- 54	$C_{13}H_{17}IN_2O_3$	41.51	4.55	7.45		33.73	41.70	4.49	7.39		33.69	
(S)- 54	$C_{13}H_{17}IN_2O_3$	41.51	4.55	7.45		33.73	41.37	4.52	7.37		33.47	
(R)- 55	$C_{18}H_{26}N_2O_3Si$	62.39	7.56	8.08			62.41	7.56	7.99			
(S)- 55	$C_{18}H_{26}N_2O_3Si$	62.39	7.56	8.08			62.10	7.67	7.93			
65	$C_{11}H_{21}NO_4 \cdot 0.35H_2O$	55.60	9.21	5.89			55.34	8.95	6.26			

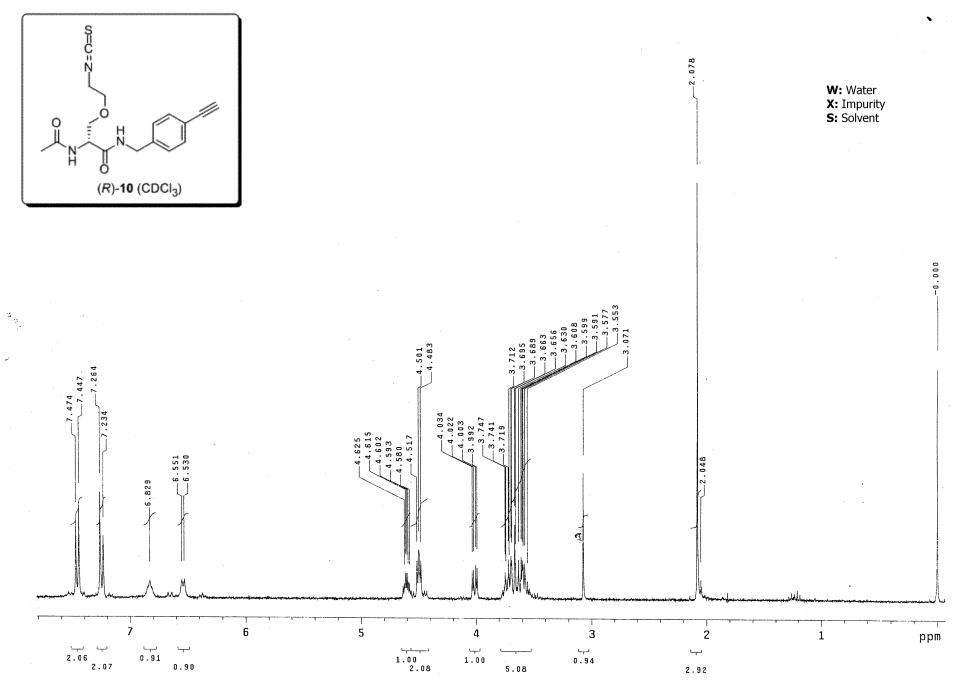

Table S2. Elemental Analysis of the Synthesized Compounds.

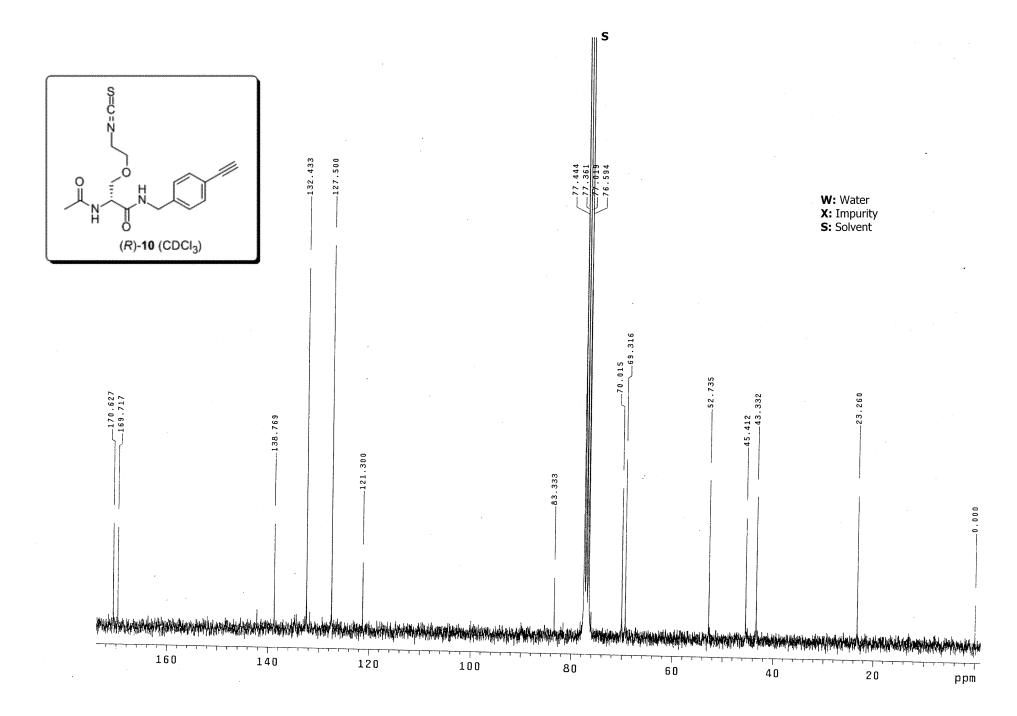

References

- 1. Bhatia, S.K.; Hajdu, J. A new approach to the synthesis of thioether phospholipids. Preparation of 1-thiohexadecyl-2-*N*-acylaminodeoxyglycerophosphocholines. *Tetrahedron Lett.* **1988**, *29*, 31-34.
- 2. Larsson, U.; Carlson, R. Synthesis of amino acids with modified principal properties 2: amino acids with polar side chains. *Acta Chem. Scand.* **1994**, *48*, 511-516.
- 3. Meyer, M.; Telford, J.R.; Cohen, S.M.; White, D.J.; Xu, J.; Raymond, K.N. High-yield synthesis of the enterobactin trilactone and evaluation of derivative siderophore analogs1. *J. Am. Chem. Soc.* **1997**, *119*, 10093-10103.
- Kato, S.; Harada, H.; Morie, T. Efficient synthesis of (6*R*)-6-amino-1-methyl-4-(3-methylbenzyl)hexahydro-1*H*-1,4-diazepine from methyl (2*R*)- and (2*S*)-1-benzyloxycarbonylaziridine-2-carboxylates. *J. Chem. Soc., Perkin Trans.* 1. **1997**, *21*, 3219-3226.
- 5. Smrt, J.; Beranek, J.; Sicher, J.; Skoda, J.; Hess, V.F.; Sorm, F. Synthesis of L-4-amino-3isoxazolidinone, the unnatural stereoisomer of cycloserine and its antibiotic activity. *Experientia*. **1957**, *13*, 291.
- Davoli, P.; Forni, A.; Moretti, I.; Prati, F. Stereochemistry of nucleophilic ring-opening reactions of optically active *N*-acetyl-2-methoxycarbonylaziridine. *Tetrahedron: Asymmetry*. **1995**, 6, 2011-2016.
- 7. Pfändler, H.R; Weimar, V. Synthesis of racemic ethanolamine plasmalogen. *Synthesis*. **1996**, *11*, 1345-1349.
- 8. Andurkar, S.V.; Stables, J.P.; Kohn, H. Synthesis and anticonvulsant activities of (*R*)-(*O*)methylserine derivatives. *Tetrahedron: Asymmetry*. **1998**, *9*, 3841-3854.
- 9. Galonic, D.P.; van der Donk, W.A.; Gin, D.Y. Site-selective conjugation of thiols with aziridine-2-carboxylic acid-containing peptides. *J. Am. Chem. Soc.* **2004**, *126*, 12712-12713.
- 10. LeTiran, A.; Stables, J.P.; Kohn, H. Design and evaluation of affinity labels of functionalized amino acid anticonvulsants. *J. Med. Chem.* **2002**, *45*, 4762-73.
- Brown, S.; Grigg, R.; Hinsley, J.; Korn, S.; Sridharan, V.; Uttley, M.D. Three-component Heck-Diels-Alder cascade processes involving alkylallenes, aryl iodides and dienophiles. *Tetrahedron*. **2001**, *57*, 10347-10355.
- 12. Aldrich data.
- Lee, J.; Kang, S.; Lim, J.; Choi, H.; Jin, M.; Toth, A.; Pearce, L.V.; Tran, R., Wang, Y.; Szabo, T.; Blumberg, P.M. *N*-[4-(Methylsulfonylamino)benzyl]thiourea analogues as vanilloid receptor antagonists: analysis of structure-activity relationships for the "C-Region". *Bioorg. Med. Chem.* 2004, *12*, 371-385.

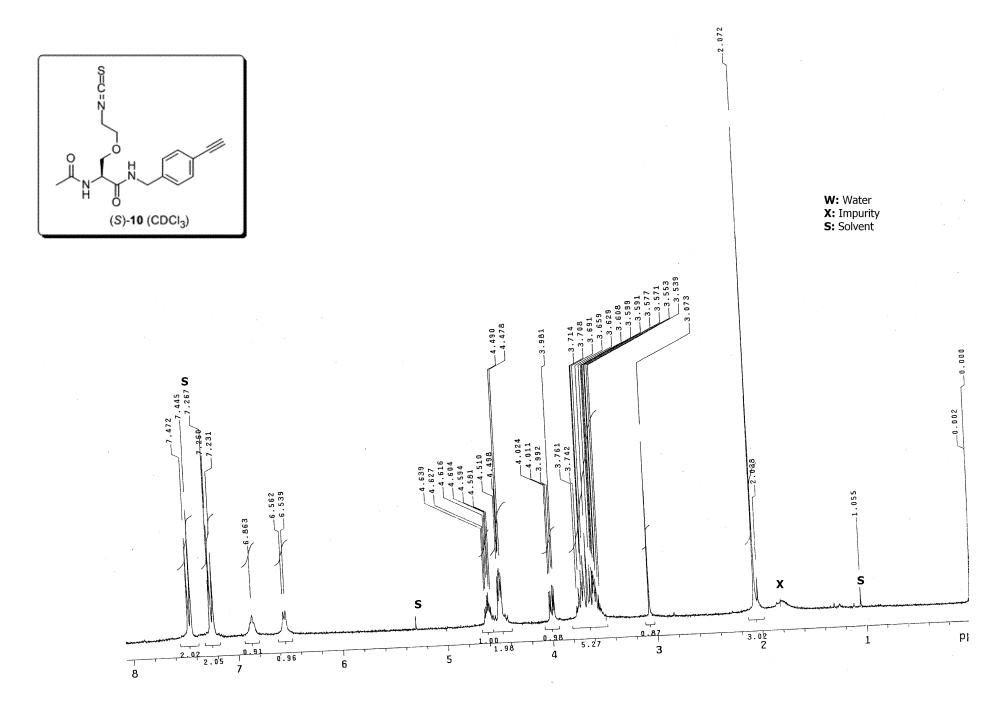
- 14. Carboni, B.; Benalil, A.; Vaultier, M. Aliphatic amino azides as key building blocks for efficient polyamine syntheses. *J. Org. Chem.* **1993**, *58*, 3736-3741.
- 15. Speers, A.E.; Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. *Chem. Biol.* **2004**, *11*, 535-46.
- Sun, X.; Stabler, C.; Cazalis, C.; Chaikof, E. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. *Bioconjugate Chem.* 2006, *17*, 52-57.



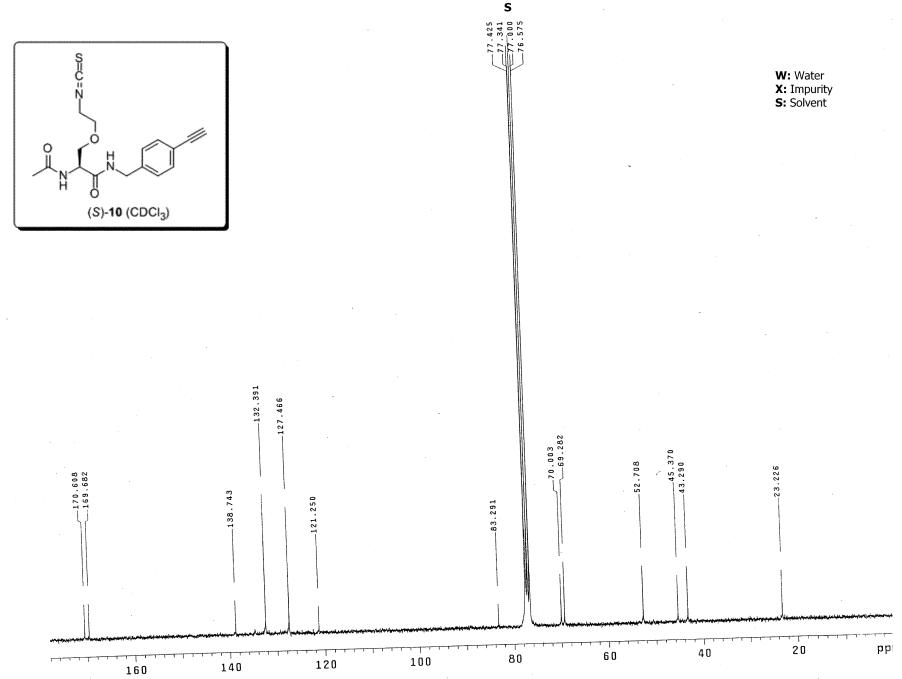


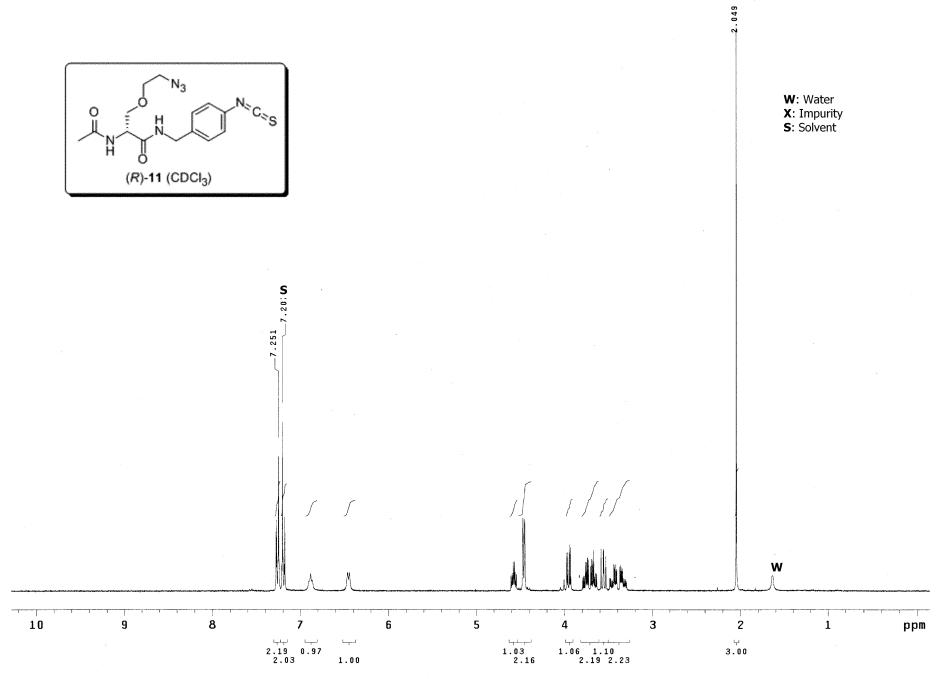

აა∠

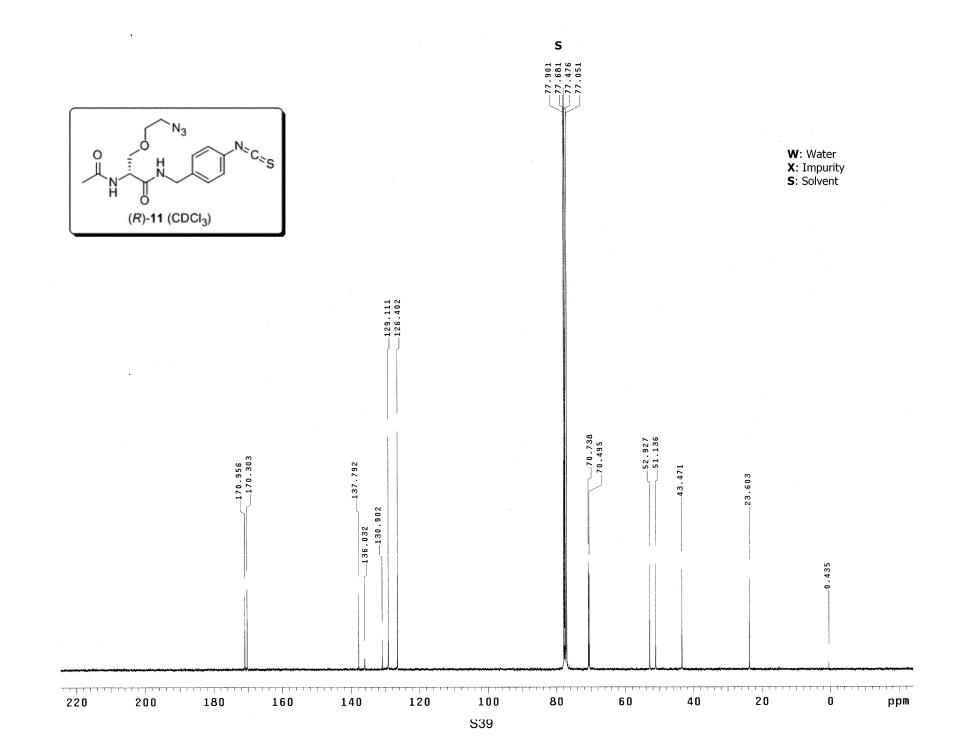
.

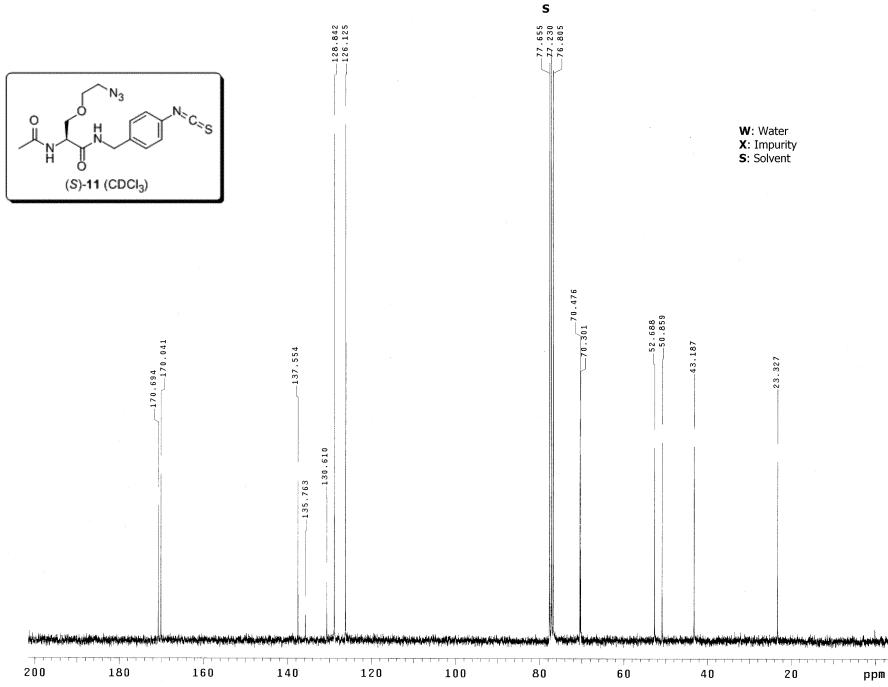


S33

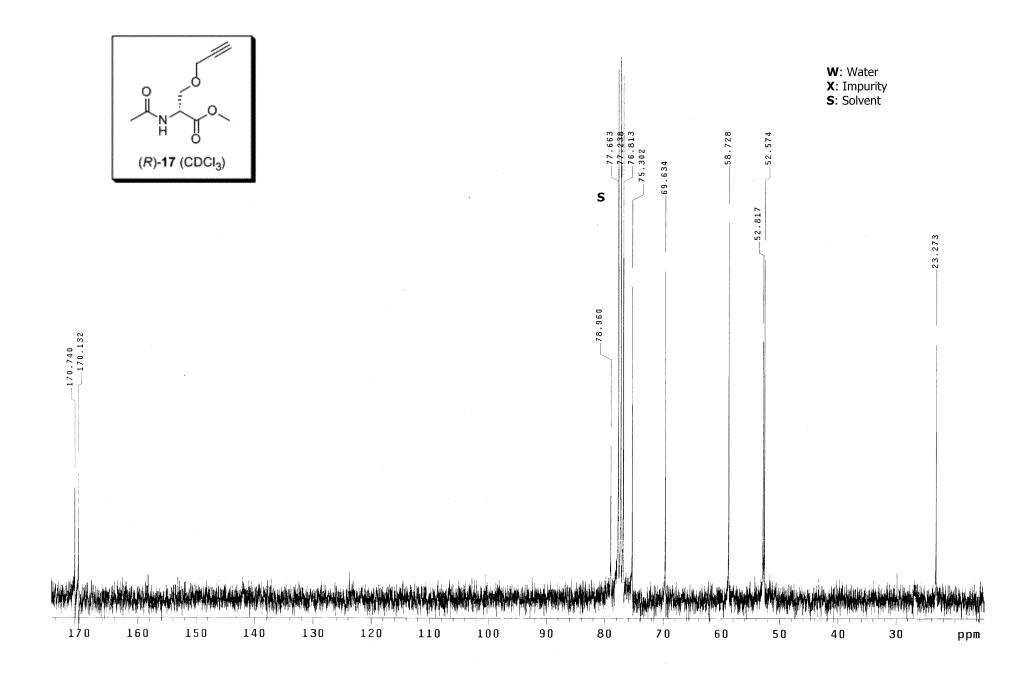


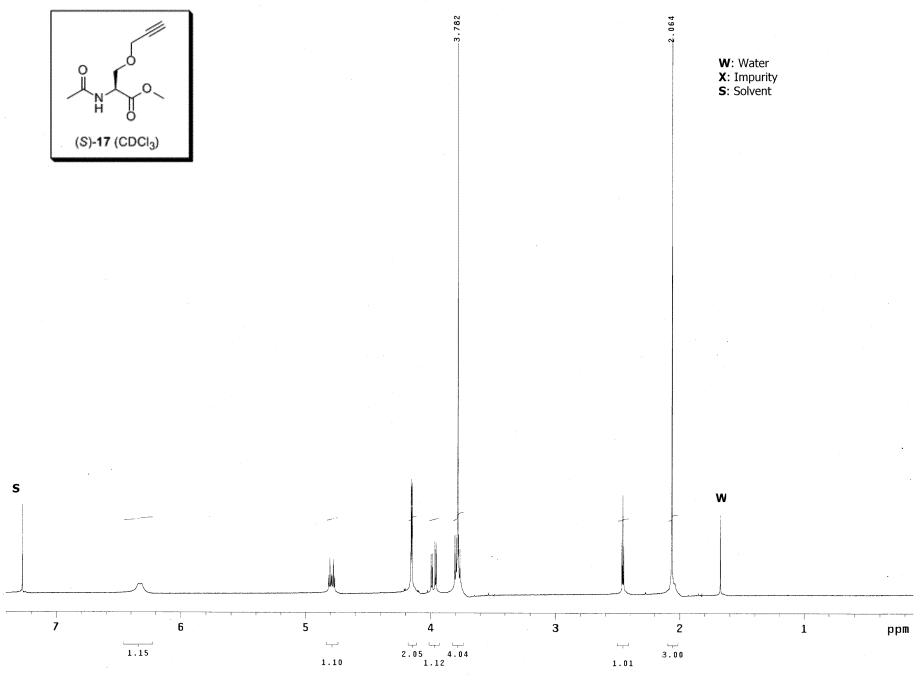


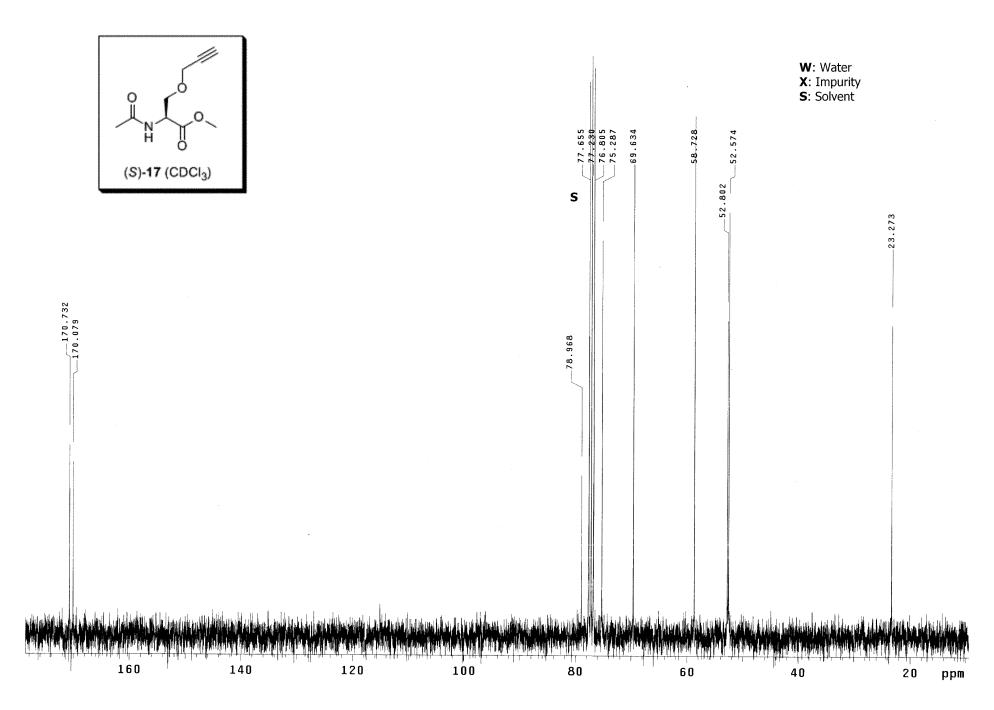

S35

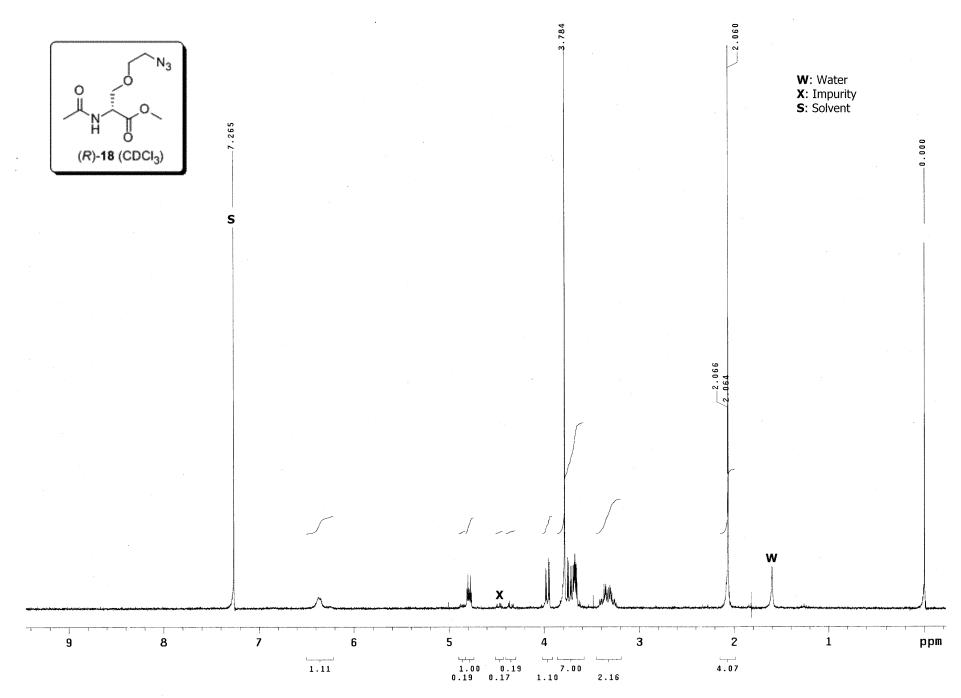

S36

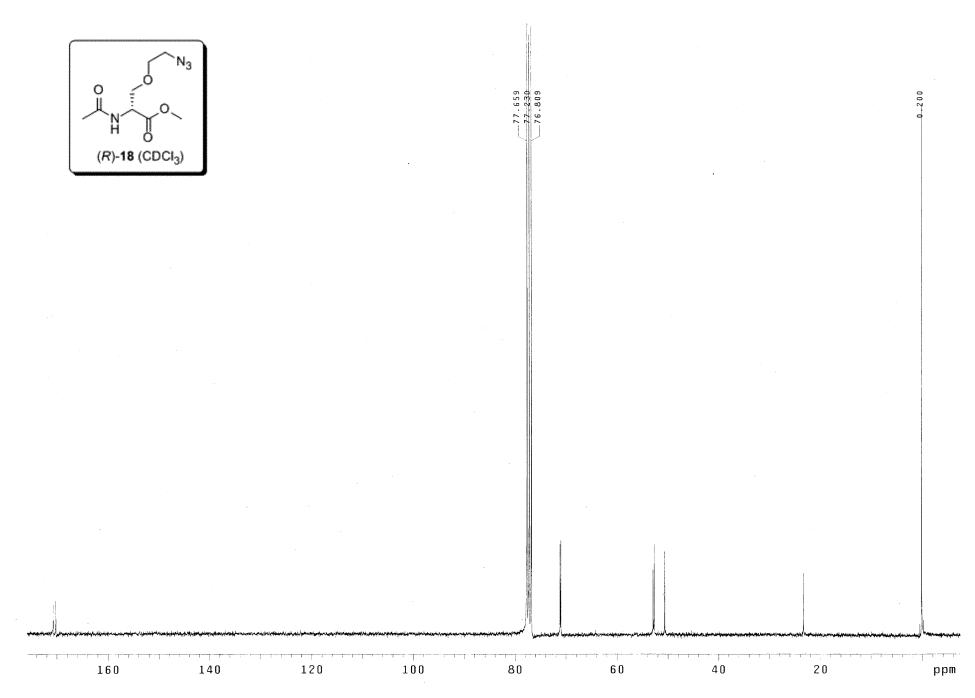


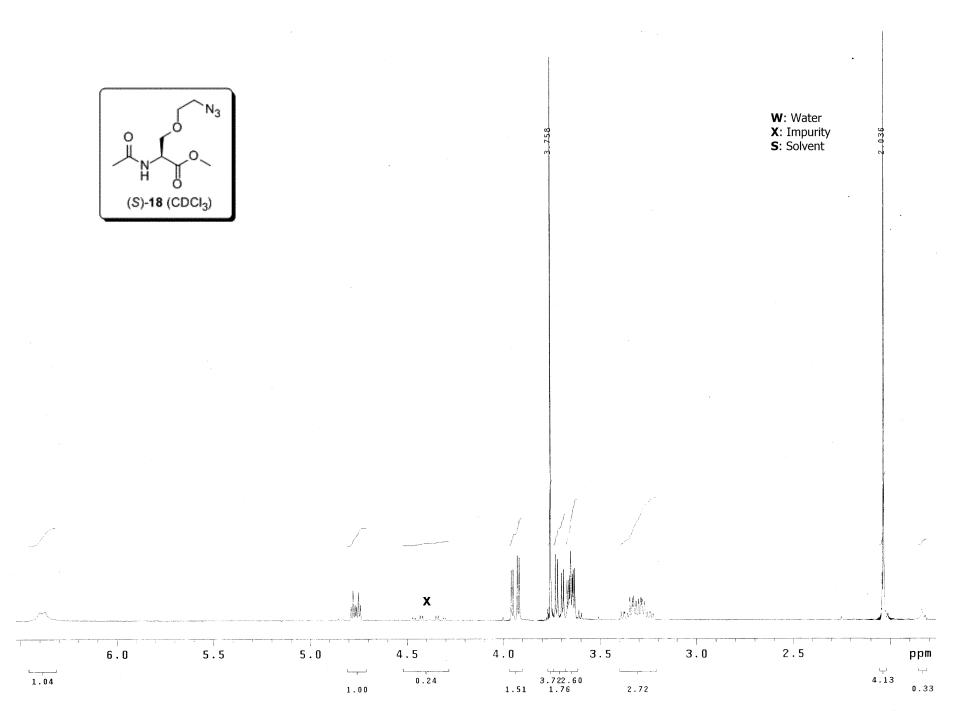


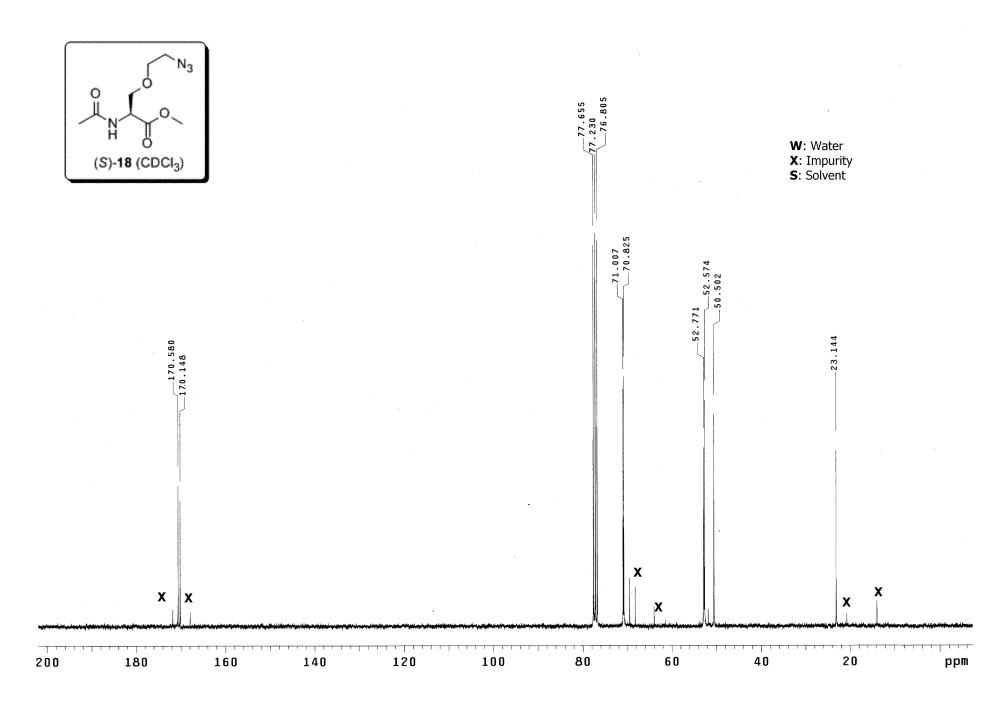


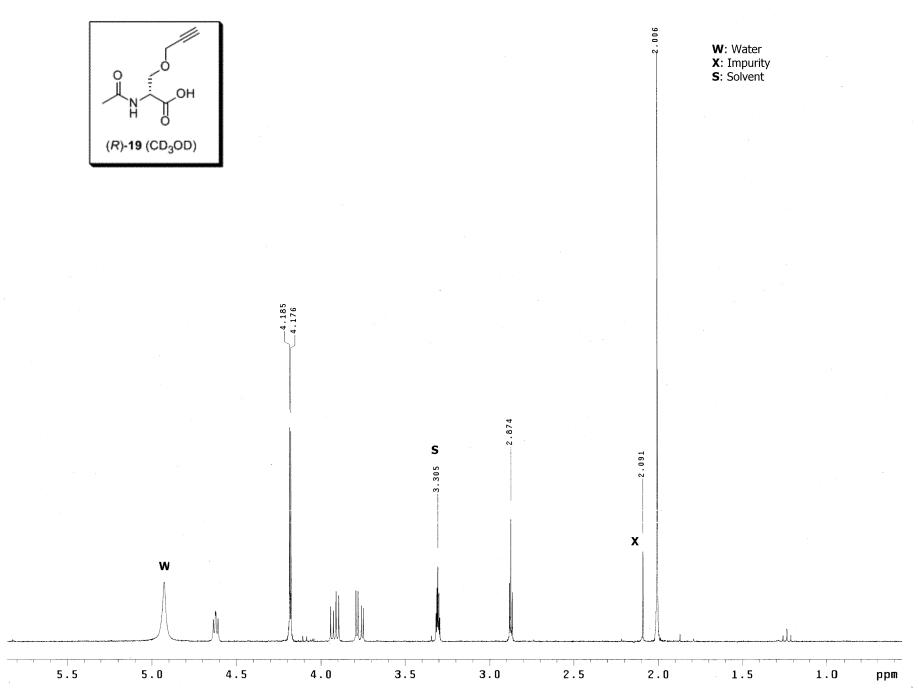


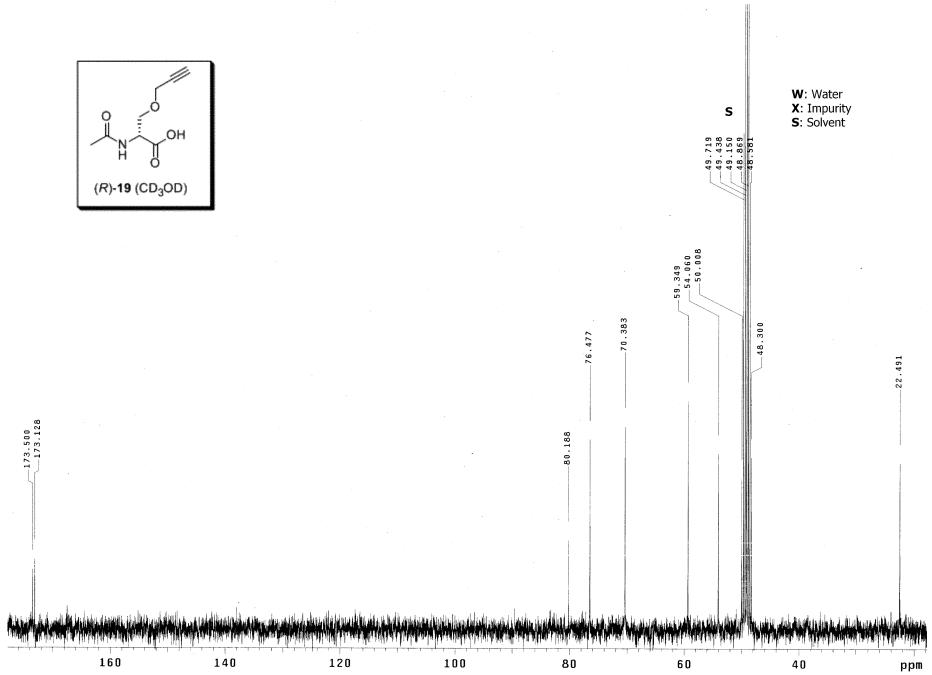


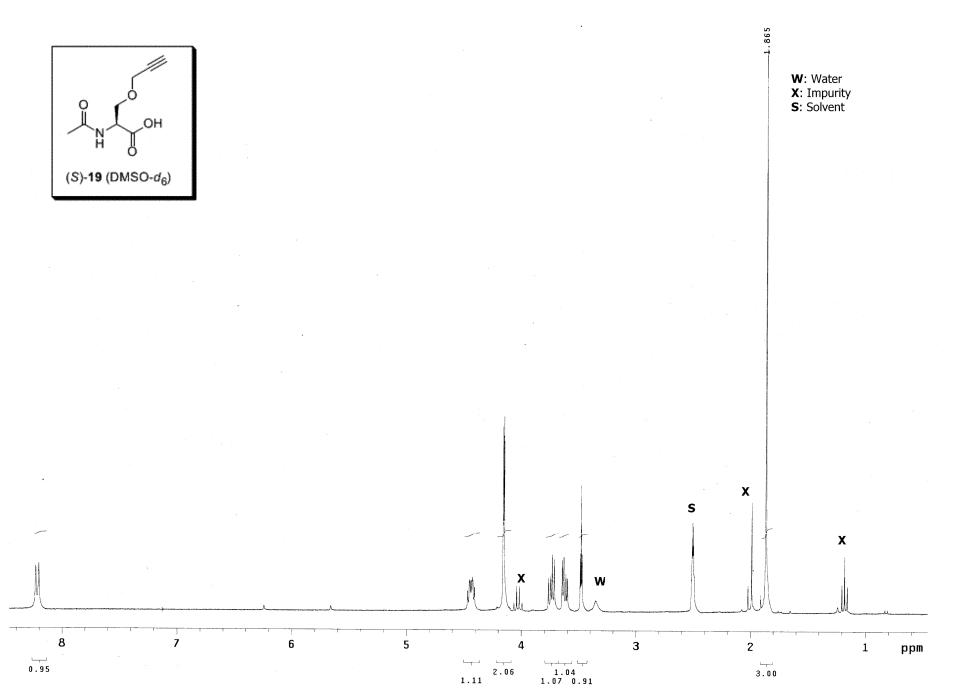


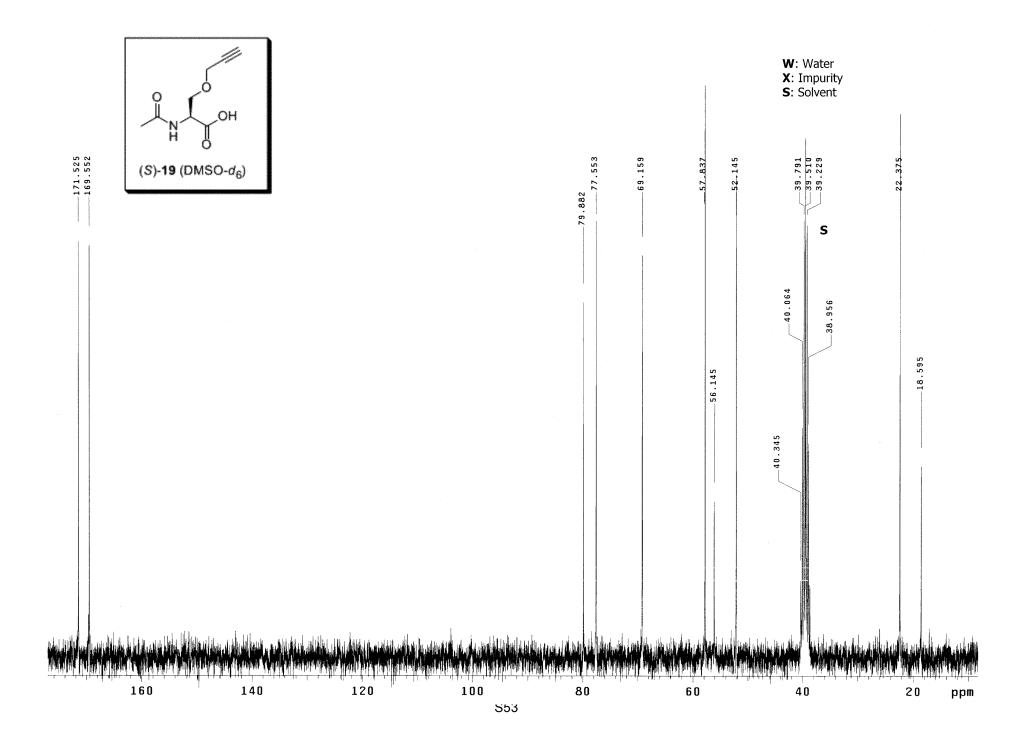


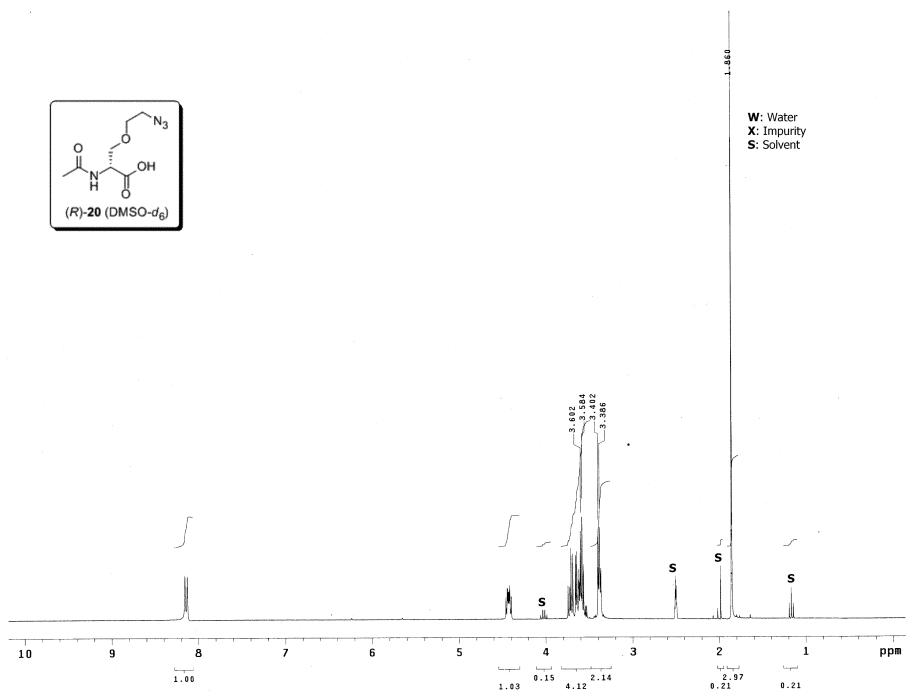


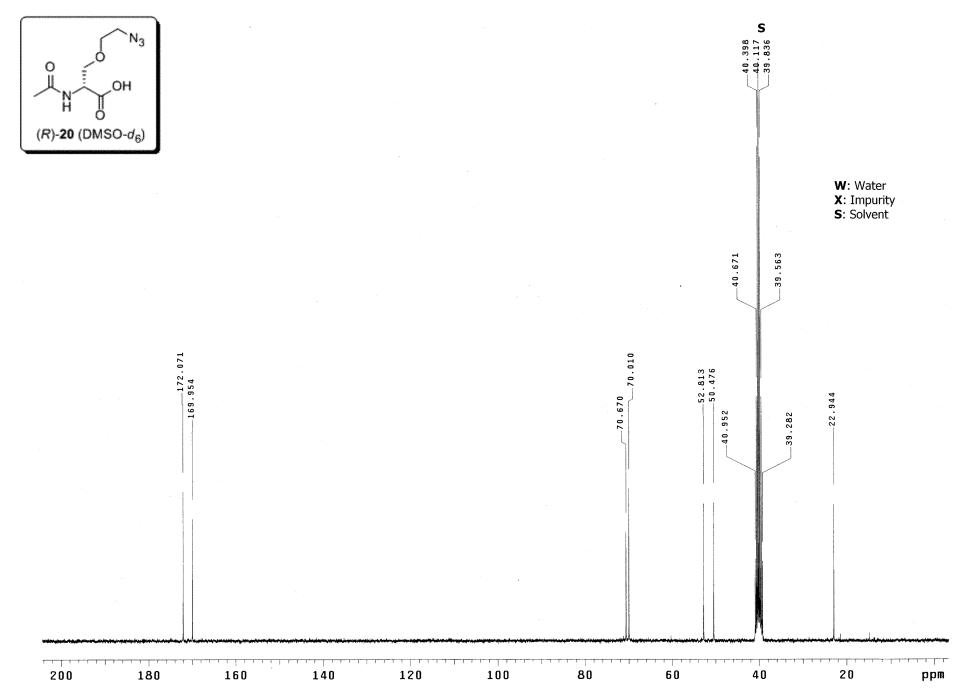


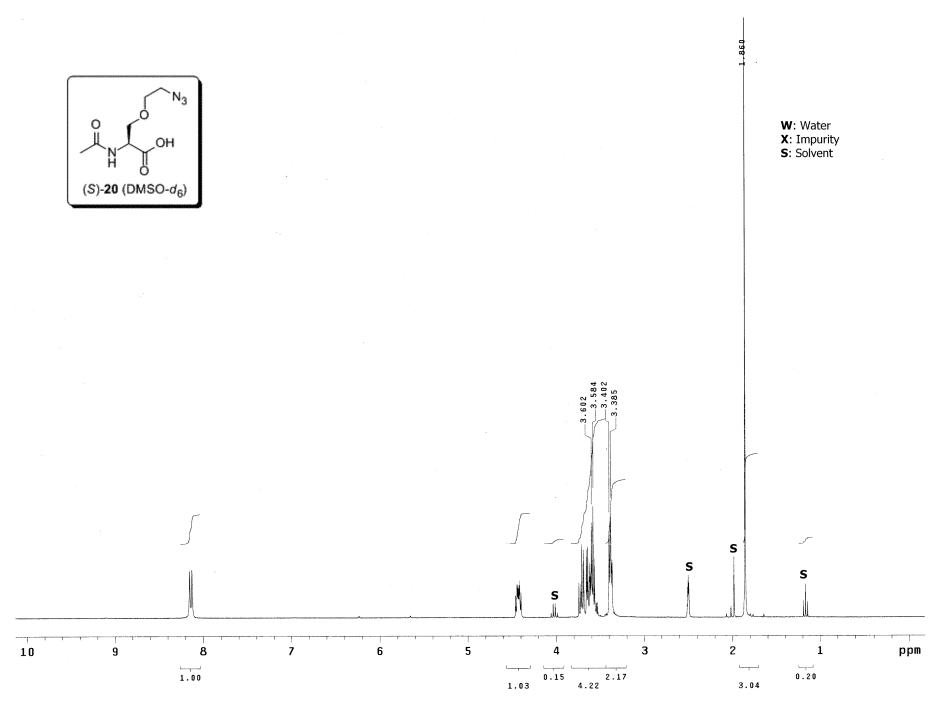


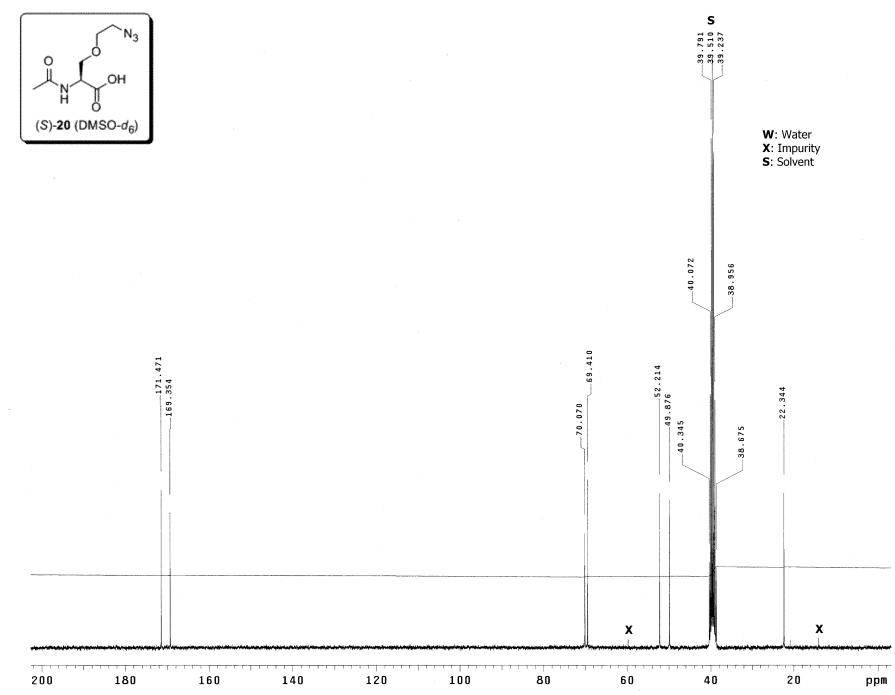


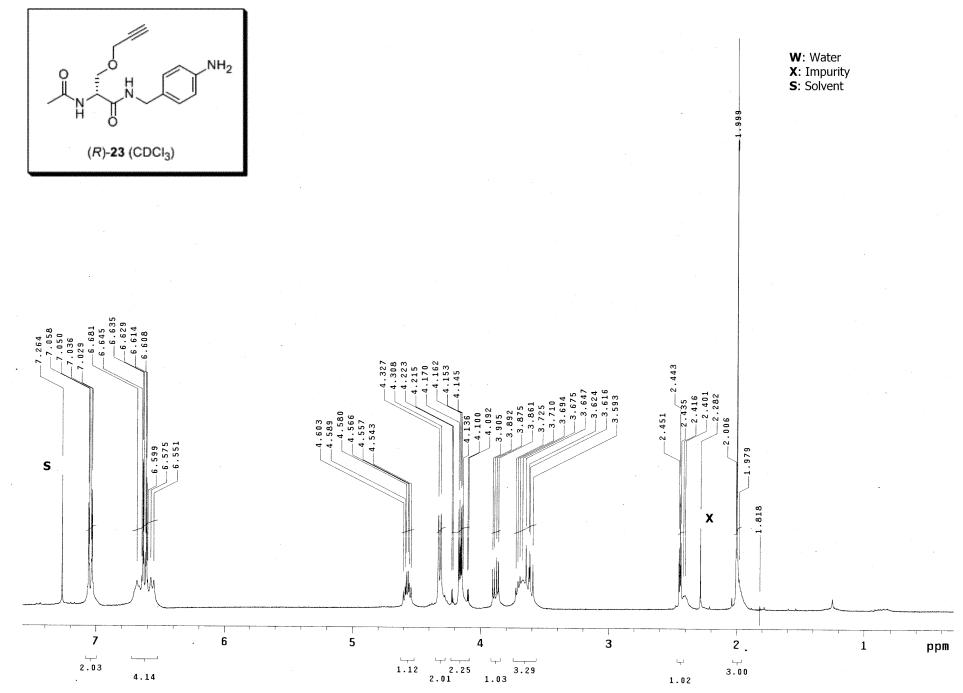


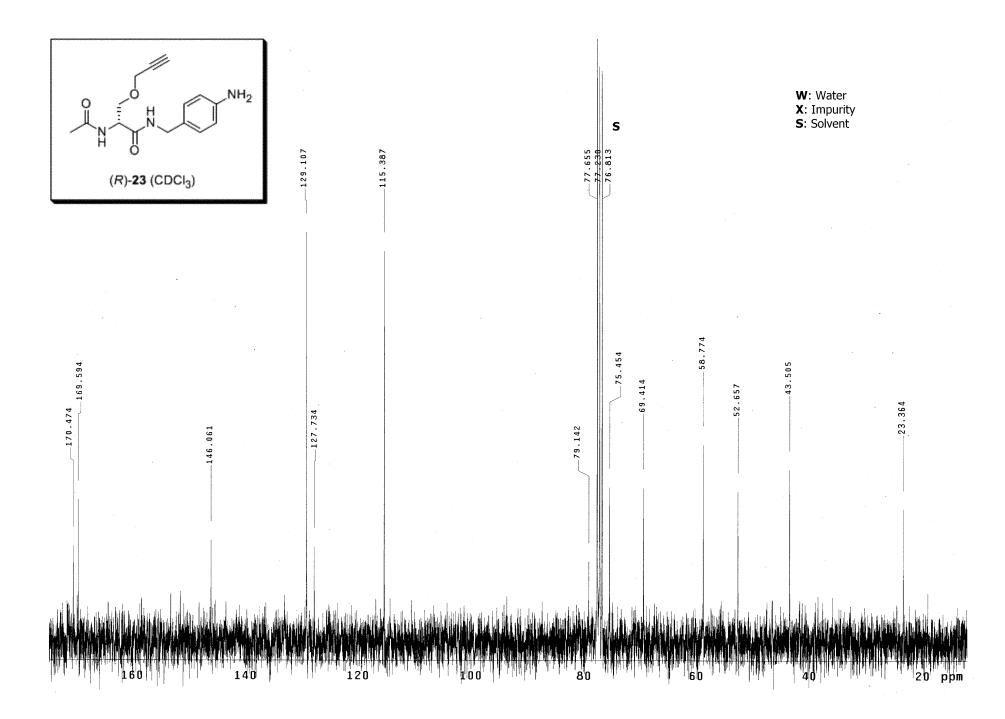


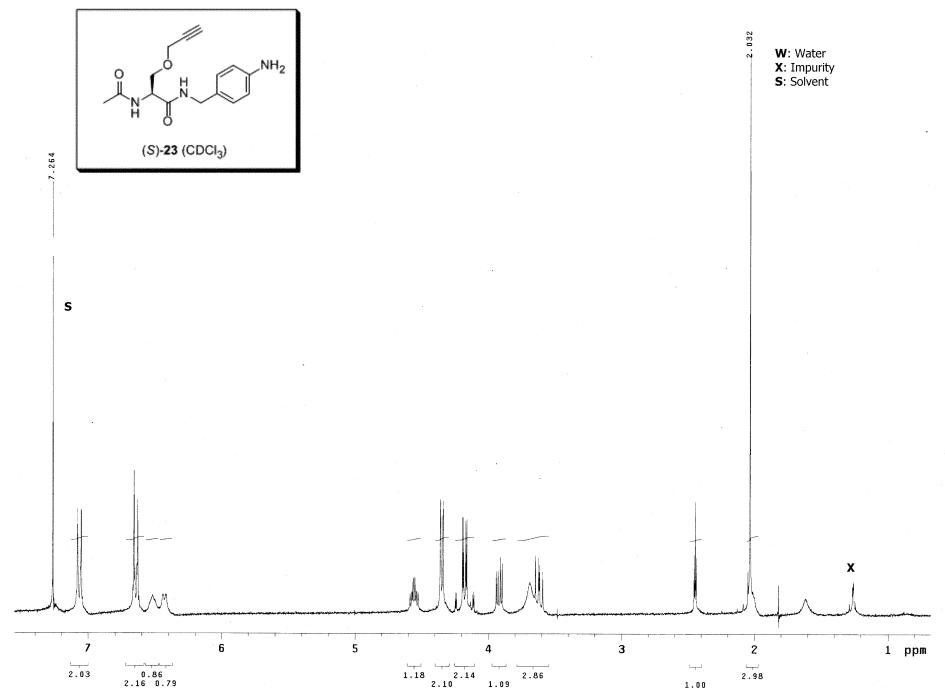


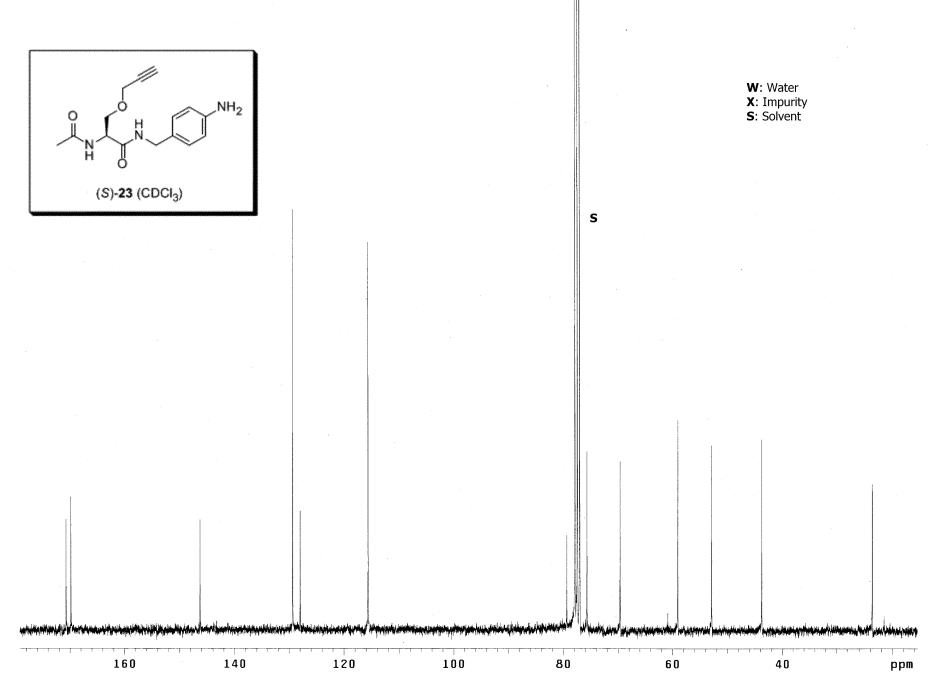


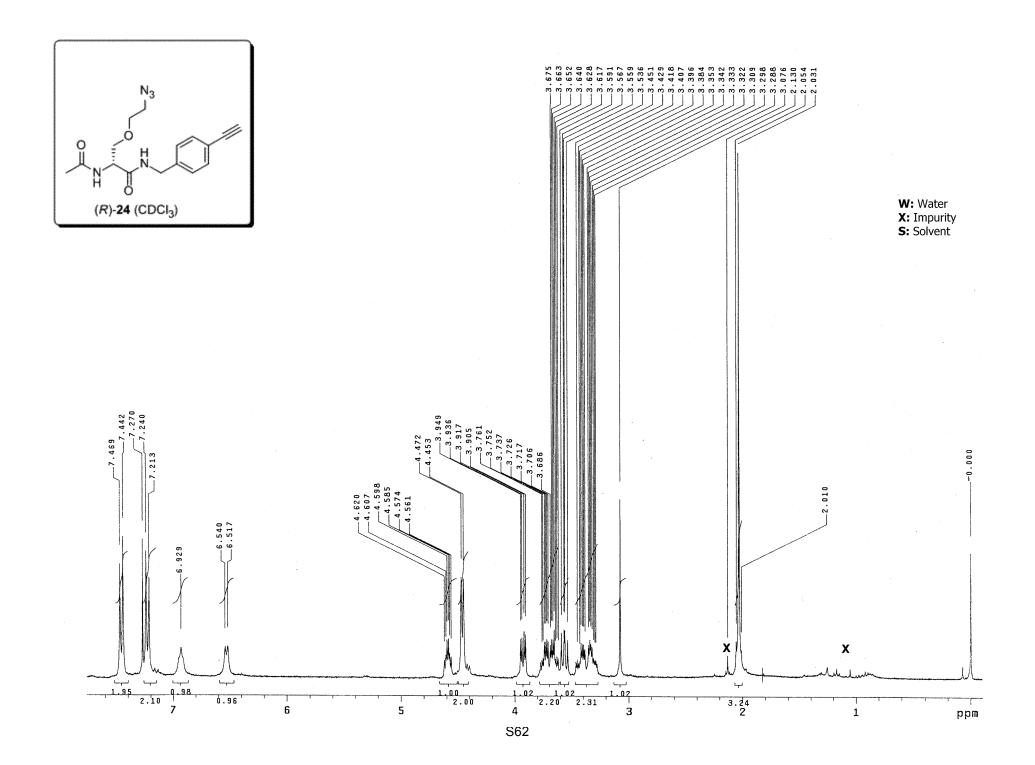


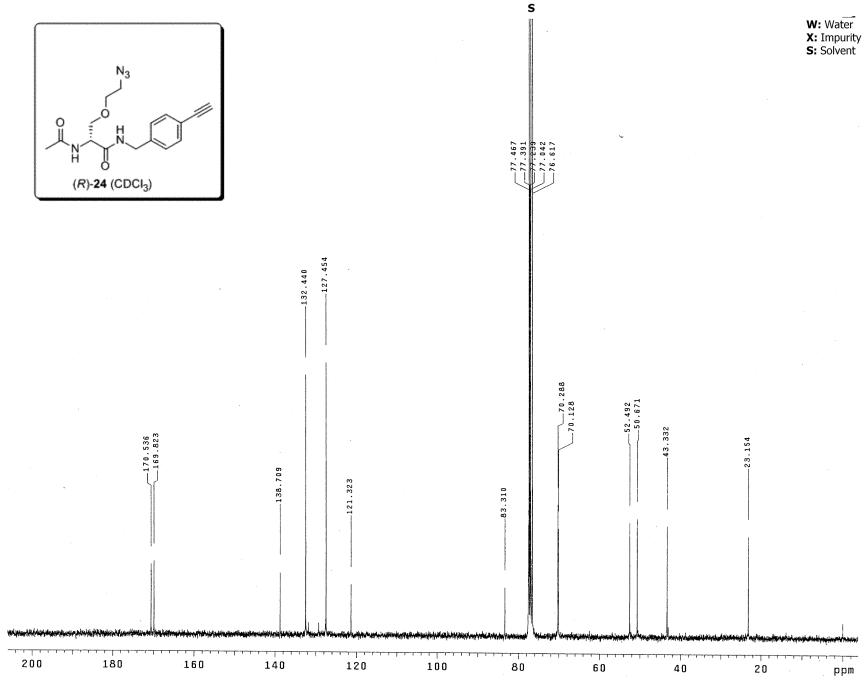


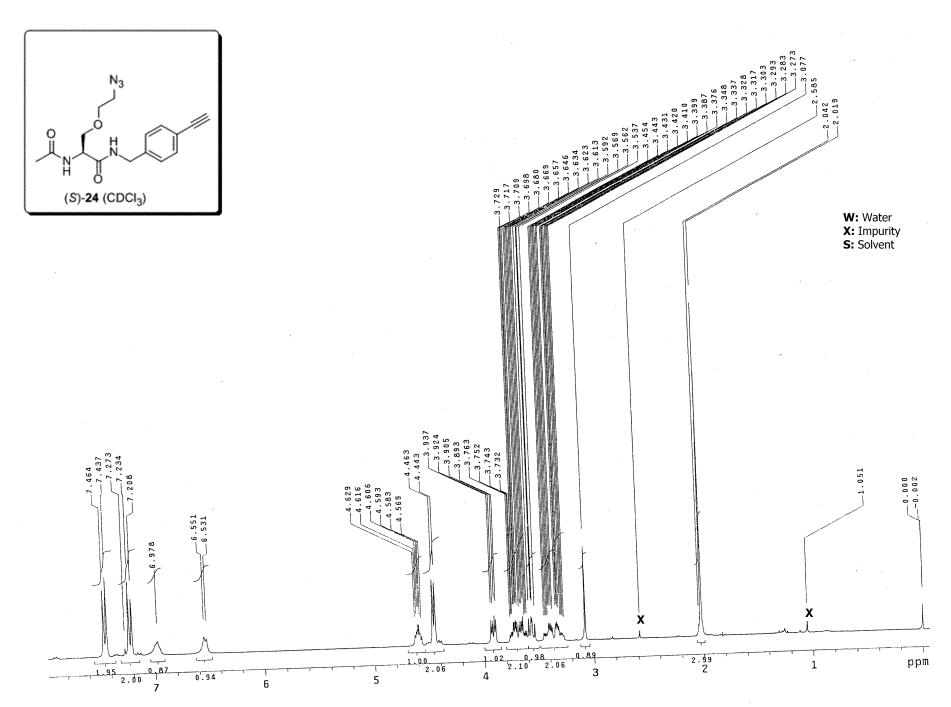


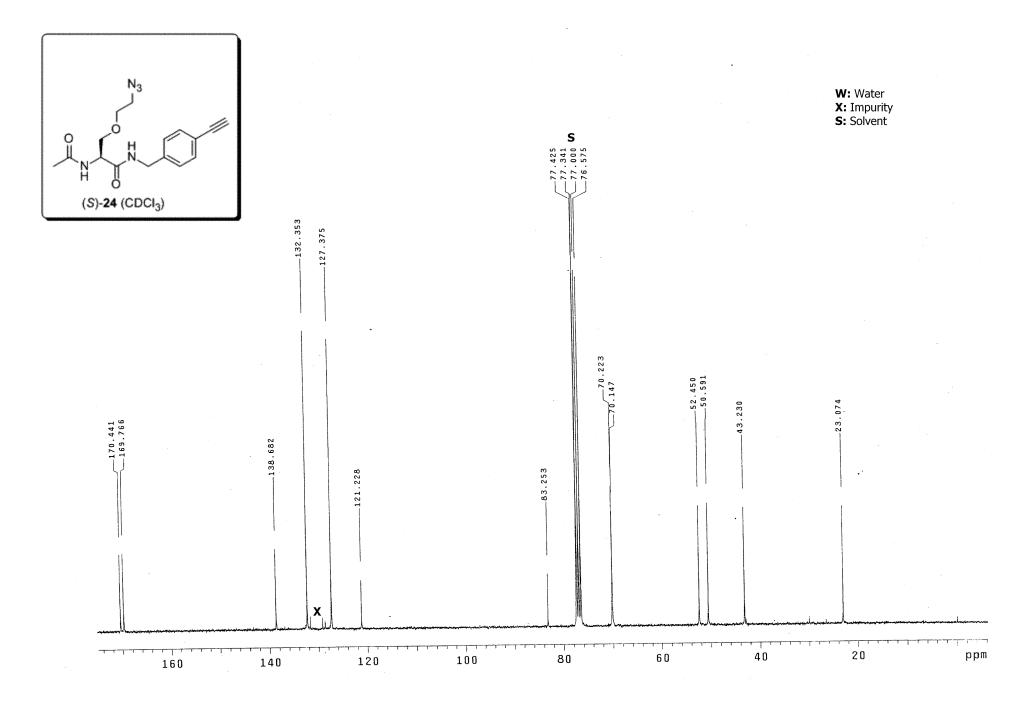


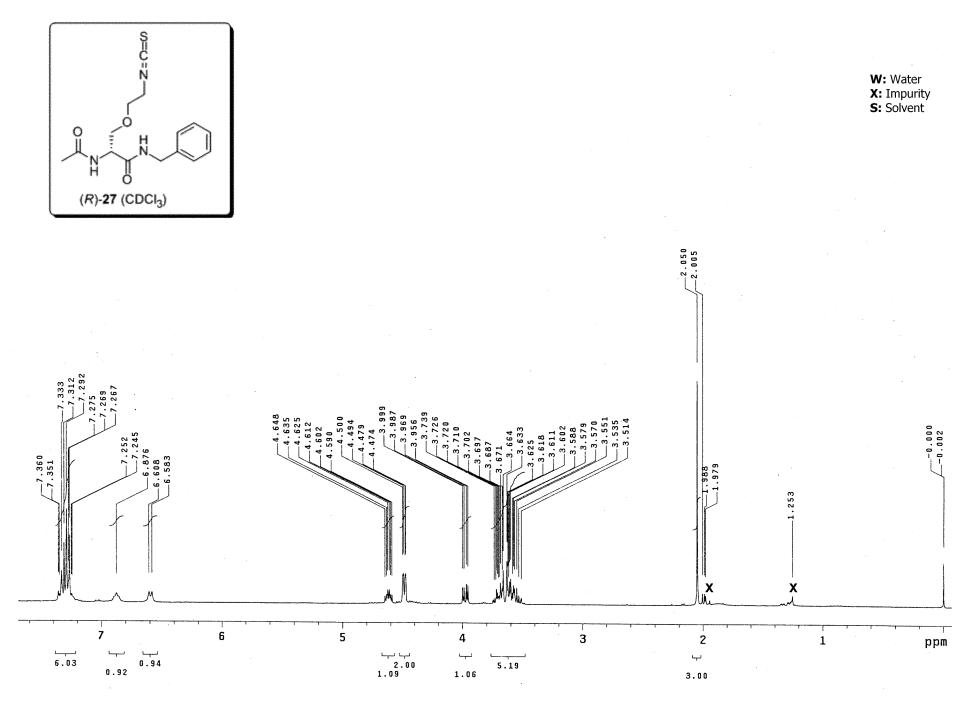


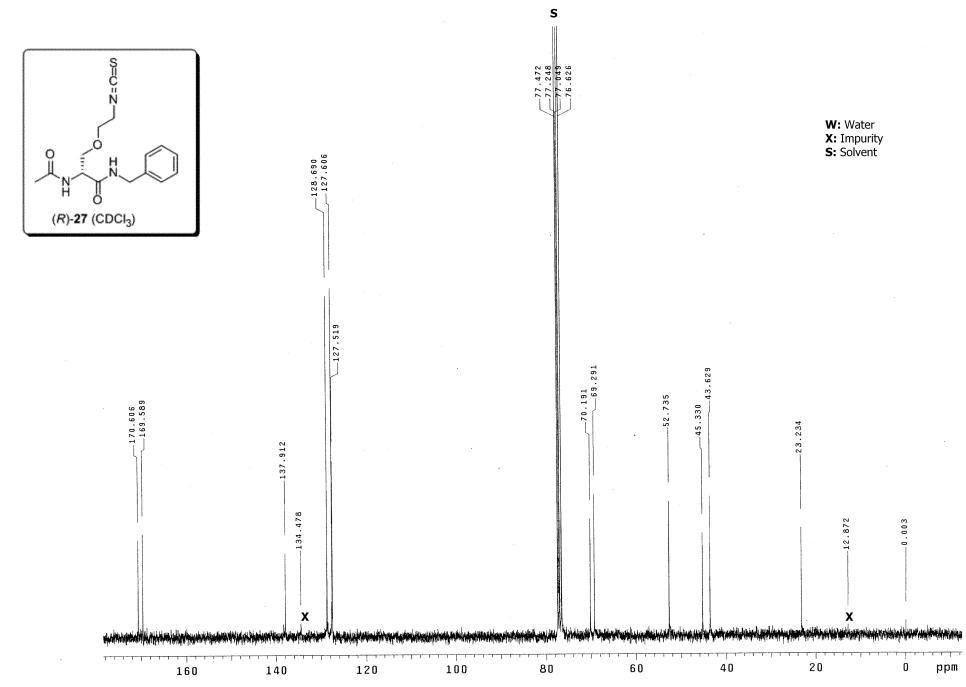


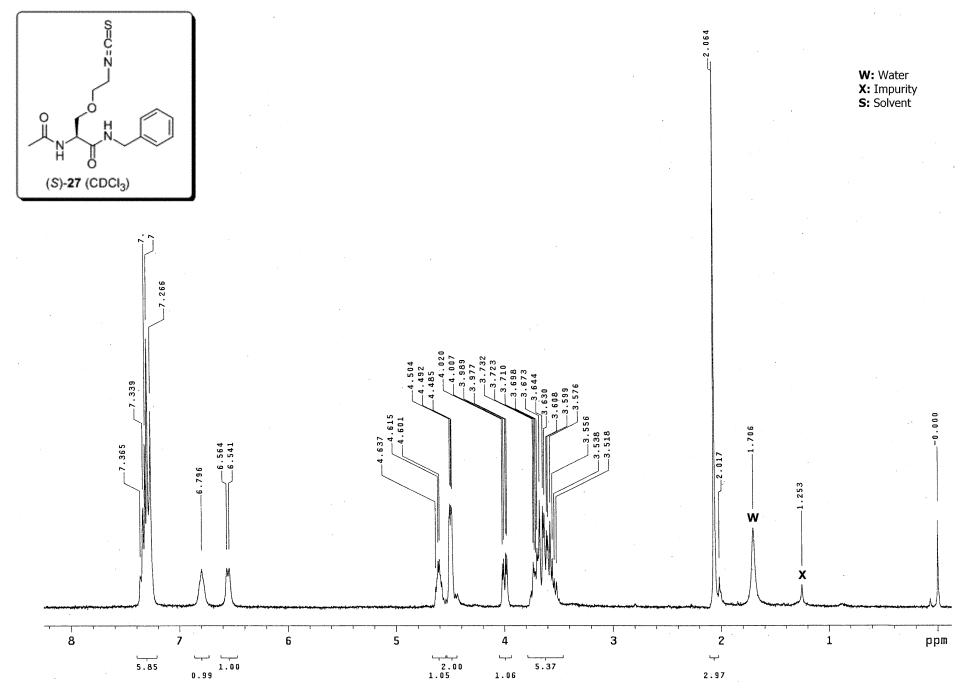


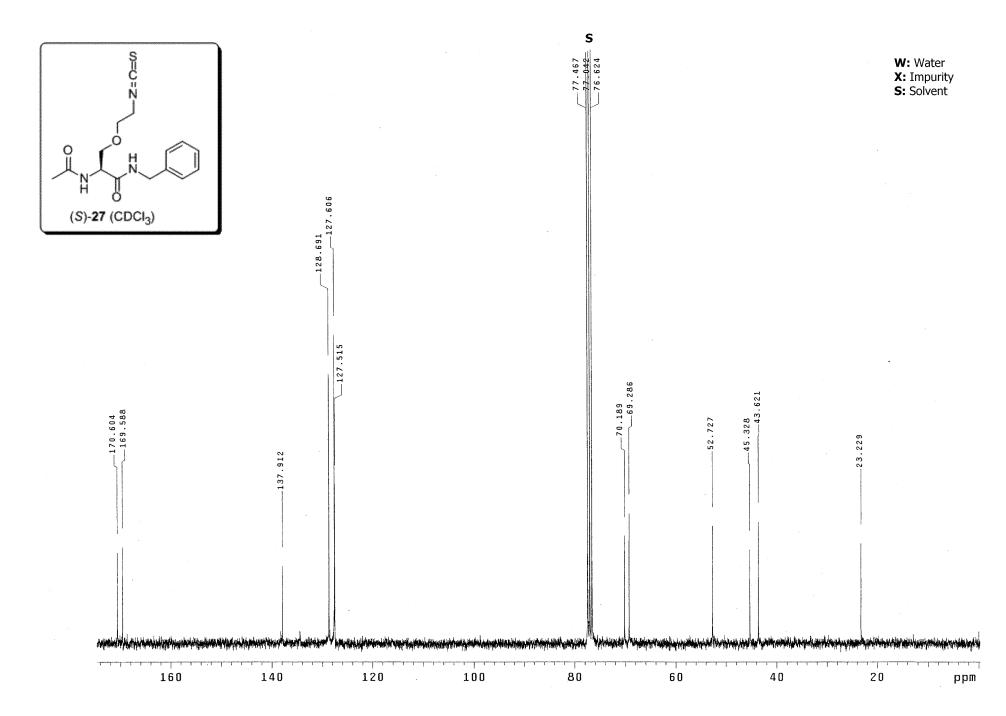


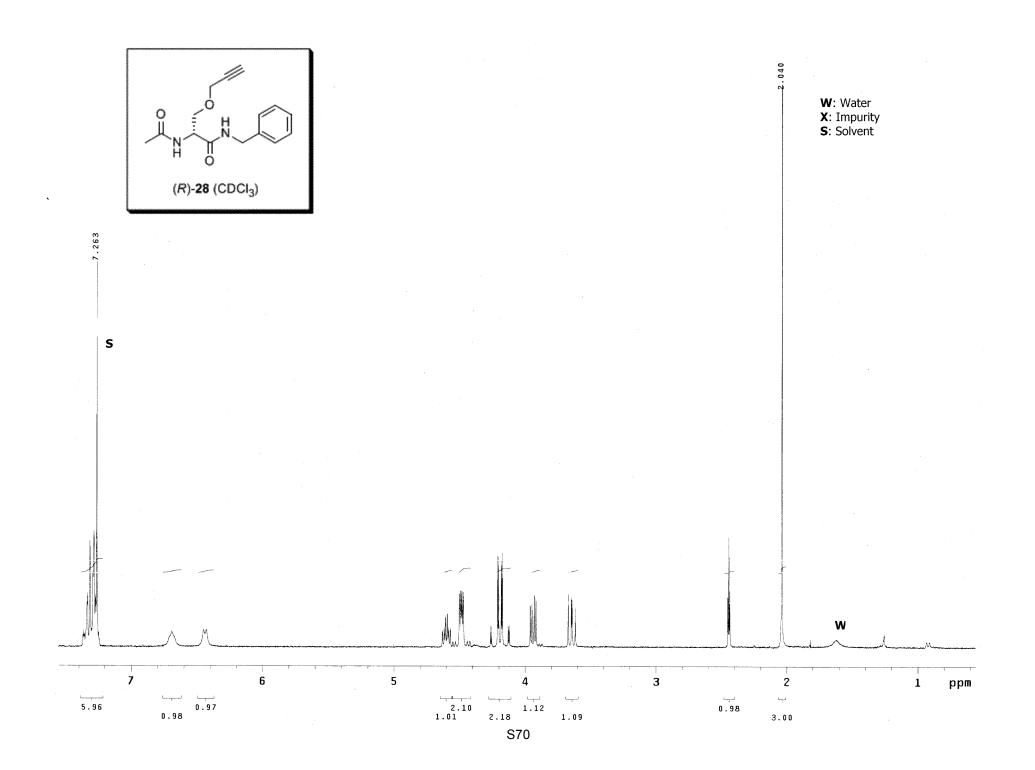


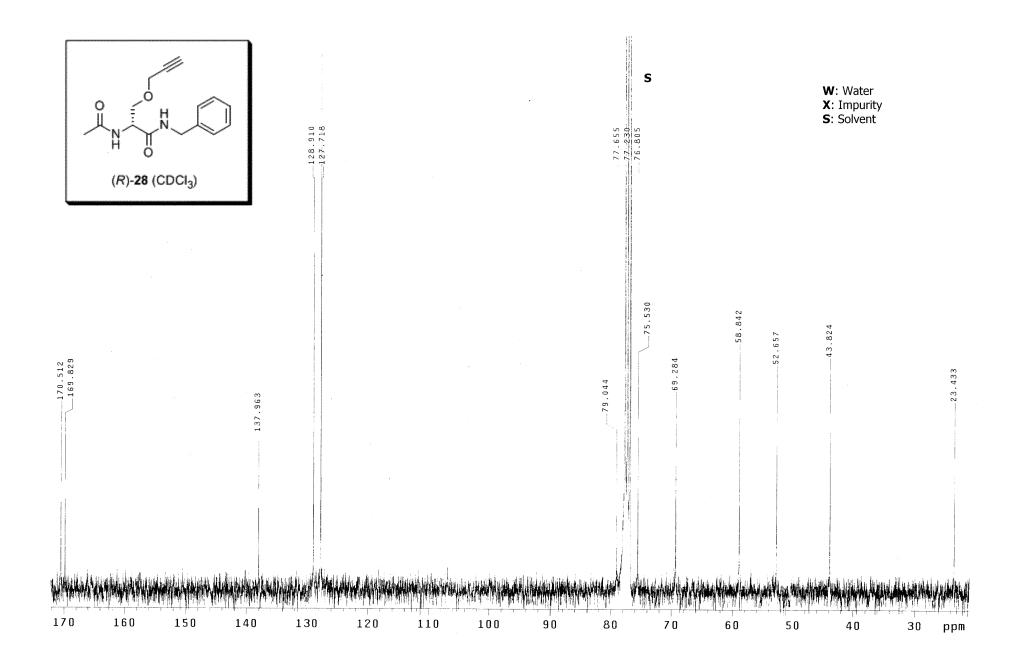


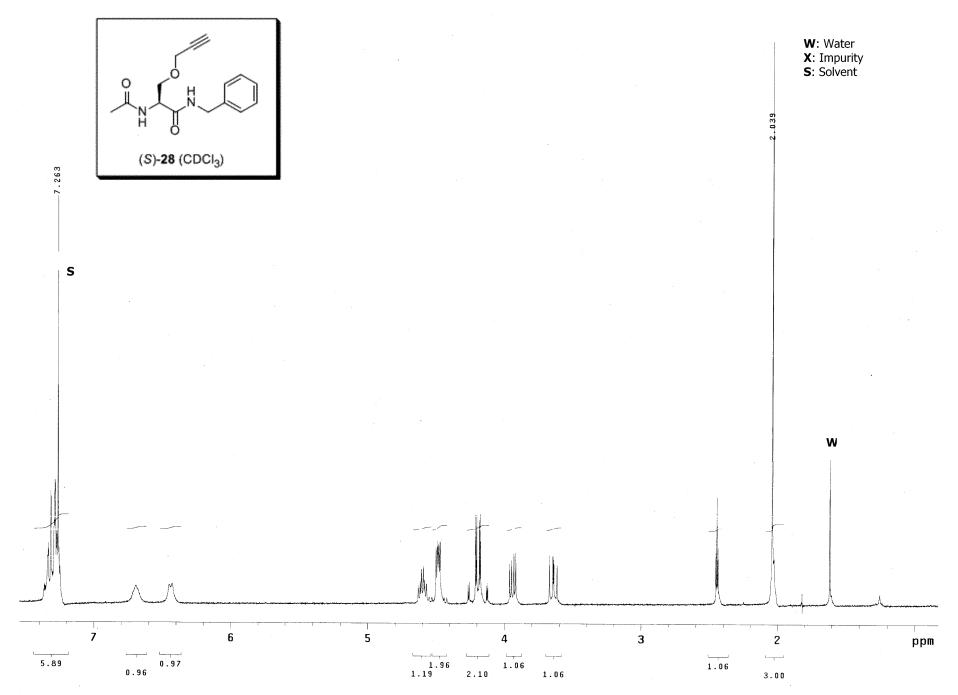


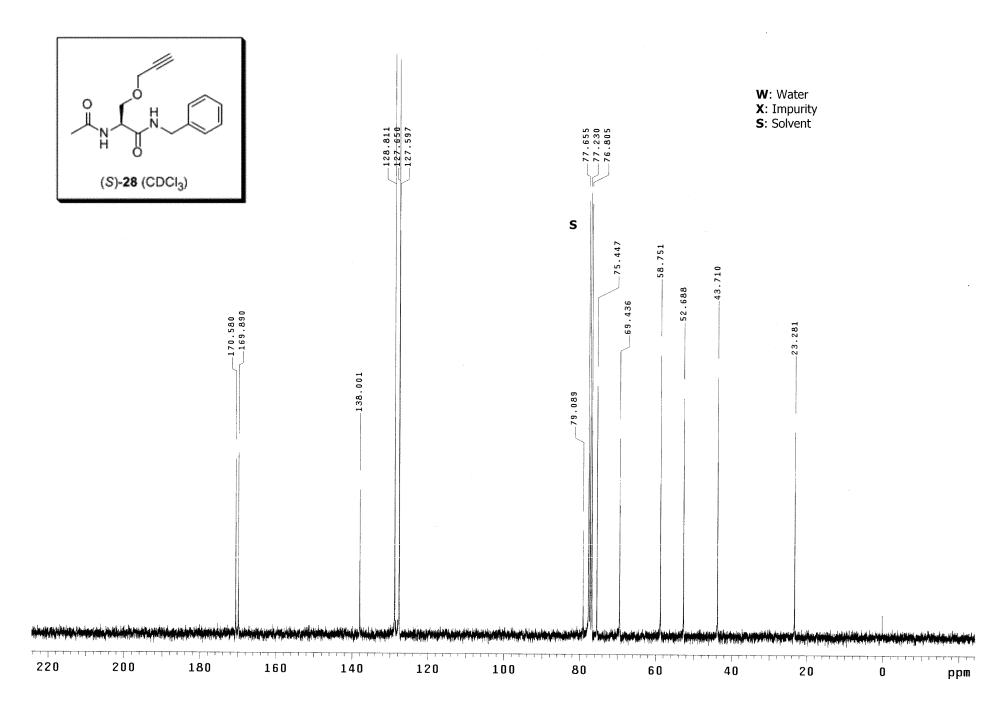


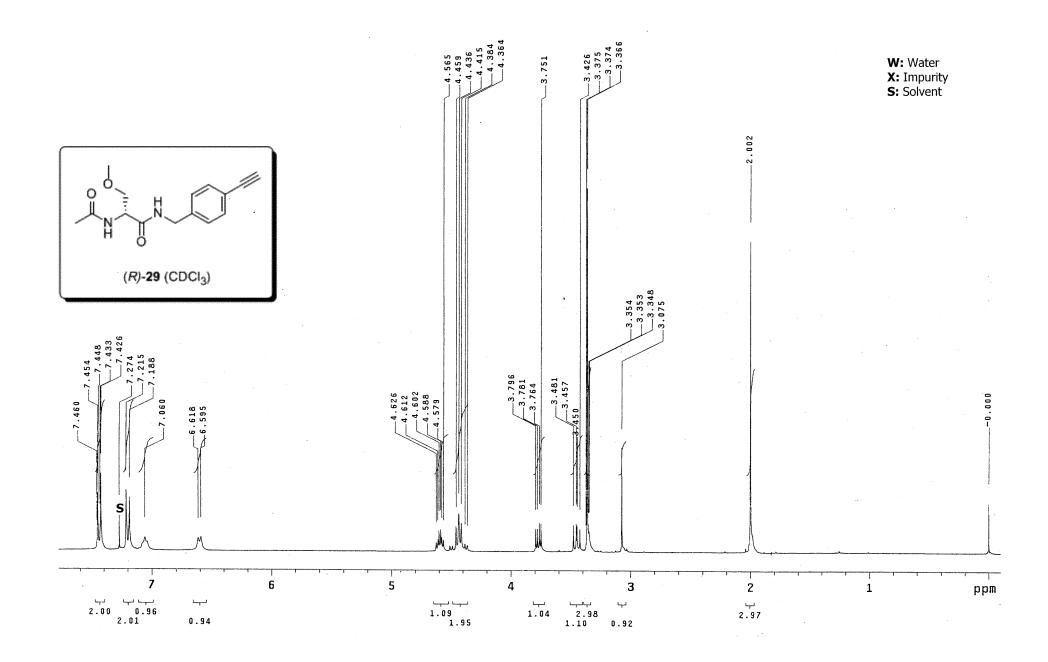


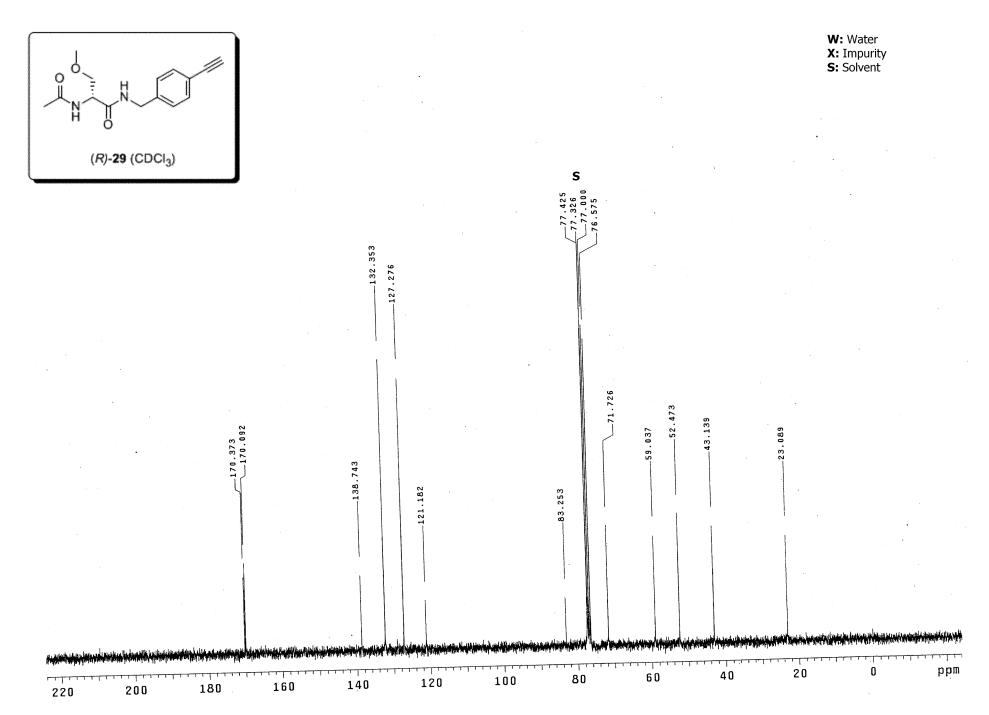


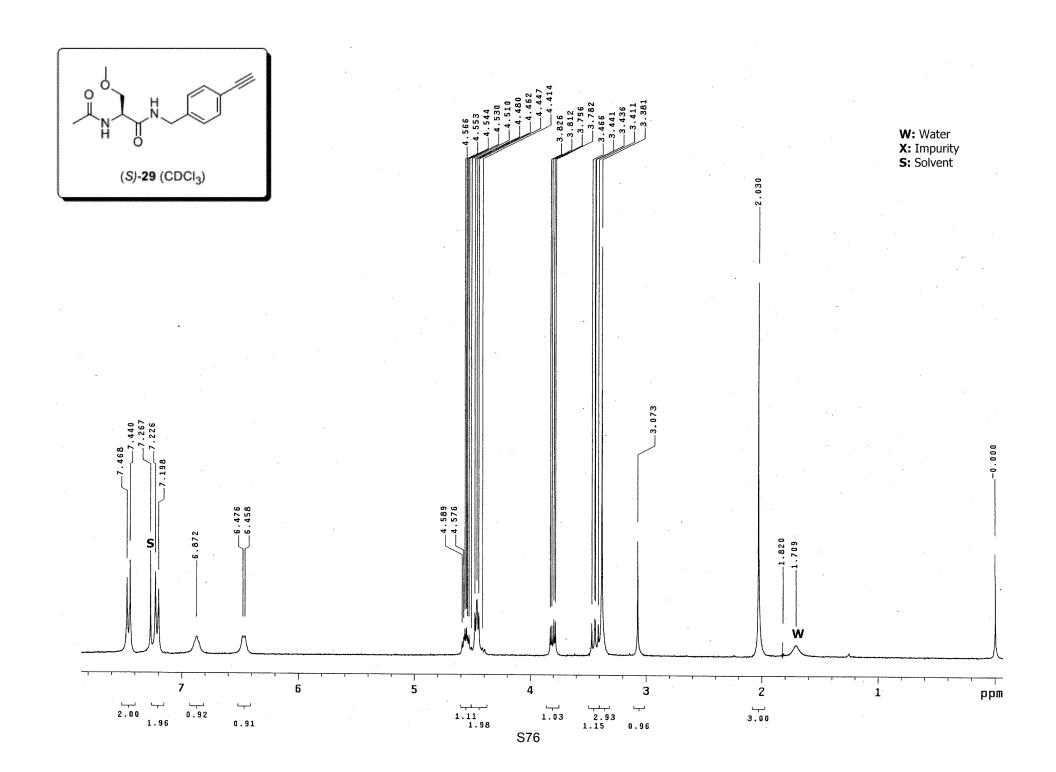


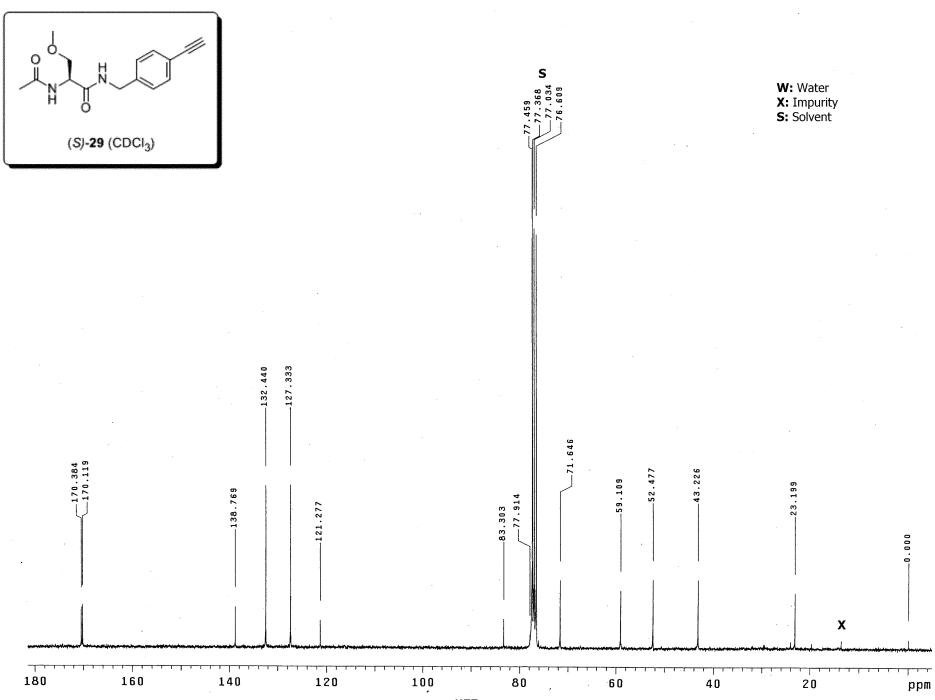


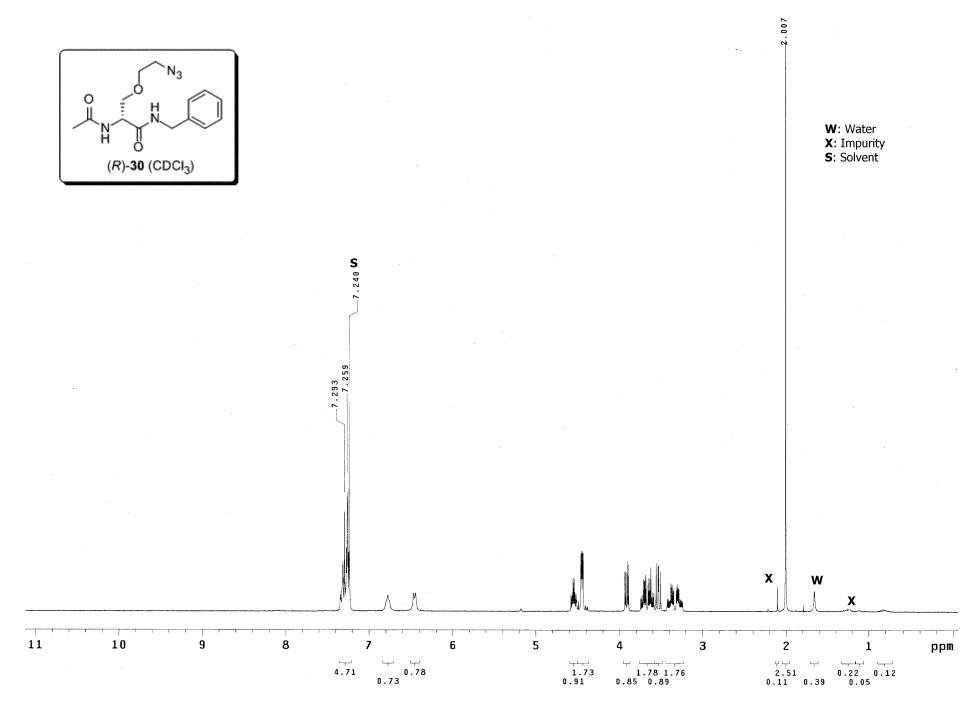


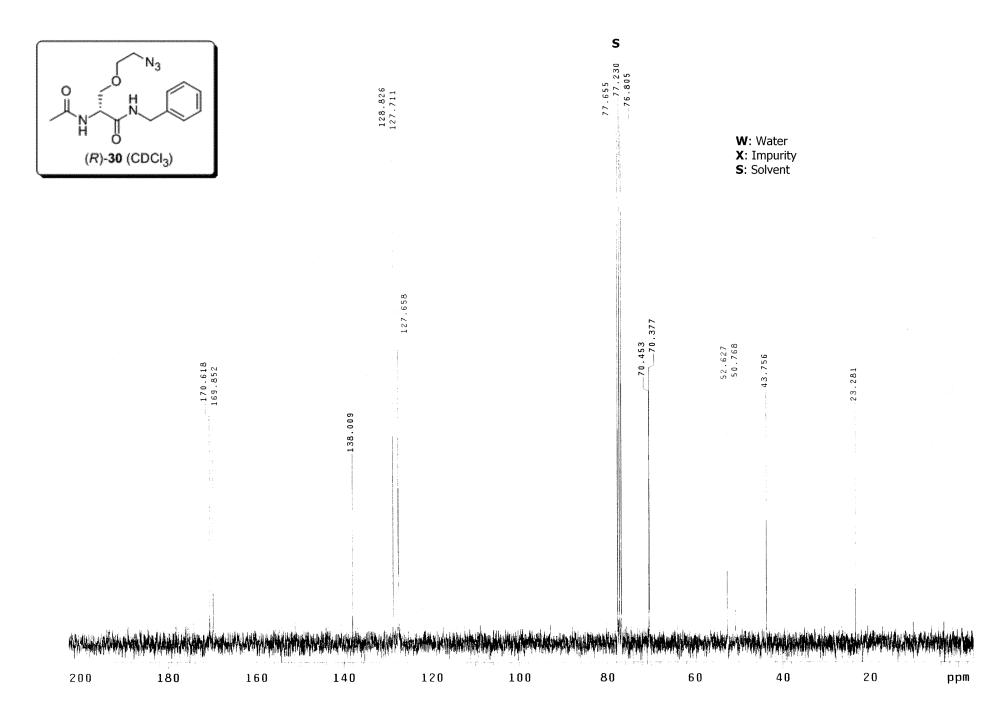


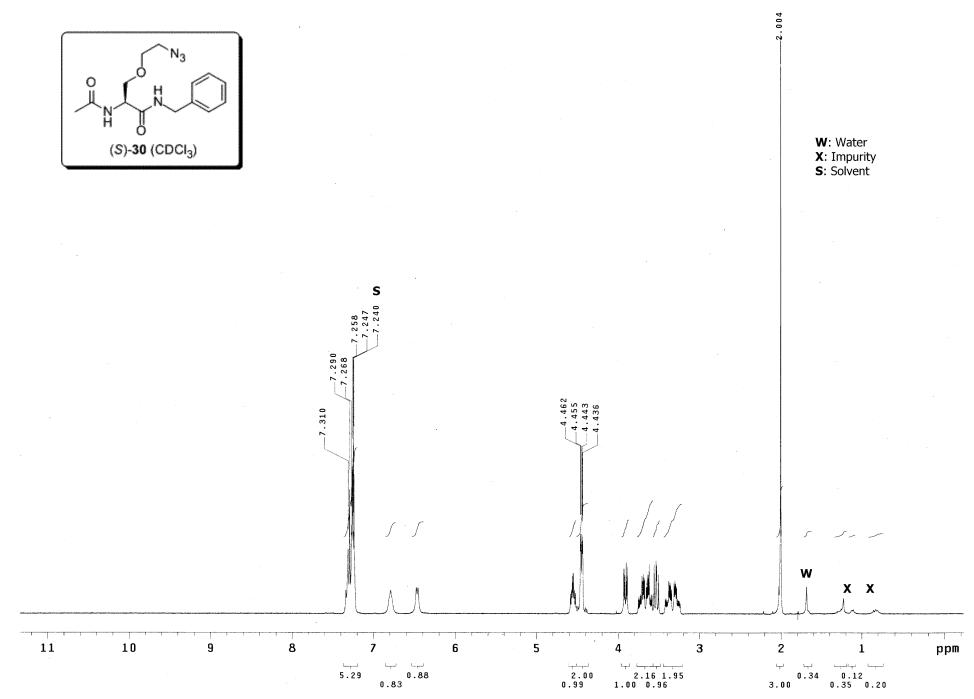


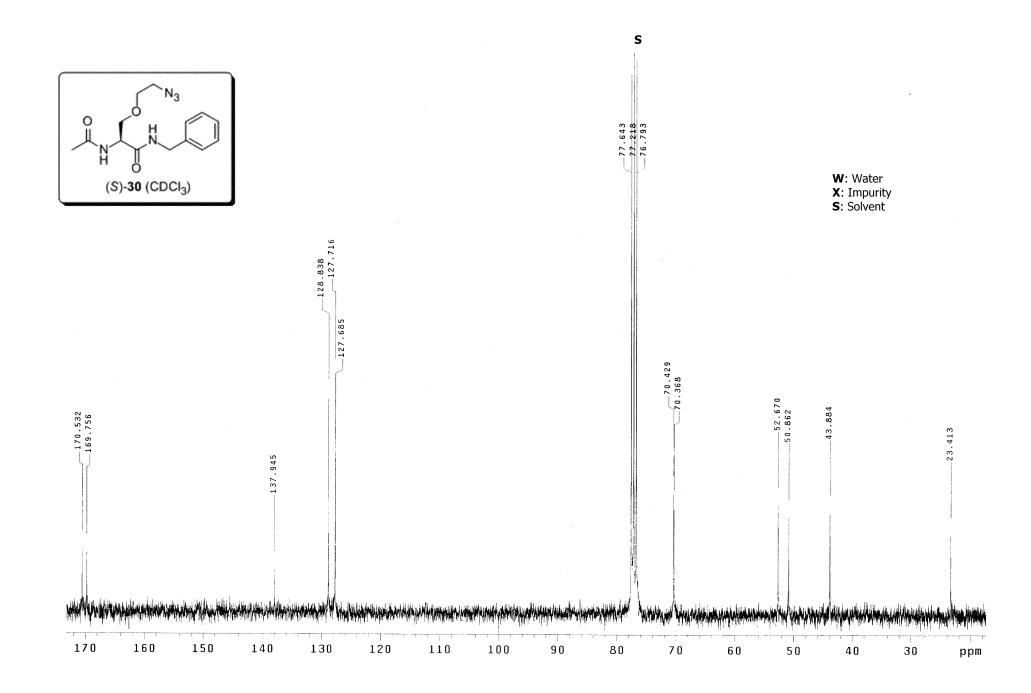


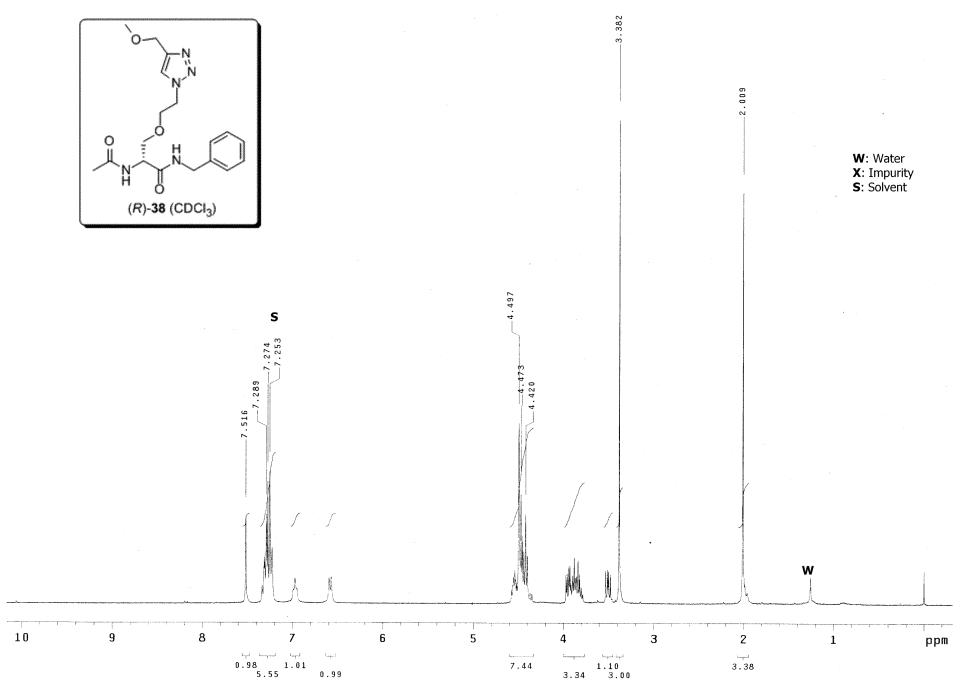




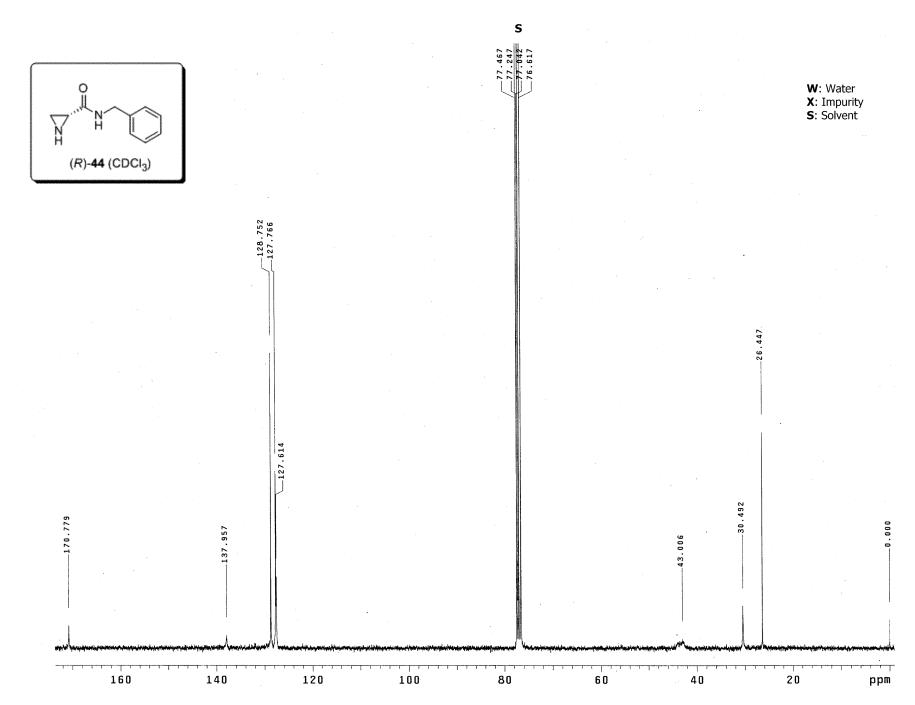


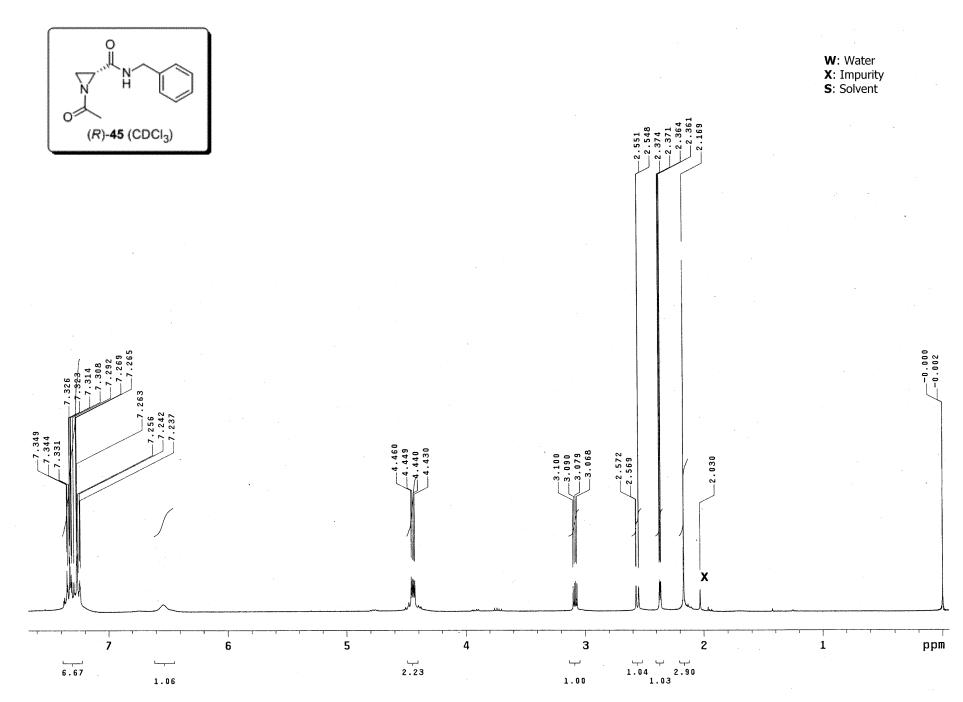


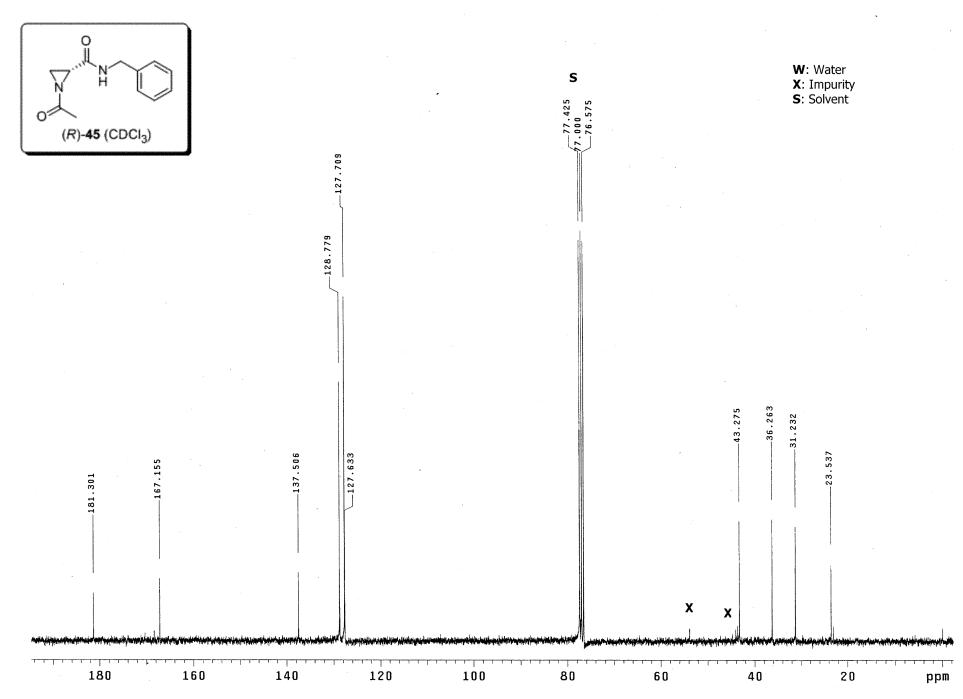


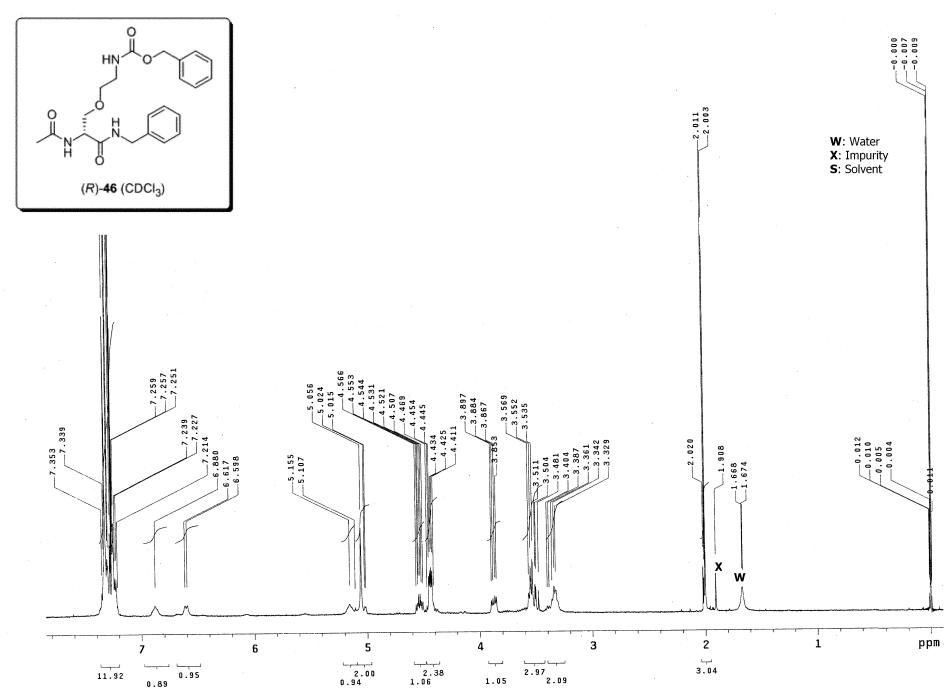


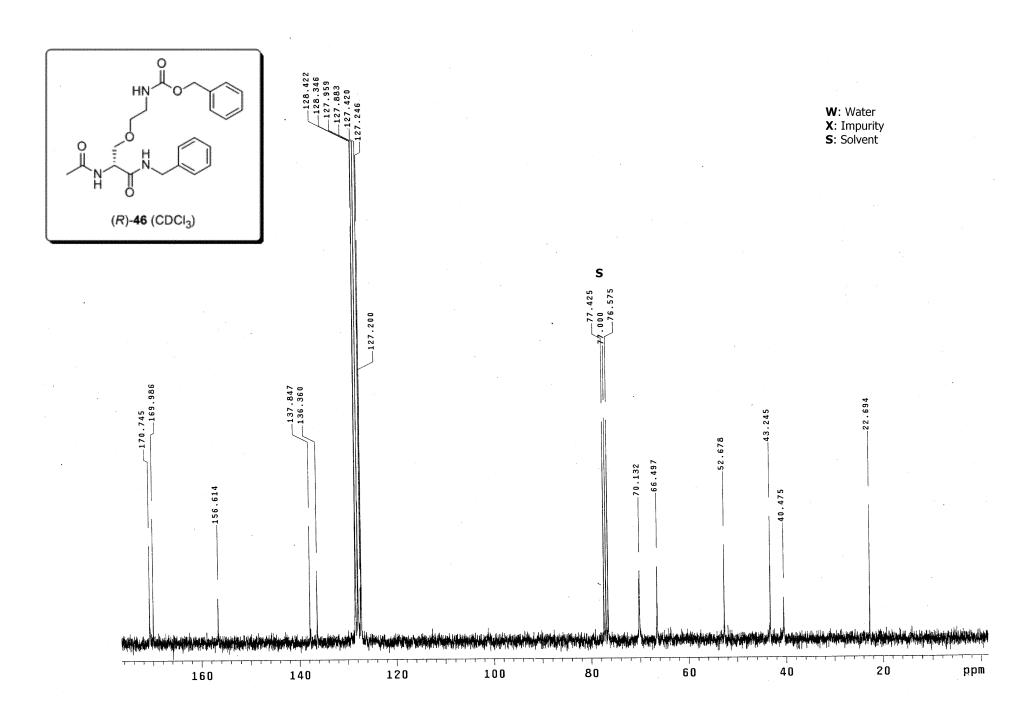


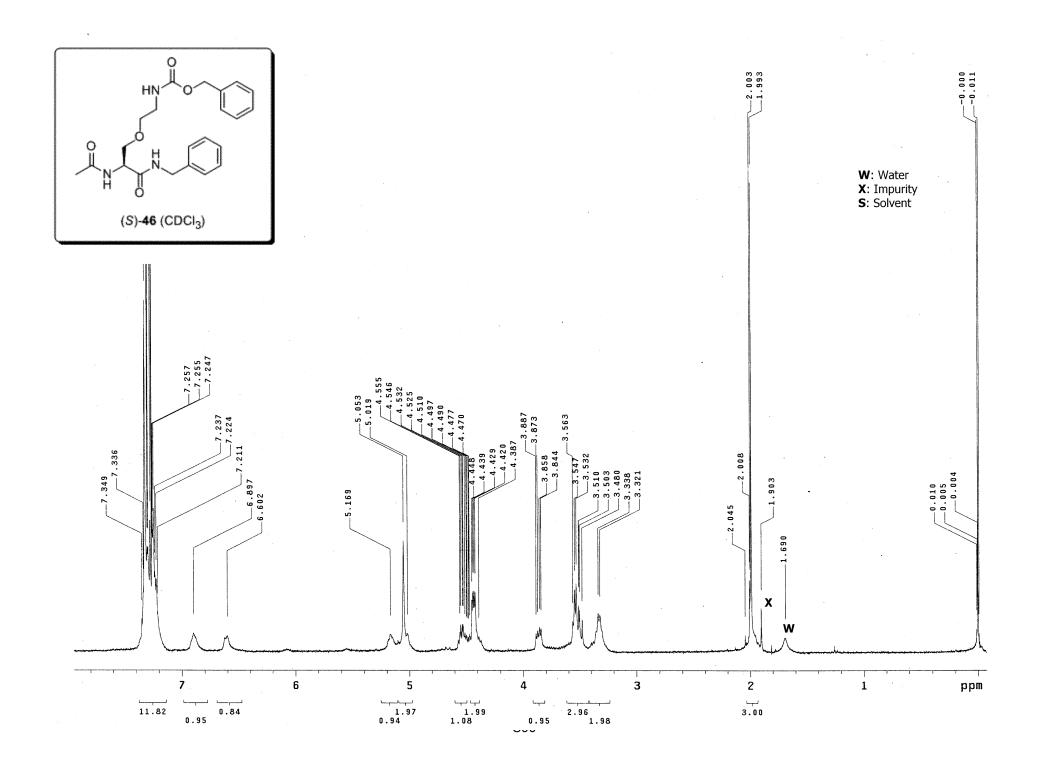


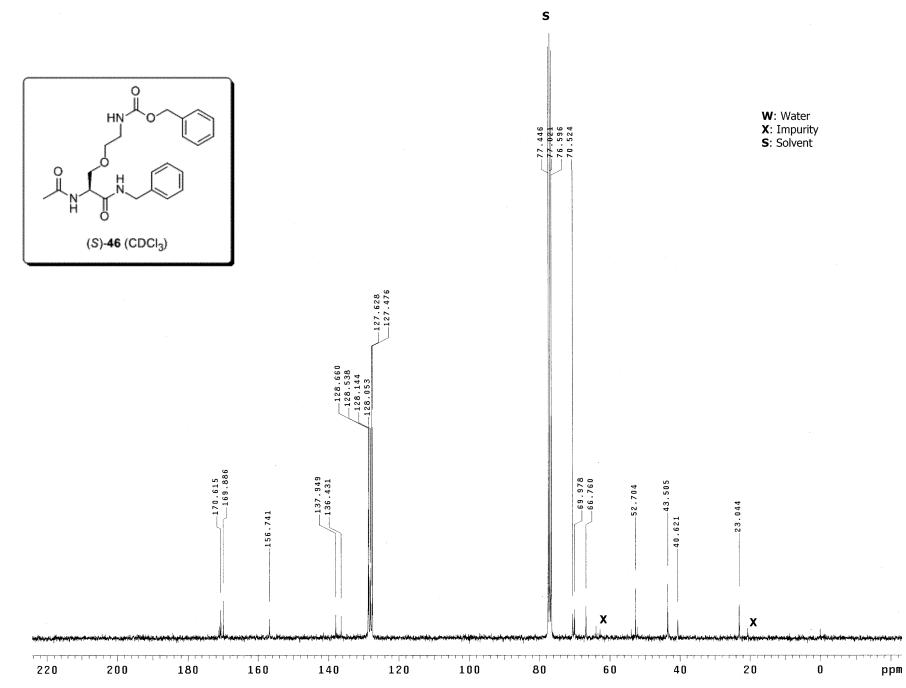


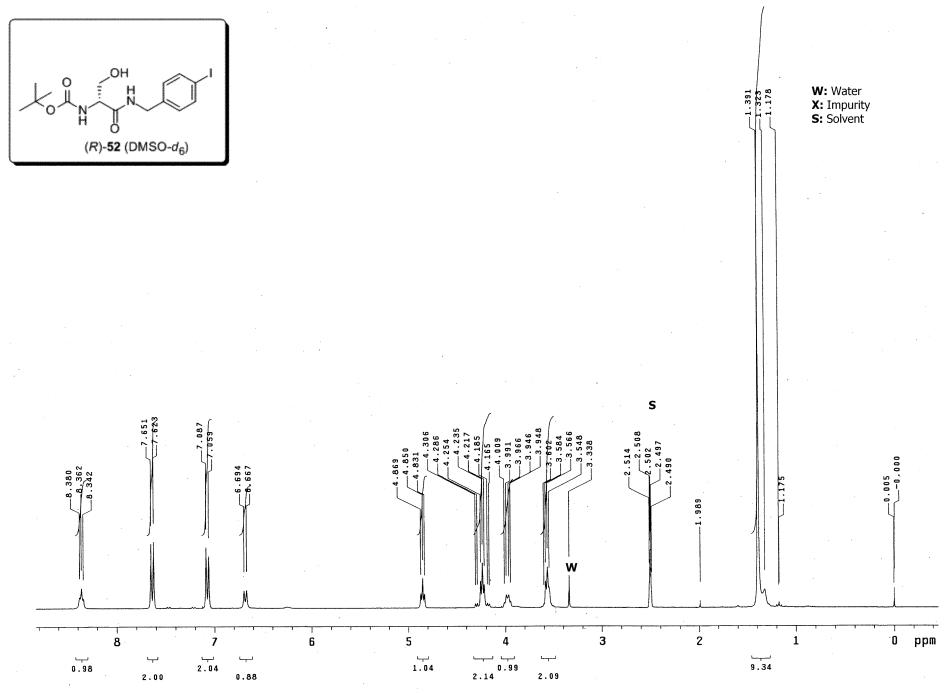


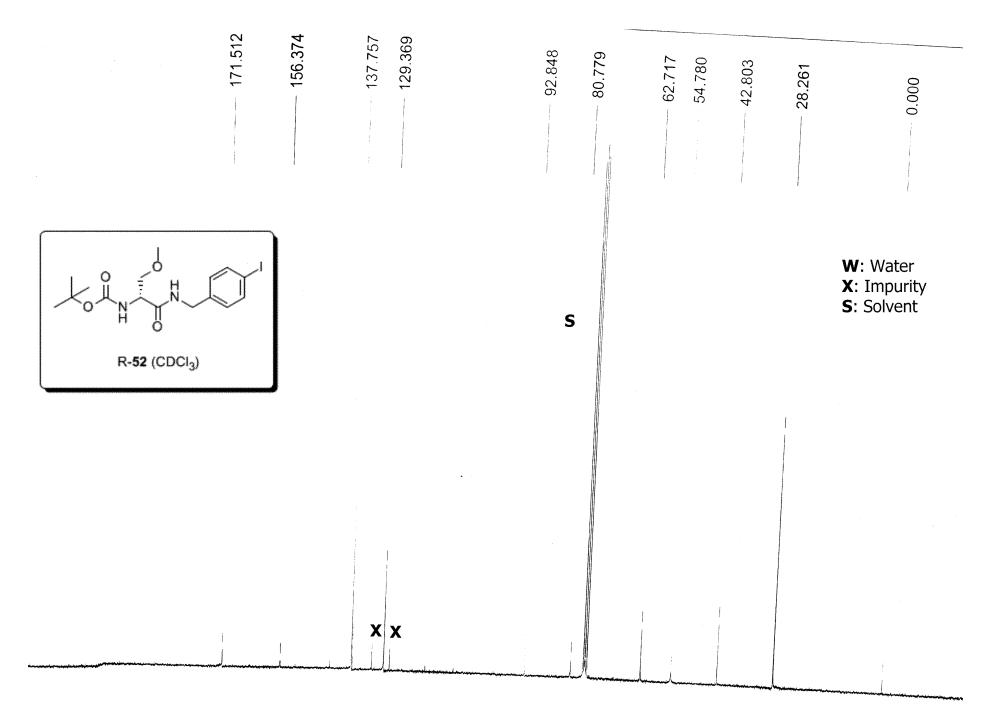


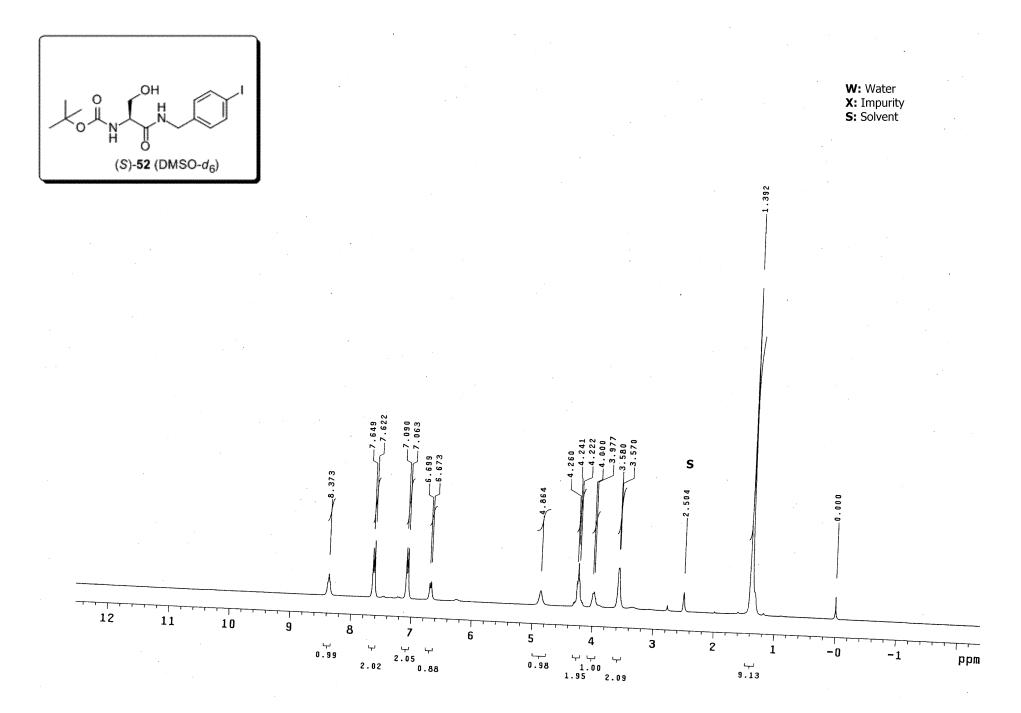


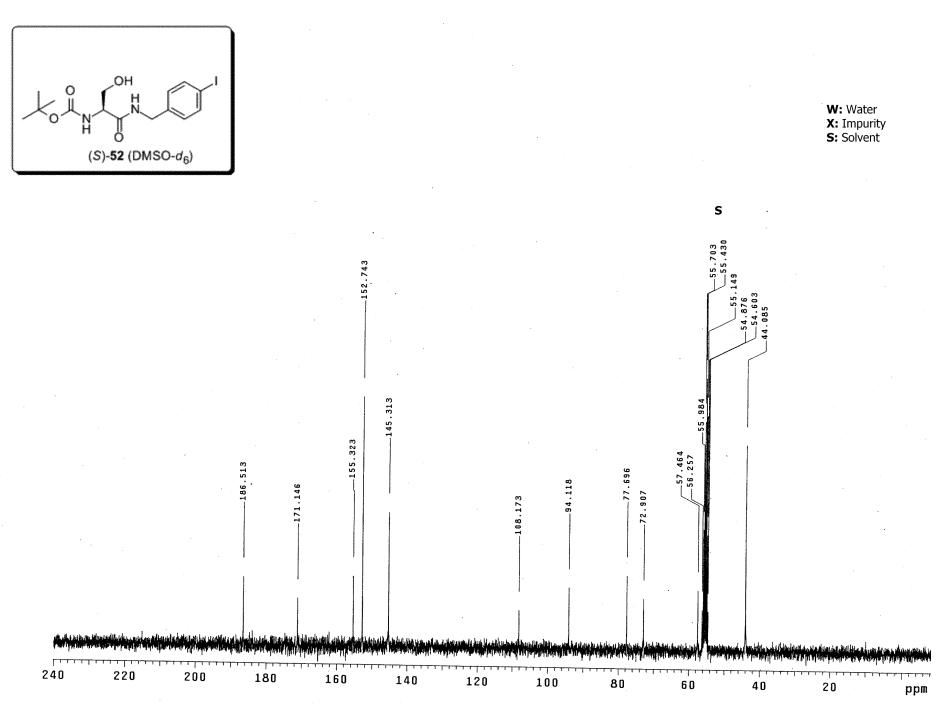


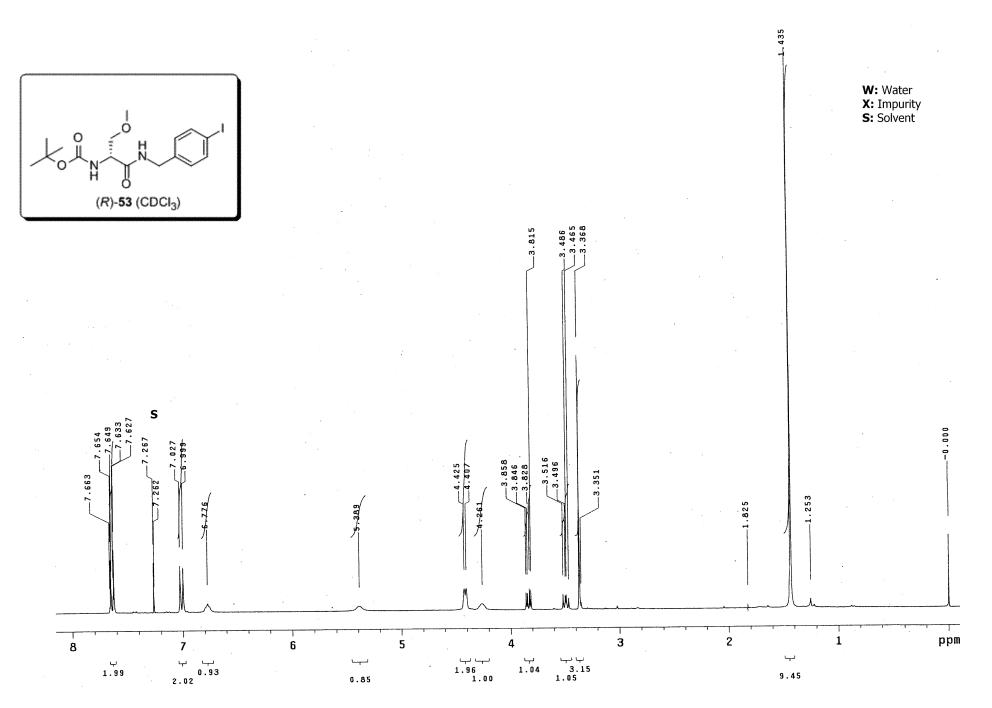


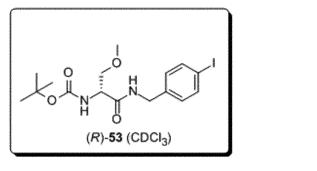


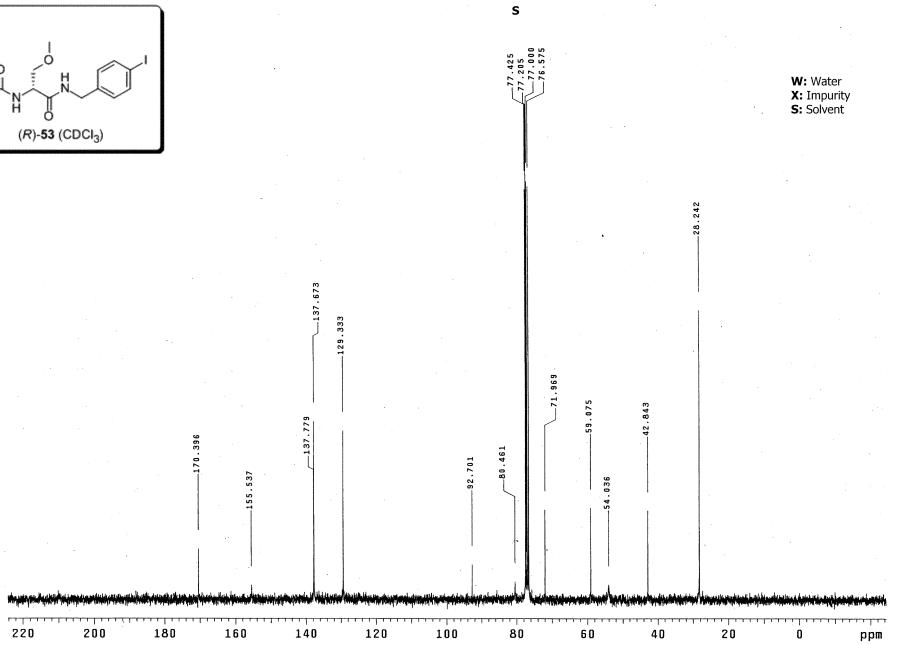


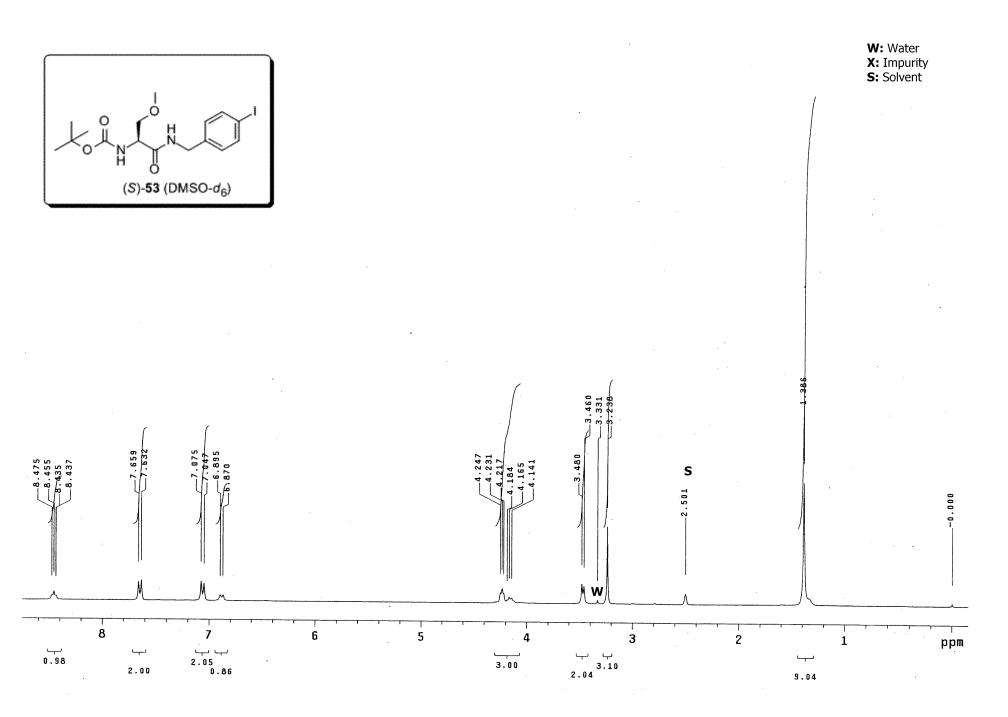


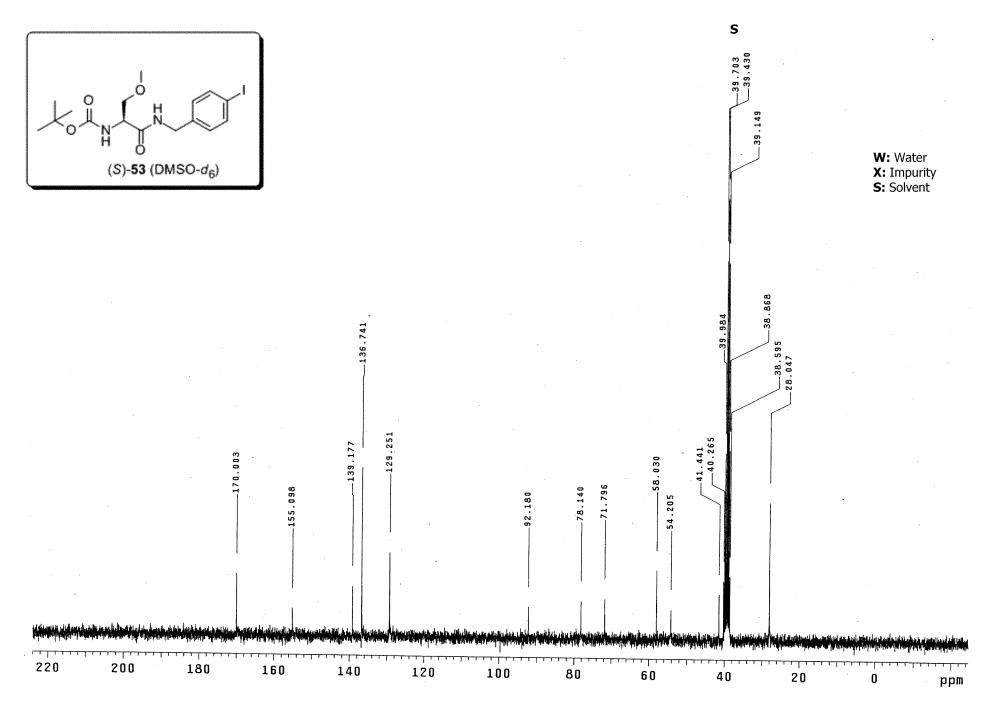


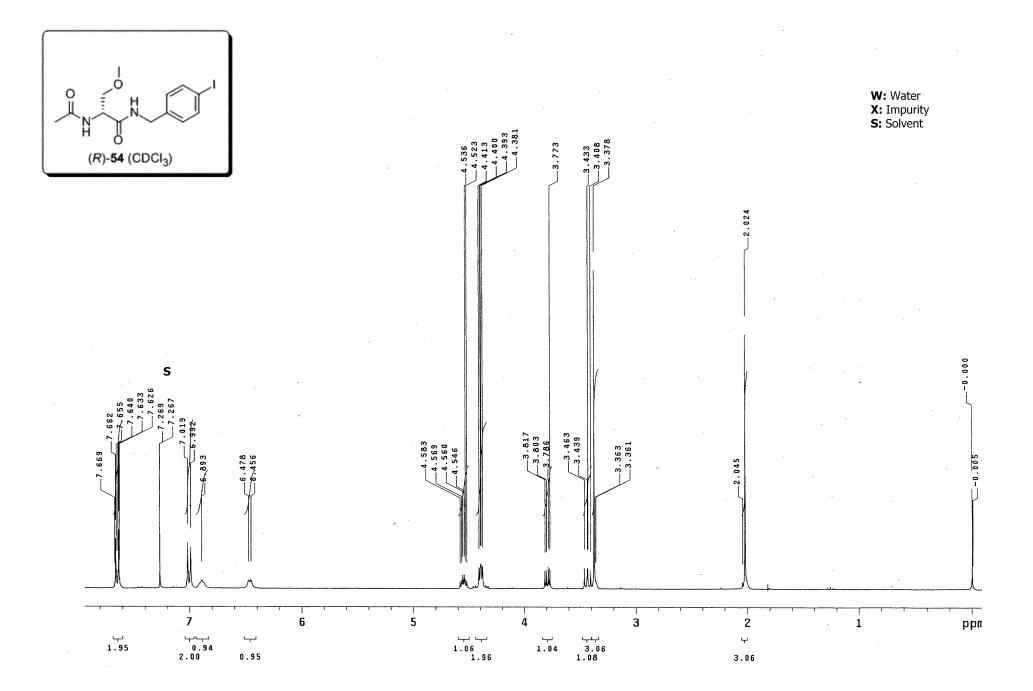


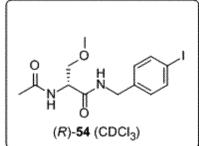











MANANA

